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Abstract

In diffusion MRI analysis, advances in biophysical multi-compartment
modeling have gained popularity over the conventional Diffusion Ten-
sor Imaging (DTI), because they possess greater specificity in relating the
dMRI signal to underlying cellular microstructure. Biophysical multi-com-
partment models require parameter estimation, typically performed us-
ing either Maximum Likelihood Estimation (MLE) or using Monte Carlo
Markov Chain (MCMC) sampling. Whereas MLE provides only a point es-
timate of the fitted model parameters, MCMC recovers the entire posterior
distribution of the model parameters given the data, providing additional
information such as parameter uncertainty and correlations. MCMC sam-
pling is currently not routinely applied in dMRI microstructure modeling
because it requires adjustments and tuning specific to each model, partic-
ularly in the choice of proposal distributions, burn-in length, thinning and
the number of samples to store. In addition, sampling often takes at least
an order of magnitude more time than non-linear optimization. Here we
investigate the performance of MCMC algorithm variations over multi-
ple popular diffusion microstructure models to see whether a single well
performing variation could be applied efficiently and robustly to many
models. Using an efficient GPU-based implementation, we show that run
times can be removed as a prohibitive constraint for sampling of diffusion
multi-compartment models. Using this implementation, we investigated
the effectiveness of different adaptive MCMC algorithms, burn-in, initial-
ization and thinning. Finally we apply the theory of Effective Sample Size
to diffusion multi-compartment models as a way of determining a rela-
tively general target for the number of samples needed to characterize
parameter distributions for different models and datasets. We conclude
that robust and fast sampling is achieved in most diffusion microstructure
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models with the Adaptive Metropolis-Within-Gibbs (AMWG) algorithm
initialized with an MLE point estimate, in which case 100 to 200 samples
are sufficient as a burn-in and thinning is mostly unnecessary. As a rela-
tively general target for the number of samples, we recommend a multi-
variate Effective Sample Size of 2200.

Keywords: Monte Carlo Markov Chain (MCMC) sampling, Diffusion
MRI, Microstructure, Biophysical compartment models, Parallel
computing, GPU computing

1 Introduction1

Advances in microstructure modeling of diffusion Magnetic Resonance2

Imaging (dMRI) data have recently gained popularity since they possess3

greater specificity than Diffusion Tensor Imaging (DTI) in relating the dMRI4

signal to the underlying cellular microstructure, such as axonal density,5

orientation dispersion or diameter distributions. Typically, dMRI models6

are fitted to the data using non-linear optimization (Assaf et al., 2004; Assaf7

& Basser, 2005; Assaf et al., 2008; Panagiotaki et al., 2012; Zhang et al., 2012;8

Assaf et al., 2013; Fieremans et al., 2013; De Santis et al., 2014b,a; Jelescu9

et al., 2015b; Harms et al., 2017) or linear convex optimization (Daducci10

et al., 2015) methods to obtain a parameter point estimate per voxel. These11

point estimates provide scalar maps over the brain of micro-structural pa-12

rameters, such as the fraction of restricted diffusion as a proxy for fiber13

density. These point estimates however do not include the uncertainty14

in the estimate, nor do they include the interdependency of parameters.15

The gold standard of obtaining these quantities is by using Monte Carlo16

Markov Chain (MCMC) sampling, as for example in (Behrens et al., 2003;17

Alexander, 2008; Alexander et al., 2010; Sotiropoulos et al., 2013). MCMC18

generates, per voxel, a multi-dimensional chain of samples, the station-19

ary distribution of which is the posterior distribution, i.e. the probability20

density of the model parameters given the data. Per voxel, these samples21

capture parameter dependencies, multimodality and the width of peaks22

around optimal parameter values. For instance, summarizing the chain23

under Gaussian assumptions with a sample covariance matrix, would al-24

ready provide mean parameter estimates and corresponding uncertainties25

(the standard deviation), as well as inter-parameter correlations (Figure 1).26

Despite these advantages , MCMC sampling is currently not routinely ap-27

plied in dMRI microstructure modeling since it often requires adjustments28
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and tuning specific to each model, particularly in the choice of proposals,29

burn-in length, thinning and the number of samples to store. In addition,30

sampling often takes at least an order of magnitude more time than non-31

linear optimization.32

Here we investigate the performance of a few variants of Random Walk33

Metropolis MCMC algorithms over multiple popular diffusion microstruc-34

ture models to see whether a single well performing variation could be35

applied efficiently and robustly to many models. To this end, we evalu-36

ate different strategies for adaptive proposals, burn-in and thinning with37

respect to diffusion MRI modeling. To determine a lower bound on the38

number of samples needed, we apply the concept of effective sample sizes39

to determine information content and posterior confidence. Finally, to re-40

duce run-time constraints we provide an efficient parallel GPU implemen-41

tation of all models and MCMC algorithms in the open source Microstruc-42

ture Diffusion Toolbox (MDT; https://github.com/cbclab/MDT).43

Figure 1: Illustration of parameter uncertainty and correlation for the Ball&Stick model
using MCMC sampling, with the Fraction of Stick (FS) and the non-diffusion weighted
signal intensity (S0). A) On the left, a single FS sampling trace and its corresponding
histogram for the highlighted voxel with a Gaussian distribution function fitted to the
samples with its mean indicated by a black dot. On the right, the mean and standard
deviation (std.) maps generated from the independent voxel chains per voxel. B) On
the left, the scatter-plot for two parameters (FS and S0) with the corresponding marginal
histograms for the voxel highlighted in the maps. On the right, the S0-FS correlation map.
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2 Methods44

The biophysical (multi-)compartment models and the Markov Chain Monte45

Carlo (MCMC) algorithms used in this study are implemented in a Python46

based GPU accelerated toolbox (the Microstructure Diffusion Toolbox, MDT,47

freely available under an open source L-GPL license at https://github.48

com/cbclab/MDT). Its modular design allows arbitrary combinations of49

models with likelihood and prior distributions. The MCMC implemen-50

tations are voxel-wise parallelized using the OpenCL framework, allow-51

ing parallel computations on multi-core CPU and/or Graphics Processing52

Units (GPUs).53

We use the models and MCMC routine as implemented in MDT version54

0.10.9. Unless stated otherwise, we initialize the MCMC sampling with a55

Maximum Likelihood Estimator (MLE) obtained from non-linear parame-56

ter optimization using the Powell routine with cascaded model initializa-57

tion (Harms et al., 2017).58

First, we define and review posteriors, likelihoods and priors relevant59

to diffusion multi-compartment models. We next define the Metropolis-60

Hastings as the general type of Markov Chain Monte Carlo algorithms61

used in this work. Then, under assumptions of symmetric and current62

position centered proposals, updated one dimension at a time, we derive63

the Metropolis-Within-Gibbs algorithm. The Metropolis-Within-Gibbs al-64

gorithm is then explained with and without the use of adaptive proposals.65

We subsequently define burn-in, thinning, effective sample size and num-66

ber of samples as the targets of investigation for diffusion microstructure67

models.68

2.1 Posterior, likelihoods and priors69

Given observations O and a model with parameters x ∈ Rn, we can con-70

struct a posterior distribution p(x|O) from a log-likelihood distribution71

l(O|x) and prior distribution p(x), as:72

p(x|O) ∝ l(O|x) + ln p(x) (1)

In this work we are interested in approximating the posterior density of73

p(x|O) using MCMC sampling.74

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 22, 2018. ; https://doi.org/10.1101/328427doi: bioRxiv preprint 

https://github.com/cbclab/MDT
https://github.com/cbclab/MDT
https://github.com/cbclab/MDT
https://doi.org/10.1101/328427
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.1.1 Likelihood distribution75

