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 1 

Abstract 2 

 3 

DNA methylation is associated with age. The deviation of age predicted from DNA 4 

methylation from actual age has been proposed as a biomarker for ageing. However, a 5 

better prediction of chronological age implies less opportunity for biological age. Here we 6 

used 13,661 samples (from blood and saliva) in the age range of 2 to 104 years from 14 7 

cohorts measured on Illumina HumanMethylation450/EPIC arrays to perform prediction 8 

analyses. We show that increasing the sample size achieves a smaller prediction error and 9 

higher correlations in test datasets. We demonstrate that smaller prediction errors provide 10 

a limit to how much variation in biological ageing can be captured by methylation and 11 

provide evidence that age predictors from small samples are prone to confounding by cell 12 

composition. Our predictor shows a similar or better performance in non-blood tissues 13 

including saliva, endometrium, breast, liver, adipose and muscle, compared with Horvath’s 14 

across-tissue age predictor. 15 

 16 

Key words: DNA methylation, age prediction, best linear unbiased prediction, elastic net 17 

 18 

Introduction 19 

Ageing as a complex biological phenomenon is related to diseases and mortality 
1,2

, and 20 

chronological age has been widely used as a marker of ageing due to ease and accuracy of 21 

measurement 
1
. However, chronological age is not necessarily a good predictor of biological 22 

ageing since individuals with the same chronological age can vary in health, especially in 23 

later life 
3
. Therefore, biomarkers of ageing have become popular as they can indicate the 24 

presence or severity of some disease states 
4,5

. In 2013, Hannum et al. and Horvath built age 25 

predictors based on DNA methylation and implemented them as biomarkers of ageing 
6,7

. 26 

DNA methylation as a part of the epigenome plays an essential role in the regulation of gene 27 
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 3

expression in the human body 
8,9

. Unlike DNA which is (mostly) stable across the lifetime of 1 

an individual, DNA methylation is dynamic, and previous studies have discovered a number 2 

of CpG sites associated with chronological age 
10-12

. The age predictor developed by Hannum 3 

et al. was based on 482 blood samples with methylation measured on the Illumina 450K 4 

methylation arrays, and they reported a correlation of 0.91 and a Root Mean Square Error 5 

(RMSE) of 4.9 years in their test set 
6
. Horvath’s age predictor was based on 8,000 samples 6 

from different tissues and cell types, and probes of these samples were from the Illumina 7 

27K DNA methylation arrays. He reported a correlation of 0.96 and a Median Absolute 8 

Deviation (MAD) of 3.6 years in the test set. Age Acceleration Residuals (AAR) is defined as 9 

the residuals from regressing predicted age on chronological age. It has been reported to be 10 

associated with mortality, obesity and other complex traits 
13-16

. 11 

 12 

According to its definition, AAR is the prediction error in a chronological age predictor. 13 

Although previous survival analysis showed a significant association between AAR and 14 

mortality 
13

, AAR was found not to be a mitotic clock 
17

. Therefore, whether the significance 15 

of that association is inflated (e.g. by potential confounders in the error) needs to be 16 

investigated. To study the use of predicted age from DNA methylation as a biomarker of 17 

ageing, we calculated AAR based on age predictors with different prediction accuracy and 18 

investigated the relationship between prediction accuracy and the significance of AAR in 19 

survival analysis. We also investigated the effect of training sample size and statistical 20 

method on age prediction.  21 

 22 

In the present study, we built DNA methylation-based age predictors by integrating 13,661 23 

samples (13,402 from blood and 259 from saliva) measured on 450K DNA methylation 24 
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 4

arrays and Illumina EPIC (850K) arrays. Two approaches were evaluated: Elastic Net 
18

 and 1 

Best Linear Unbiased Prediction (BLUP) 
19

. We discussed the implications of our results for 2 

the scope and utility of DNA methylation based age predictor as a biomarker for biological 3 

ageing. We also explored the factors that explain prediction accuracy. Finally, the 4 

performance of predictors on samples from tissues other than blood was investigated.  5 

 6 

Results 7 

Availability of DNA methylation in age prediction 8 

We downloaded eight datasets from the public domain and used six datasets from our own 9 

studies (Table 1). All data underwent identical quality control criteria before statistical 10 

analyses (Material and Methods).  11 

 12 

Estimation of variation in age from using all probes 13 

We used the unrelated individuals from our two largest datasets (GS, N = 2,586, SGPD, N = 14 

1,299) to estimate the proportion of the observed variation in age that is explained when 15 

fitting all probes simultaneously, using a mixed linear model analogous to estimating 16 

heritability from SNP data 
20

. The proportion of variance of age explained by DNA 17 

methylation was close to 1 in both cohorts (proportion explained = 1, SE = 0.0036, REML 18 

analysis using the software package OSCA 
21

 in GS, and 0.99 in SGPD, SE = 0.058), indicating 19 

a perfect age predictor can in principle be developed based on DNA methylation data if all 20 

probe associations are estimated without error. To demonstrate that this result is not 21 

caused by a violation of assumptions, we undertook a permutation test using the same 22 

cohorts. We shuffled the ages across individuals and found that DNA methylation did not 23 
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 5

explain any significant amount of variation in GS (proportion explained = 0, SE = 0.0030) and 1 

SGPD (proportion explained = 0.0079, SE = 0.013). 2 

 3 

Building multiple age predictors 4 

To build our age predictors, we collected 14 cohorts and used a common set of 319,607 5 

probes that passed quality control (Material and Methods) in all cohorts. We randomly 6 

combined 1 to 13 cohorts as a training set, and used the remaining cohorts as test sets. We 7 

repeated this step 65 times to generate different training sets with various sample sizes and 8 

age spectrum (Material and Methods). We implemented two estimates to evaluate the 9 

performance of our age