The likelihood distribution l(O|x) contains a signal model, embedding the76

diffusion microstructure modeling assumptions combined with a noise77

model. As discussed in previous work (Harms et al., 2017; Panagiotaki78

et al., 2012; Alexander, 2009), we use the Offset Gaussian model as likeli-79

hood distribution:80

l(O|x) = −

∑(
O −

√
S(x)2 + σ2

)
2σ2

−m · log(σ
√

2π) (2)

with l(O|x) the log-likelihood function, x the parameter vector, O the ob-81

servations (the data volumes), S(x) the signal model, σ the standard de-82

viation of the Gaussian distributed noise (of the complex valued data, i.e.83

before calculation of magnitude data) and m the number of volumes in84

the dataset (number of observations). We estimated σ a priori from the re-85

constructed magnitude images using the σmult method in (Dietrich et al.,86

2007, eq. A6). For signal model naming we use the postfix ‘ in[n]‘ to iden-87

tify the number of restricted compartments employed in models which88

allow multiple intra-axonal compartments (Harms et al., 2017). For ex-89

ample, CHARMED in2 indicates a CHARMED model with 2 intra-axonal90

compartments (and the regular single extra-axonal compartment), for each91

of two unique fiber orientations in a voxel.92

2.1.2 Priors93

The prior distribution p(x) describes the a priori knowledge we have about94

the model and its parameters. We construct a complete model prior as95

a product of priors per parameter, pi(xi) (see table 1), with one or more96

model specific priors over multiple parameters, pj(x|M), for model prior j97

of model M (see table 2):98

p(x) =
∏

pi(xi) ·
∏

pj(x|M) (3)

Assuming no further a priori knowledge than logical or biologically plau-99

sible ranges, we use uniform priors for each parameter, pi(xi) ∼ U(a, b).100

Additionally, for multi-compartment models with volume fraction weighted101

compartments (i.e. Ball&Stick in1, NODDI and CHARMED in1) we add102

a prior on the n − 1 volume fractions wk to ensure
∑n−1

k=0 wk <= 1, to en-103

sure proper volume fraction weighting. Note that the last volume fraction104
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is not sampled but is set to one minus the sum of the others, wn = 1 −105 ∑n−1
k=0 wi. To the Tensor compartment (used in the Tensor and CHARMED -106

in1 model), we add a prior to ensure strictly decreasing diffusivities (d >107

d⊥0 > d⊥1), this prevents parameter aliasing of the Tensor orientation pa-108

rameters (see (Gelman et al., 2013) on aliasing).109

Parameter Prior Used in model(s)

S0 U(0, 1 · 1010) Tensor, Ball&Stick in1, NODDI,
CHARMED in1

wi U(0, 1) Ball&Stick in1, NODDI,
CHARMED in1

d‖ (or d) U(3 · 10−11, 1 · 10−8) Tensor, Ball&Stick in1, NODDI,
CHARMED in1

d⊥1 , d⊥2 U(0, 1 · 10−8) Tensor, CHARMED in1

θ, φ U(0, π) Tensor, Ball&Stick in1, NODDI,
CHARMED in1

ψ U(0, π) Tensor

κ U(0, 2π) NODDI

Table 1: The priors pi(xi) per model parameter. These priors are combined with the
model specific parameters in table 2 to form the complete model priors. For parameter
usage and specification see (Harms et al., 2017).

Model (M ) Prior

BallStick in1, NODDI,
CHARMED in1

pj(x,M) = 1 if
∑n−1

k=0 wk <= 1, else
pj(x,M) = 0

Tensor, CHARMED in1 (extra ax-
onal compartment)

pj(x,M) = 1 if d > d⊥0 > d⊥1 , else
pj(x,M) = 0

Table 2: The model priors pj(x|M) for model M . Each of these priors should be inter-
preted as a boolean, that is, they return a value of 1 if the condition is fulfilled, else they
return 0. These priors are combined with the parameter specific priors in table 1 to form
the complete model priors.

2.2 Markov Chain Monte Carlo110

Markov Chain Monte Carlo (MCMC) is a class of numerical approxima-111

tion algorithms for sampling from the probability density function π(·)112
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of a target random variate, by generating a Markov chain X(0),X(1), . . .113

with stationary distribution π(·). There are a large number of MCMC algo-114

rithms, including Metropolis-Within-Gibbs (a.k.a Metropolis) (Metropolis115

et al., 1953), Metropolis-Hastings (Hastings, 1970), Gibbs (Turchin, 1971;116

Geman & Geman, 1984), Component-wise Hit-And-Run Metropolis (Turchin,117

1971; Smith, 1984), Random Walk Metropolis (Muller, 1994), Multiple-Try118

Metropolis (Liu et al., 2000), No-U-Turn sampler (Hoffman & Gelman,119

2011) and many more. All of these algorithms are known as special cases120

of the Metropolis-Hastings algorithm and differ only in the proposal dis-121

tributions they employ (Johnson et al., 2013; Chib & Greenberg, 1995).122

The general Metropolis-Hastings algorithm works as follows. Given a cur-
rent position X(t) at step t on a p-dimensional Markov chain, a new posi-
tion X(t+1) is obtained by generating a candidate position Y from the pro-
posal density q(X(t)|·), which is then either accepted with probability α,
or rejected with probability 1 − α. If the candidate position is accepted,
X(t+1) = Y, else, X(t+1) = X(t). The acceptance criteria α is a function
given by (Hastings, 1970):

α(X(t),Y) = min

(
1,

π(Y)

π(X(t))

q(X(t)|Y)

q(Y|X(t))

)
(4)

where π(·) is our target density, generally given by our posterior distribu-123

tion function p(X|·). The subsequent collection of points {X(0), . . . ,X(s)}124

for a sample size s is called the chain and is the algorithm’s output. The125

ergodic property of this algorithm guarantees that this chain converges (in126

the long run) to a stationary distribution which approximates the target127

density function π(·) (Metropolis et al., 1953; Hastings, 1970).128

In this work we use a symmetric proposal distribution centered around129

the current sampling position for every dimension (every component) of130

the sampled multivariate distribution. If the proposal distribution q is131

symmetric, i.e. q(X(t)|Y) = q(Y|X(t)) we can drop Hasting’s addition to132

the acceptance criteria function, simplifying it to the Metropolis criteria133

(Metropolis et al., 1953):134

α(X(t),Y) = min

(
1,

π(Y)

π(X(t))

)
(5)

If furthermore q(X(t)|Y) = q(X(t) − Y) = q(Y − X(t)), that is, the pro-135

posal is centered around X(t) ∀t, we typically denote it as the Random136
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Walk Metropolis algorithm (Robert, 2015; Chib & Greenberg, 1995; John-137

son et al., 2013; Sherlock et al., 2010; Muller, 1994; Hastings, 1970; Metropo-138

lis et al., 1953)..139

2.2.1 Metropolis-Within-Gibbs140

In the component wise updating scheme, a new position X(t+1) is pro-141

posed one component (i.e. one dimension) at a time, in contrast to up-142

dating all p dimensions at once. Since such a single component updating143

Random Walk Metropolis algorithm uses elements both of Gibbs sampling144

and of Metropolis-Hastings, this scheme is also referred to as Metropolis-145

Within-Gibbs (MWG) (van Ravenzwaaij et al., 2016; Robert, 2015; Sherlock146

et al., 2010). Let X(t) =
(
X

(t)
0 , . . . ,X

(t)
p

)
define the components X(t)

i of X(t),147

then we can define148

Yi =
(
X

(t+1)
0 , . . . ,X

(t+1)
i−1 ,Y∗i ,X

(t)
i+1, . . . ,X

(t)
p

)
as the candidate position for component i, and149

X(t+1)∗ =
(
X

(t+1)
0 , . . . ,X

(t+1)
i−1 ,X

(t)
i ,X

(t)
i+1, . . . ,X

(t)
p

)
as the temporary position in the chain while component i is being updated.150

The proposals Y∗i are generated using the symmetric proposal qi(X(t+1)∗|·)151

which updates the ith component dependent on the components already152

updated. One iteration of the MWG algorithm cycles through all i com-153

ponents, where each proposal Yi is accepted or rejected using probability154

α(X(t+1)∗,Yi).155

2.3 Proposal distributions156

As symmetric proposal distributions for our MWG algorithm we use cen-157

tered Normal distributions, i.e. qi(X(t+1)∗|·) ∼ N (X
(t)
i , σi), where σi is the158

proposal standard deviation of the ith component (not to be confused with159

the σ used in the likelihood distribution above). For the orientation param-160

eters θ, φ and ψ we use a circular Normal modulus π, i.e. qi(X(t+1)∗|·) ∼161

N (X
(t)
i , σi) mod π. See table 3 for an overview of the default proposal162

distributions used per parameter.163
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Parameter Prior

S0 N (X
(t)
i , 10)

wi N (X
(t)
i , 0.01)

d‖ (or d), d⊥1 , d⊥2 N (X
(t)
i , 1 · 10−8)

θ, φ, ψ N (X
(t)
i , 0.1) mod π

κ N (X
(t)
i , 0.01)

Table 3: The proposal distributions qi(X(t+1)∗ |·) per model parameter with their default
proposal standard deviations. For parameter usage and specification see (Harms et al.,
2017).

2.4 Adaptive Metropolis164

While in the traditional Metropolis-Within-Gibbs algorithm each σi in the165

proposal distribution is fixed, variations of this algorithm exist that auto-166

tune each σi to improve the information content of the Markov chain.167

While technically each of these variations is a distinct MCMC algorithm,168

we consider and compare three of these variations here as proposal updat-169

ing strategies for the MWG algorithm.170

The first adaptation strategy compared is the Single Component Adaptive171

Metropolis (SCAM) algorithm (Haario et al., 2005), which works by adapt-172

ing the proposal standard deviation to the empirical standard deviation of173

the component’s marginal distribution. That is, the standard deviation σ(t)
i174

for the proposal distribution of the ith component at time t is given by:175

σ
(t)
i =

{
σ
(0)
i , t ≤ ts

2.4 ∗
√

Var(X
(0)
i , . . . ,X

(t−1)
i ) + 1 · 10−20, t > ts

(6)

where ts denotes the iteration after which the adaptation starts (we use176

ts = 100). A small constant is necessary to prevent the standard deviation177

from shrinking to zero. This adaptation algorithm has been proven to re-178

tain ergodicity, meaning it is guaranteed to converge to the right stationary179

distribution (Haario et al., 2005).180

The other two methods work by adapting the acceptance rate of the gen-181

erated proposals. The acceptance rate is the ratio of accepted to generated182
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proposals and is typically updated batch-wise. In general, by decreas-183

ing the proposal standard deviation the acceptance rate increases and vice184

versa. Theoretically, for single component updating schemes (like in this185

work), the optimal target acceptance rate is 0.44 (Gelman et al., 1996).186

The first of the two acceptance rate scaling strategies is from the FSL Bed-187

postX software package. This strategy, which we refer to as the FSL strat-188

egy, tunes the acceptance rate to 0.5 (Behrens et al., 2003). It works by189

multiplying the proposal variance by the ratio of accepted to rejected sam-190

ples, i.e. it multiplies the standard deviation σi by
√
a/(b− a) after every191

batch of size b with a accepted samples. We update the proposals after ev-192

ery batch of size 50 (b = 50) (Behrens et al., 2003). Since this method never193

ceases the adaptation of the standard deviations, it theoretically loses er-194

godicity of the chain (Roberts & Rosenthal, 2009, 2007).195

The last method, the Adaptive Metropolis-Within-Gibbs (AMWG) method196

(Roberts & Rosenthal, 2009) uses the current acceptance rate over batches197

to tune the acceptance rate to 0.44. After the nth batch of 50 iterations198

(Roberts & Rosenthal, 2009), this method updates the logarithm of σi by199

adding or subtracting an adoption amount δ(n) =
√

1/n depending on the200

acceptance rate of that batch. That is, after every batch, σi is updated by:201

σ
(t)
i =

{
σ
(t−n)
i · exp(δ(n)), arbatch > artarget

σ
(t−n)
i /exp(δ(n)), arbatch ≤ artarget

(7)

where arbatch is the acceptance rate of the current batch and artarget is the202

target acceptance rate (0.44). Since this method features diminishing adap-203

tation, the chain remains ergodic (Roberts & Rosenthal, 2009).204

We compare all three strategies and the default, no adaptation, on the205

number of effective samples they generate (see below) and on accuracy206

and precision using ground truth simulation data. We sample all models207

with 10000 samples, without thinning, using the point optimized Maxi-208

mum Likelihood Estimator (MLE) as starting point and with a burn-in of209

1000. Estimates of the standard error of the mean (SEM) are obtained by210

averaging the statistics over 10 independent MCMC runs.211

2.5 Burn-in212

Burn-in is the process of discarding the first z samples from the chain and
using only the remaining samples in subsequent analysis. The idea is that
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if the starting point had a low probability then the limited number of early
samples may oversample low probability regions. By discarding the first
z samples as a burn-in, the hope is that, by then, the chain has converged
to its stationary distribution and that all further samples are directly from
the stationary distribution (Robert, 2015). Theoretically, burn-in is unnec-
essary since any empirical average

µ̂T (g) =
1

T

T∑
t=0

g(X(t)) (8)

for any function g will convert to µ(g) given a large enough sample size213

and given that the chain is ergodic (Robert, 2015). Additionally, since it214

can not be predicted how long it will take for the chain to reach conver-215

gence, the required burn-in can only be estimated post-hoc. In practice,216

discarding the first few thousand samples as a burn-in often works and is217

less time-consuming than generating a lot of samples to average out the218

effects of a low probability starting position.219

An alternative to burn-in, or, to reduce the need for burn-in, is to use a220

Maximum Likelihood Estimator as starting point for the MCMC sampling221

(van Ravenzwaaij et al., 2016). If the optimization routine did its work222

well, the MLE should be part of the stationary distribution of the Markov223

chain, removing the need for burn-in altogether. We compare initialization224

using a MLE obtained using the Powell routine (Harms et al., 2017), with225

a initialization from a default a priori value (table 4). For most models226

the MLE optimization results can be used directly, for the Tensor model227

we sometimes need to sort the diffusivities and reorient the θ, φ and ψ228

angles to ensure decreasing diffusivities. To evaluate the effect of burn-in229

and initialization single-slice datas was sampled using the NODDI model230

with the default starting point and with MLE. For selected single voxels231

the NODDI model was also sampled using the MLE starting point and232

two random volume fractions as a starting point.233

2.6 Thinning234

Thinning is the process of using only every kth step of the chain for analy-235

sis, while all other steps are discarded, with as goal reducing autocorrela-236

tion and obtaining relatively independent samples. Several authors have237

recommended against the use of thinning, stating that it is often unneces-238

sary, always inefficient and reduces the precision of the posterior estimates239
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Parameter Default starting value

S0 1 · 104

wi 0.5

d‖ (or d) 1.7 · 10−9

d⊥1 1.7 · 10−10

d⊥2 1.7 · 10−11

θ, φ, ψ π/2

κ 1

Table 4: The default starting points for the MCMC sampler, used only when the sampler
is not initialized with a maximum likelihood estimator.

(Link & Eaton, 2012; MacEachern & Berliner, 1994; Jackman, 2009; Geyer,240

1991; Christensen et al., 2010).241

The only valid reason for thinning is to avoid bias in the standard error es-242

timate of posterior mean, when that mean estimate was computed over all243

(non thinned) samples (Link & Eaton, 2012; MacEachern & Berliner, 1994).244

In general, thinning is only considered worthwhile if there are storage lim-245

itations, or when the cost of processing the output outweighs the benefits246

of reduced variance of the estimator (Geyer, 1991; MacEachern & Berliner,247

1994; Link & Eaton, 2012).248

To evaluate the effect of thinning we sampled a single voxel with 20000249

samples and compared the effect of using all samples in computing the250

posterior mean and posterior standard deviation of a volume fraction against251

using only a thinned amount of samples We compare the effect of taking252

n samples with a thinning of k (the thinning method) against just using all253

n · k samples (the more samples method).254

2.7 Effective Sample Size255

The Effective Sample Size (ESS) in the context of MCMC, measures the in-256

formation content, or effectiveness of a sample chain. For example, 1000257

samples with an ESS of 200 have a higher information content than 2000258

samples with an ESS of 100. The ESS can be defined as the minimum259

size of a set of posterior samples (taken directly from the posterior), which260

have the same efficiency (measure of quality) in the posterior density esti-261

mation as a given chain of samples obtained from MCMC sampling (Mar-262
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tino et al., 2017). Conversely, ESS theory can quantify how many samples263

should be taken in a chain to reach a given quality of posterior estimates.264

We use the ESS theory to comparing proposal adaptation strategies and to265

estimating the minimum number of samples necessary for adequate sam-266

pling of diffusion microstructure models.267

Multivariate ESS theory (Vats et al., 2015) is an extension of univariate ESS268

theory (Gong & Flegal, 2016; Liu, 2004; Robert & Casella, 2004; Kass et al.,269

1998) and computes the empirical ESS as:270

ÊSS = s

(
|Λs|
|Σs|

)1/p

(9)

with s is the number of obtained samples, p the number of parameters,271

Λs the covariance matrix of the samples and Σs an estimate of the Monte272

Carlo standard error (the error in the chain caused by the MCMC sampling273

process), here calculated using a batch means algorithm (Vats et al., 2015).274

2.8 Number of samples275

The multivariate ESS theory dictates that one can terminate the sampling276

when the empirical number of effective samples, ÊSS, satisfies:277

ÊSS ≥ W (p, α, ε) (10)

where W (p, α, ε) gives a theoretical lower bound with p the number of278

parameters in the model, α the level of confidence of a desired confidence279

region and ε a desired relative precision (the relative contribution of Monte280

Carlo error to the variability in the target distribution). W (p, α, ε) can be281

determined a priori and is defined as:282

W (p, α, ε) =
22/pπ

(pΓ(p/2))2/p
χ2
1−α,p

ε2
(11)

with χ2 the chi-square function and Γ(·) the Gamma function (Vats et al.,283

2015). Figure 2 shows the effect of α and ε on W (p, α, ε). Given the expo-284

nential increase in the number of samples need for very high confidence285

and precision, we aim for a 95% confidence region (α = 0.05) with a 90%286

precision (ε = 0.1) in this work.287
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Since online monitoring of the ESS (during MCMC sampling) is an expen-288

sive operation, and terminating on ESS will yield different sample sizes289

for different voxels, we instead use the ESS theory to estimate a fixed290

minimum number of samples needed to reach a desired ESS when av-291

eraged over a white matter mask. We sampled with the BallStick in1, Ten-292

sor, NODDI and CHARMED in1 models, using respectively 15000, 20000,293

20000 and 30000 samples and computed from those samples the average294

ESS over white matter masks. For α = 0.05 and ε = 0.1 we computed per295

model the theoretical minimum required effective sample size W (p, α, ε).296

We compared those theoretical numbers to the obtained average effective297

sample size and estimated a minimum required number of samples ŝ us-298

ing the ratio:299

ŝ = s+
W (p, α, ε)− ÊSS

ÊSS/s
(12)

where s is the number of samples we started out with, W (p, α, ε) the theo-300

retical ESS requirements and ÊSS the estimated number of effective sam-301

ples in our chain when averaged over the white matter mask. As an esti-302

mate of computation times, we record runtime statistics for sampling the303

recommended number of samples using an AMD Fury X graphics card.304

2.9 Datasets305

For this study we used two groups of ten subjects coming from two stud-306

ies, each whith a different acquisition protocol. The first ten subjects are307

from the freely available fully preprocessed dMRI data from the USC-308

Harvard consortium of the Human Connectome project. Data used in the309

preparation of this work were obtained from the MGH-USC Human Con-310

nectome Project (HCP) database (https://ida.loni.usc.edu/login.311

jsp). The data were acquired on a specialized Siemens Magnetom Con-312

nectom with 300mT/m gradient set (Siemens, Erlangen, Germany). These313

datasets were acquired at a resolution of 1.5mm isotropic with ∆=21.8ms,314

δ=12.9ms, TE=57ms, TR=8800ms, Partial Fourier = 6/8, MB factor 1 (i.e. no315

simultaneous multi-slice), in-plane GRAPPA acceleration factor 3, with 4316

shells of b=1000, 3000, 5000, 10,000 s/mm2, with respectively 64, 64, 128,317

393 directions to which are added 40 interleaved b0 volumes leading to318

552 volumes in total per subject, with an acquisition time of 89 minutes.319

We refer to these datasets as HCP MGH - 1.5mm -552vol - b10k and to the320

multi-shell direction table as the HCP MGH table. These four-shell, high321

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 22, 2018. ; https://doi.org/10.1101/328427doi: bioRxiv preprint 

https://ida.loni.usc.edu/login.jsp
https://ida.loni.usc.edu/login.jsp
https://ida.loni.usc.edu/login.jsp
https://doi.org/10.1101/328427
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Overview of theoretical minimum ESS,W (p, α, ε), to reach a specific confidence
level α with a desired relative precision ε for a model with number of parameters p.

number of directions, and very high maximum b- value datasets allow a322

wide range of models to be fitted.323

The second set of ten subjects comes from the diffusion protocol pilot324

phase of the Rhineland Study (www.rheinland-studie.de) and was325

acquired on a Siemens Magnetom Prisma (Siemens, Erlangen, Germany)326

with the Center for Magnetic Resonance Research (CMRR) multi-band327

(MB) diffusion sequence (Moeller et al., 2010; Xu et al., 2013). These datasets328

had a resolution of 2.0mm isotropic with ∆=45.8ms, δ=16.3ms and TE=90ms,329

TR=4500ms Partial Fourier = 6/8, MB factor 3, no in-plane acceleration330

with 3 shells of b=1000, 2000, 3000 s/mm2, with respectively 30, 40 and331

50 directions to which are added 14 interleaved b0 volumes leading to332

134 volumes in total per subject, with an acquisition time of 10 min 21333

sec. Additional b0 volumes were acquired with a reversed phase encod-334

ing direction which were used to correct susceptibility related distortion335

(in addition to bulk subject motion) with the topup and eddy tools in FSL336

version 5.0.9. We refer to these datasets as RLS - 2mm - 134dir - b3k and to337

the multi-shell direction table as the RLS table. These three-shell datasets338

represent a relatively short time acquisition protocol that still allows many339

models to be fitted.340
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Since the Tensor model is only valid for b-values up to about 1200s/mm2,341

we only use the b-value 1000s/mm2 shell and b0 volumes during model342

optimization and sampling. All other models are estimated on all data343

volumes. For all datasets we created a white matter (WM) mask and, using344

BET from FSL (Smith, 2002), a whole brain mask. The whole brain mask345

is used during sampling, whereas averages over the WM mask are used346

in model or data comparisons. The WM mask was calculated by applying347

a lower threshold of 0.3 on the Tensor FA results, followed by a double348

pass 3D median filter of radius 2 in all directions. The Tensor estimate for349

this mask generation was calculated using a CI Ball Stick/Tensor cascade350

optimized with the Powell method (Harms et al., 2017).351

2.10 Ground truth simulations352

We performed ground truth simulations to illustrate the effects of the adap-353

tive proposals on the accuracy and precision of parameter estimation. For354

all models in the study, we simulated 10000 repeats with random volume355

fractions, diffusivities and orientations, using both a HCP MGH and a RLS356

multi-shell direction table with Rician noise of an SNR of 30. For the Ten-357

sor model we only use the b-value 1000s/mm2 shell and b0 volumes of the358

acquisition tables. To ensure Gaussianity of the sampled parameter distri-359

butions, we generate the parameters with a smaller range than the support360

of the sampling priors (table 5). To allow an uniform SNR of 30 we fix S0361

to 1 · 104.362

Analogous to (Harms et al., 2017), we compute estimation error as the363

mean of the (marginal) posterior minus ground truth parameter value for364

the intra-axonal volume fraction, i.e. fraction of stick (FS) for Ball&Sticks -365

in1, fraction of restricted (FR) for CHARMED in1 and fraction of restricted366

(FR) for NODDI. We compute a measure of accuracy as the inverse of the367

mean of the average estimate error over ten thousand random repeats and368

a measure of precision as the inverse of the standard deviation of the aver-369

age estimates. Finally, we aggregate these results per model and per exper-370

iment over 10 independent ground truth simulation trials into a mean and371

standard error of the mean (SEM) for both accuracy and precision. When372

reported, the effective sample size (ESS) is computed using the multivari-373

ate ESS theory, averaged over the 10000 voxels with again a SEM over 10374

trials.375
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Parameter Lower bound Upper bound

wi 0.2 0.8

d‖, d⊥1 , d⊥2 5 · 10−11 5 · 10−9

θ, φ, ψ 0 π

κ 0.1 2π

Table 5: The simulation ranges per model parameters. We generate uniformly distributed
parameter values using the upper and lower bounds presented.

3 Results376

We begin by comparing the four different proposal strategies for sampling377

the different microstructure compartment models: Tensor, Ball&Sticks -378

in1, CHARMED in1 and NODDI. We then present burn-in and thinning379

given an effective proposal strategy, and end with ESS estimates on the380

minimum number of samples needed for adequate characterization of the381

posterior distribution.382

3.1 Adaptive proposal strategies383

We compare three different adaptive proposal strategies, the Single Com-384

ponent Adaptive Metropolis (SCAM), the FSL acceptance rate scaling (FSL)385

and the Adaptive Metropolis-Within-Gibbs (AMWG), against the default386

of no adaptive proposals (None). Comparisons are based on multivari-387

ate Effective Sample Size, and accuracy and precision using ground truth388

simulations. Figure 3 illustrates the effect of using MCMC algorithms389

with adaptive proposal strategies using the Ball&Stick in1 model, the HCP390

MGH dataset, an initial standard deviation of 0.25, after a burn-in of 1000391

steps. The illustration clearly shows that without adaptive proposals the392

chain can get stuck in the same position for quite some time, while all393

adaptive proposal methods can adapt the standard deviations to better394

cover the support of the posterior distribution.395

The empirical ESS (eq. 9) measures the information content or effective-396

ness of a sample chain. As such, comparing the ESS for an equal num-397

ber of actual samples for different proposal strategies evaluates how ef-398

fectively each strategy generates useful information about the posterior399

distribution. Figure 4 shows that all adaptive methods clearly outperform400

the default, None, by generating about 2∼3 times more effective samples401
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for equal length chains. The AMWG method generates the largest ESS in402

all cases, although with a small margin compared to the other two adap-403

tive methods. Compared on accuracy and precision in ground truth sim-404

ulations (figure 5), the adaptive proposal methods again show a general405

advantage against no adaptations. Here, the SCAM strategy performs406

slightly better (highest accuracy and precision) than the other adaptive407

methods for the lower number of parameter models (BallStick r1, Tensor)408

while the AMWG method performs slightly better in the higher number of409

parameter models (NODDI, CHARMED r1). Generally the performance410

differences in accuracy and precision between the adaptive methods are411

not large, and both the SCAM and AWG perform well. Given the high412

alround efficiency, accuracy and precision and the maintained ergodicity413

of the chain in the AMWG method, we selected this method to generate414

chains in the rest of this work.415

Figure 3: MCMC sample traces for the voxel indicated in figure 1, using Ball&Stick in1
Fraction of Stick (FS), for no adaptive metropolis (None), the Single Component Adap-
tive Metropolis (SCAM), the FSL acceptance rate scaling (FSL) and Adaptive Metropolis-
Within-Gibbs (AMWG) adaptive proposal methods. Results were computed with an ini-
tial proposal standard deviation of 0.25. A Gaussian distribution function was fitted to
the samples, superimposed in blue on the sample histograms, with its mean indicated by
the blue dot.

3.2 Burn-in416

Figure 6 shows a comparison of mean and standard deviation estimates417

over 10,000 samples (no thinning), between sampling started from the de-418

fault starting point (table 4) and from a Maximum Likelihood Estimator419
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Figure 4: Estimated multivariate Effective Sample Size (ESS), for no adaptive metropo-
lis (None), the Single Component Adaptive Metropolis (SCAM), the FSL acceptance rate
scaling (FSL) and Adaptive Metropolis-Within-Gibbs (AMWG) adaptive proposal meth-
ods. Whiskers show the standard error of the mean computed over 10 repeats. Results
are over 10000 samples, with a burn-in of 1000 samples, without thinning.

starting point, over an increasing length of burn-in. When started from420

a default starting point, the chains of most voxels will have converged to421

their stationary distribution after a burn-in of about 3000 samples. When422

started from an MLE starting point, the chain starts from a point in the423

stationary distribution and no burn-in is necessary. Starting from an MLE424

starting point has the additional advantage of removing salt- and pepper-425

like noise from the mean and std. maps. For example, even after a burn-in426

of 3000 samples, there are still some voxels in the default starting point427

maps that have not converged yet. Burn-in also seems to have a greater428

impact on the standard deviation estimates than it does on the mean esti-429

mates. After a burn-in of 1000 samples, the means of the default starting430

point maps seem to have converged, while the many of the standard de-431

viations clearly have not. in contrast, stable standard deviation estimates432

are obtained from the MLE initialized chain even without burn-in.433

To illustrate this on a single chain basis, in figure 7 we plot the first 1000434
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Figure 5: Estimated accuracy (left plots) and precision (right, shaded, plots), for no adap-
tive metropolis (None), the Single Component Adaptive Metropolis (SCAM), the FSL
acceptance rate scaling (FSL) and Adaptive Metropolis-Within-Gibbs (AMWG) adaptive
proposal methods. The results are averaged over 10000 voxels and 10 trials, the whiskers
show the standard error of the mean computed over the 10 trials. Results are over 10000
samples, with a burn-in of 1000 samples, without thinning.

samples of an MCMC run of the Ball&Stick in1 and NODDI model us-435

ing the MLE starting point and two random volume fractions as a start-436

ing point, on the left, and (on the right) the effect of discarding the first437

z samples when computing the posterior mean and standard deviation438

(with statistics over 1000 samples, after the burn-in z). The sampling trace439

shows how the sampler moves through the parameter space before con-440

verging to the stationary distribution. Interestingly, all points first seem441

to move toward an intra-axonal volume fraction of zero, before moving442

up again. This is probably caused by a misalignment of the model orien-443

tation with the data’s diffusion orientation, making the intra-axonal vol-444

ume less likely. Only after a correct orientation of the model, the volume445

fraction can go up again. The plots on the right of the figure show the446

convergence of the mean and standard deviation with an increased burn-447

in length. These plots again show that, when started from the MLE, no448

burn-in is needed, while starting from another position some burn-in is449

required for the chains to converge.450
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Figure 6: Burnin demonstration and chain initialization using NODDI Fraction of Re-
stricted (FR). On the left, the posterior mean and standard deviation (std.) maps when
sampling NODDI from the MDT default starting point, on the right the mean and std.
maps when sampling NODDI using a Maximum Likelihood Estimator (MLE) as starting
point. The rows show the effect of discarding the first z ∈ {0, 1000, 3000} samples as
burn-in before the mean and std. estimation. Statistics are without thinning and over
10,000 samples after z. The value insets show the mean and standard deviation value
from a Gaussian fit to the sampling chain for the indicated voxel.

3.3 Thinning451

Thinning of sampler chains has theoretically been shown to reduce the ac-452

curacy of posterior analyses (Geyer, 1991; MacEachern & Berliner, 1994;453

Link & Eaton, 2012), and empirical evidence has been provided for the454

limited usefulness of thinning Link2012 Here we will show some empiri-455

cal results of thinning applied to diffusion MRI modeling. Figure 8 shows456

the effect of thinning on the variability of the returned sampling trace and457
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Figure 7: MCMC chains and burn-in results of a single voxel (the voxel indicated in 6).
On the left, the sampling trace when starting at the MLE or two default points, with (only)
a varying volume fraction. Chain histograms and Gaussian fits as before. On the right,
mean and standard deviation computed over 1000 samples with increasing burn-in.

on the estimates of the mean and standard deviation. The sampling trace458

shows that the chains produce roughly the same distribution, while with459

increased thinning many more samples are required (k times more sam-460

ples, for a thinning of k). Comparing the effect of thinning on the mean461

and standard deviation shows that, as predicted by theory, there is less462

variance in the estimates when using more samples as compared to thin-463

ning the samples. Results also show that 1000 samples without thinning464

may not be enough for a stable estimates and more samples are required.465

Yet in accordance with theory, instead of thinning the chain, results in-466

dicate that just using more samples (e.g. all 1000 · k samples instead a467

thinning of k) is preferred.468

3.4 Minimum number of samples469

Using multivariate ESS theory we determined, a priori, per model, the470

number of actual samples needed to generate a sufficient number of effec-471

tive samples (the effective sample size or ESS) to approximate the underly-472

ing posterior density within a 95% confidence region and with a 90% rela-473

tive precision. Figure 9 shows an estimate on the number of actual samples474

needed to reach this desired ESS, on average over a white matter mask. In475

general, the sampling requirements do not depend on the acquisition ta-476

ble, with similar numbers of samples needed for the HCP MGH and RLS477
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Figure 8: Thinning results of a single voxel (the voxel indicated in 6). On the left, sample
traces for the returned samples after a thinning of 1 (no thinning), a thinning of 10 and
of 20, with their corresponding histograms. On the right, a comparison of the posterior
mean and standard deviation when thinning the chain or when using more samples.
When thinning, 1000 ·k samples are generated of which only every kth sample is used (so
always 1000 samples are used). When using more samples, all 1000 · k samples are used,
without thinning. Results are without burn-in and started from a maximum likelihood
estimator.

protocols. The exception to the rule is in the CHARMED r1 model where478

we need about double the number of samples for the RLS acquisition pro-479

tocol compared to the HCP MGH protocol. This is probably due to the lim-480

ited suitability of the RLS dataset for the CHARMED model as it requires481

high maximum b-values which the RLS protocol does not contain. Table 6482

summarizes the estimated minimum sample requirements, together with483

the required ESS and the number of estimated parameters in each model.484

In general, models with more parameters need more actual samples to485

reach the same confidence and precision, although the Tensor model with486

seven parameters requires less samples than the NODDI model with six487

parameters. This is probably related to the higher complexity (nonlinear488

parameter inter-dependencies) of the NODDI model compared to the Ten-489

sor model. Interestingly, the required ESS to reach the desired confidence490

and precision is very similar, at about 2200, for all models (although the491

numbers of actual samples needed to realize this are different). As an esti-492

mate of computation times, table 7 shows runtime statistics for sampling493

the recommended number of samples for HCP MGH dataset and a RLS494

dataset using a AMD Fury X graphics card. This shows that although 4495
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to 7 hours are needed to sample more complex CHARMED and NODDI496

models on the very large HCP MGH dataset (with 552 volumes), gpu ac-497

celerated implementation can provide full posterior sampling of diffusion498

microstructure models over whole brain datasets in reasonable time on a499

standard graphics card. On the more clinicaly feasible RLS protocol (134500

volumes) whole brain sampling of Tensor and Ball&Stick models can be501

performed within 20 minutes and NODDI within an hour.502

Figure 9: Estimates on the number of samples needed per model, to reach, when averaged
over the white matter, a 95% confidence region with a 90% relative precision. Results are
shown for both an HCP MGH and RLS acquisition table. Whiskers show the standard
error of the mean over 10 subjects.

4 Discussion503

Using an efficient GPU based implementation, we show that run times can504

be removed as a prohibitive constraint for sampling of diffusion multi-505

compartment models, achieving whole brain sampling in under an hour506

for typical datasets and most common dMRI models. Newer generations507

of graphics cards are likely to reduce these times even further. Using this508

implementation, we investigated the use of adaptive MCMC algorithms,509
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Model Number of
parameters

Required ESS Required nr.
of samples

BallStick r1 4 2108 11000

NODDI 6 2177 15000

Tensor 7 2192 13000

CHARMED r1 11 2208 24000

Table 6: Estimates on the number of samples needed per model, to reach, when averaged
over the white matter, a 95% confidence region with a 90% relative precision. While the
required ESS can be determined a priori, the inherent model complexity determines how
many samples are needed to reach that ESS.

Model Number
of samples

HCP MGH RLS

Ball&Stick in1 11000 00:47:18 00:12:56

Tensor 13000 00:48:53 00:19:55

NODDI 15000 04:20:03 00:54:43

CHARMED in1 24000 07:15:13 01:54:51

Table 7: Runtime statistics (hh:mm:ss) for MCMC sampling the estimated minimum
number of samples (no burn-in, no-thinning) of various models, using a single HCP
MGH (552 volumes) and single RLS (134 volumes) dataset. Runtimes include prior model
optimization using the Powell routine. Statistics are over a BET generated whole brain
mask which include 410,000 voxels for HCP MGH and 204,993 voxels for RLS. Results
are computed using a single AMD Fury X graphics card.

burn-in, initialization and thinning. We finally applied the theory of Ef-510

fective Sample Size to diffusion multi-compartment models as a way of511

determining a sufficient number of samples for a given model and dataset.512

4.1 Adaptive MCMC513

The use of adaptive MCMC algorithms increases both the estimated multi-514

variate effective sample sizes as well as the accuracy and precision of pos-515

terior mean estimates. The Adaptive Metropolis-Within-Gibbs (AMWG)516

outperforms other proposal adaptation methods in terms of multivari-517

ate Effective Sample Size (ESS). In accuracy and precision the AMWG518

method performs higher for the NODDI and CHARMED˙in1 models, but519
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(slightly) lower for the Ball&Stick in1 and Tensor models where, respec-520

tively, the FSL and the Single Component Adaptive Metropolis (SCAM)521

methods perform better. Performance of the fixed proposal method could,522

in theory, be increased to the same levels as the adaptive methods by man-523

ual calibration, which could also slightly decrease the chain’s autocorrela-524

tion compared to adaptive proposals. Since this is model and data (and525

thus voxel) dependent, manual tuning could be very burdensome and526

unpractical. This work covers only variations of the single component527

Random Walk Metropolis, which have the advantage of high efficiency528

sampling with relatively general model-unspecific proposals. Future work529

could focus on MCMC algorithms which allow for block-updates of cor-530

related parameters, or could investigate different proposal schemes alto-531

gether such as Component-wise Hit-And-Run Metropolis (Turchin, 1971;532

Smith, 1984), Multiple-Try Metropolis (Liu et al., 2000) and/or No-U-Turn533

sampler (Hoffman & Gelman, 2011).534

4.2 Burn-in535

When starting from an arbitrary position, burn-in is advisable to reduce536

possible bias due to (possibly) low probability starting positions. Burn-in537

should ideally be considered post-sampling, since it is difficult to know a538

priori the time needed for the chain to converge and, due to randomness,539

past convergence rates provide no guarantee for the future. This is why540

common practice dictates a relatively large number of burn-in samples541

which guarantees convergence in most cases.542

While not harmful, burn-in is generally unnecessary and inefficient if the543

starting point is part of the stationary distribution of the Markov chain,544

which can, for example, be achieved by taking a Maximum Likelihood545

Estimator (MLE) as starting point. Even when starting from an MLE, a546

small burn-in of about 100 to 200 samples could be considered to remove547

correlations with the starting position. Additionally, when using adaptive548

proposal methods, a small burn-in could be considered to let the adapta-549

tion algorithm adapt the proposal distribution before sampling, slightly550

increasing the effective sample size of the chain.551

4.3 Thinning552

Already on theoretical grounds, thinning is not recommended and consid-553

ered as often unnecessary, always inefficient and reducing the precision554

of posterior estimates (Link & Eaton, 2012; MacEachern & Berliner, 1994;555
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Jackman, 2009; Geyer, 1991; Christensen et al., 2010). Illustrations based556

on the the Ball&Stick in1 and NODDI model show that, with or without557

thinning, the posterior distribution is approximated about equally, while558

thinning needs k times more samples (for a thinning of k). Results did559

show a convergence of mean and standard deviation estimates with an in-560

creased thinning, but these results are easily duplicated by incorporating561

not only the thinned samples but also the non-thinned samples in the sta-562

tistical estimates (the ’more samples’ strategy). Furthermore, using more563

samples instead of thinning provides estimates with a higher precision,564

as illustrated by the higher variability of the thinned estimates compared565

to the estimates with more samples (Figure 8, right). One legitimate rea-566

son for thinning is that, with independent samples, one can approximate567

the precision of an MCMC approximation (Link & Eaton, 2012). That is, it568

allows for more accurate assessment of the standard error of an MCMC es-569

timate like the posterior mean. However, even in that case, thinning must570

be applied post-hoc, otherwise the precision of the mean itself will be re-571

duced if computed from only the thinned samples. Furthermore, we are572

often more interested in the variability of the posterior distribution (which573

can be provided by e.g. the standard deviation) than in the precision of the574

posterior mean estimate. Another legitimate reason for considering thin-575

ning is hardware limitations, such as sampling post-processing time and576

storage space. However, barring such limitations, avoiding thinning of577

chains is far more efficient in providing high precision in posterior esti-578

mates.579

4.4 Number of samples580

The issue of the number of samples needed in a chain is often somewhat581

enigmatic and arbitrary. A common perception is that the number should582

be ’high’, rather too high than too low. Multivariate Effective Sample Size583

(ESS) theory provides a theoretical lower bound on the number of effec-584

tive samples needed to approximate the posterior, based on a desired con-585

fidence level and precision. How many MCMC samples are required to586

reach that target effective sample size is then dependent on the data, the587

model and the MCMC algorithm. We show that the dependency on the588

data seems to be low for diffusion microstructure models, considering the589

approximately equal sampling requirements using two different datasets590

for all but the CHARMED in1 model. For that model, the sampling re-591

quirements are almost twice as high for the RLS as for the MGH dataset,592

probably because the RLS acquisition is not suitable for the CHARMED -593

in1 model. The dependency on the model is higher, showing that more594
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complex models seem to need more actual samples to reach the target595

ESS. Interestingly, we show that for a 95% confidence region (α = 0.05)596

with a 90% precision (ε = 0.1) the target ESS is about 2200 for all models.597

This sets an informed relatively general target for the amount of samples598

required in sampling diffusion microstuctural models, which scales the599

number of actual samples with the complexity of the model, data and the600

performance of the MCMC algorithm. This also means that MCMC al-601

gorithms that can generate effective samples more efficiently (such as the602

AMWG) can reduce the number of samples needed to reach the same con-603

fidence levels, reducing run-time.604

5 Conclusions and recommendations605

Considering the theoretical soundness and its general robust performance,606

we advise the Adaptive Metropolis-Within-Gibbs (AMWG) algorithm for607

efficient and robust sampling of diffusion MRI models. We further rec-608

ommend initializing the sampler with a maximum likelihood estimator609

obtained from, for example, non-linear optimization, in which case 100610

to 200 samples are sufficient as a burn-in. Thinning is unnecessary unless611

there are memory or hard disk constraints or a strong reliance on posterior612

estimates that require uncorrelated samples. As a relatively general tar-613

get for the number of samples, we recommend 2200 multivariate effective614

samples. The amount of actual MCMC samples required to achieve this615

is algorithm and model dependent and can be investigated in a pre-study,616

with numbers for common dMRI models reported here as an indication.617
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& Uǧurbil, K. (2010). Multiband multislice GE-EPI at 7 tesla, with 16-819

fold acceleration using partial parallel imaging with application to high820

spatial and temporal whole-brain FMRI. Magnetic Resonance in Medicine,821

63, 1144–1153. doi:10.1002/mrm.22361.822

Muller, P. (1994). Metropolis based posterior integration schemes. Numer-823

ical Recipes in Fortran (2nd Edition), . URL: http://citeseerx.ist.824

psu.edu/viewdoc/summary?doi=10.1.1.55.3539.825

Panagiotaki, E., Schneider, T., Siow, B., Hall, M. G., Lyth-826

goe, M. F., & Alexander, D. C. (2012). Compartment mod-827

els of the diffusion MR signal in brain white matter: A tax-828

onomy and comparison. NeuroImage, 59, 2241–2254. URL:829

http://dx.doi.org/10.1016/j.neuroimage.2011.09.830

081http://www.ncbi.nlm.nih.gov/pubmed/22001791.831

doi:10.1016/j.neuroimage.2011.09.081.832

van Ravenzwaaij, D., Cassey, P., & Brown, S. D. (2016). A simple in-833

troduction to Markov Chain Monte–Carlo sampling. Psychonomic Bul-834

letin and Review, (pp. 1–12). URL: http://dx.doi.org/10.3758/835

s13423-016-1015-8. doi:10.3758/s13423-016-1015-8.836

Robert, C. P. (2015). The Metropolis-Hastings algorithm. Technical837

Report Wiley StatsRef: Statistics Reference Online. URL: http:838

//arxiv.org/abs/1504.01896. doi:10.1002/9781118445112.839

stat07834. arXiv:1504.01896.840

Robert, C. P., & Casella, G. (2004). Monte Carlo Statistical Methods. Springer841

Texts in Statistics. New York, NY: Springer New York. URL: http:842

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 22, 2018. ; https://doi.org/10.1101/328427doi: bioRxiv preprint 

http://www.jstor.org/stable/2684714?origin=crossref
http://www.jstor.org/stable/2684714?origin=crossref
http://dx.doi.org/10.2307/2684714
http://dx.doi.org/10.2307/2684714
http://dx.doi.org/10.2307/2684714
http://dx.doi.org/10.1016/j.sigpro.2016.08.025
http://arxiv.org/abs/1602.03572
http://aip.scitation.org/doi/10.1063/1.1699114
http://aip.scitation.org/doi/10.1063/1.1699114
http://aip.scitation.org/doi/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://arxiv.org/abs/5744249209
http://dx.doi.org/10.1002/mrm.22361
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.3539
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.3539
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.3539
http://dx.doi.org/10.1016/j.neuroimage.2011.09.081 http://www.ncbi.nlm.nih.gov/pubmed/22001791
http://dx.doi.org/10.1016/j.neuroimage.2011.09.081 http://www.ncbi.nlm.nih.gov/pubmed/22001791
http://dx.doi.org/10.1016/j.neuroimage.2011.09.081 http://www.ncbi.nlm.nih.gov/pubmed/22001791
http://dx.doi.org/10.1016/j.neuroimage.2011.09.081
http://dx.doi.org/10.3758/s13423-016-1015-8
http://dx.doi.org/10.3758/s13423-016-1015-8
http://dx.doi.org/10.3758/s13423-016-1015-8
http://dx.doi.org/10.3758/s13423-016-1015-8
http://arxiv.org/abs/1504.01896
http://arxiv.org/abs/1504.01896
http://arxiv.org/abs/1504.01896
http://dx.doi.org/10.1002/9781118445112.stat07834
http://dx.doi.org/10.1002/9781118445112.stat07834
http://dx.doi.org/10.1002/9781118445112.stat07834
http://arxiv.org/abs/1504.01896
http://link.springer.com/10.1007/978-1-4757-4145-2
http://link.springer.com/10.1007/978-1-4757-4145-2
http://link.springer.com/10.1007/978-1-4757-4145-2
https://doi.org/10.1101/328427
http://creativecommons.org/licenses/by-nc-nd/4.0/


//link.springer.com/10.1007/978-1-4757-4145-2. doi:10.843

1007/978-1-4757-4145-2.844

Roberts, G. O., & Rosenthal, J. S. (2007). Coupling and ergodicity of adap-845

tive Markov chain Monte Carlo algorithms. Journal of Applied Probabil-846

ity, 44, 458–475. URL: http://projecteuclid.org/euclid.jap/847

1183667414. doi:10.1239/jap/1183667414.848

Roberts, G. O., & Rosenthal, J. S. (2009). Examples of adaptive MCMC.849

Journal of Computational and Graphical Statistics, 18, 349–367. URL: http:850

//probability.ca/jeff/ftpdir/adaptex.pdf. doi:10.1198/851

jcgs.2009.06134.852

Santis, S. D., Assaf, Y., Jeurissen, B., Jones, D. K., & Roebroeck,853

A. (2016). T1 relaxometry of crossing fibres in the human854

brain. NeuroImage, 141, 133–142. URL: http://linkinghub.855

elsevier.com/retrieve/pii/S1053811916303445.856

doi:10.1016/j.neuroimage.2016.07.037.857

Sherlock, C., Fearnhead, P., & Roberts, G. O. (2010). The Ran-858

dom Walk Metropolis: Linking Theory and Practice Through859

a Case Study. Statistical Science, 25, 172–190. URL: http:860

//projecteuclid.org/euclid.ss/1290175840. doi:10.1214/861

10-STS327. arXiv:arXiv:1011.6217v1.862

Smith, R. L. (1984). Efficient Monte Carlo Procedures for Generat-863

ing Points Uniformly Distributed over Bounded Regions. Operations864

Research, 32, 1296–1308. URL: http://pubsonline.informs.org/865

doi/abs/10.1287/opre.32.6.1296. doi:10.1287/opre.32.6.866

1296.867

Smith, S. M. (2002). Fast robust automated brain extraction. Human868

Brain Mapping, 17, 143–155. URL: http://www.ncbi.nlm.nih.gov/869

pubmed/12391568. doi:10.1002/hbm.10062.870

Sotiropoulos, S. N., Behrens, T. E. J., & Jbabdi, S. (2012). Ball and871

rackets: Inferring fiber fanning from diffusion-weighted MRI. Neu-872

roImage, 60, 1412–1425. URL: http://www.ncbi.nlm.nih.gov/873

pubmed/22270351. doi:10.1016/j.neuroimage.2012.01.056.874

Sotiropoulos, S. N., Jbabdi, S., Andersson, J. L., Woolrich, M. W., Ugurbil,875

K., & Behrens, T. E. J. (2013). RubiX: Combining spatial resolutions for876

bayesian inference of crossing fibers in diffusion MRI. IEEE Transactions877

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 22, 2018. ; https://doi.org/10.1101/328427doi: bioRxiv preprint 

http://link.springer.com/10.1007/978-1-4757-4145-2
http://link.springer.com/10.1007/978-1-4757-4145-2
http://dx.doi.org/10.1007/978-1-4757-4145-2
http://dx.doi.org/10.1007/978-1-4757-4145-2
http://dx.doi.org/10.1007/978-1-4757-4145-2
http://projecteuclid.org/euclid.jap/1183667414
http://projecteuclid.org/euclid.jap/1183667414
http://projecteuclid.org/euclid.jap/1183667414
http://dx.doi.org/10.1239/jap/1183667414
http://probability.ca/jeff/ftpdir/adaptex.pdf
http://probability.ca/jeff/ftpdir/adaptex.pdf
http://probability.ca/jeff/ftpdir/adaptex.pdf
http://dx.doi.org/10.1198/jcgs.2009.06134
http://dx.doi.org/10.1198/jcgs.2009.06134
http://dx.doi.org/10.1198/jcgs.2009.06134
http://linkinghub.elsevier.com/retrieve/pii/S1053811916303445
http://linkinghub.elsevier.com/retrieve/pii/S1053811916303445
http://linkinghub.elsevier.com/retrieve/pii/S1053811916303445
http://dx.doi.org/10.1016/j.neuroimage.2016.07.037
http://projecteuclid.org/euclid.ss/1290175840
http://projecteuclid.org/euclid.ss/1290175840
http://projecteuclid.org/euclid.ss/1290175840
http://dx.doi.org/10.1214/10-STS327
http://dx.doi.org/10.1214/10-STS327
http://dx.doi.org/10.1214/10-STS327
http://arxiv.org/abs/arXiv:1011.6217v1
http://pubsonline.informs.org/doi/abs/10.1287/opre.32.6.1296
http://pubsonline.informs.org/doi/abs/10.1287/opre.32.6.1296
http://pubsonline.informs.org/doi/abs/10.1287/opre.32.6.1296
http://dx.doi.org/10.1287/opre.32.6.1296
http://dx.doi.org/10.1287/opre.32.6.1296
http://dx.doi.org/10.1287/opre.32.6.1296
http://www.ncbi.nlm.nih.gov/pubmed/12391568
http://www.ncbi.nlm.nih.gov/pubmed/12391568
http://www.ncbi.nlm.nih.gov/pubmed/12391568
http://dx.doi.org/10.1002/hbm.10062
http://www.ncbi.nlm.nih.gov/pubmed/22270351
http://www.ncbi.nlm.nih.gov/pubmed/22270351
http://www.ncbi.nlm.nih.gov/pubmed/22270351
http://dx.doi.org/10.1016/j.neuroimage.2012.01.056
https://doi.org/10.1101/328427
http://creativecommons.org/licenses/by-nc-nd/4.0/


on Medical Imaging, 32, 969–982. URL: http://www.ncbi.nlm.nih.878

gov/pubmed/23362247. doi:10.1109/TMI.2012.2231873.879

Tariq, M., Schneider, T., Alexander, D. C., Gandini Wheeler-Kingshott,880

C. A., & Zhang, H. (2016). Bingham-NODDI: Mapping anisotropic881

orientation dispersion of neurites using diffusion MRI. NeuroImage,882

133, 207–223. URL: https://www.ncbi.nlm.nih.gov/pubmed/883

26826512. doi:10.1016/j.neuroimage.2016.01.046.884

Turchin, V. F. (1971). On the Computation of Multidimensional Integrals885

by the Monte-Carlo Method. Theory of Probability & Its Applications, 16,886

720–724. URL: http://epubs.siam.org/doi/10.1137/1116083.887

doi:10.1137/1116083.888

Vats, D., Flegal, J. M., & Jones, G. L. (2015). Multivariate Output Analysis889

for Markov chain Monte Carlo. ArXiv e-prints, (pp. 1–52). URL: http:890

//arxiv.org/abs/1512.07713. arXiv:1512.07713.891

Xu, J., Moeller, S., Auerbach, E. J., Strupp, J., Smith, S. M., Feinberg, D. A.,892
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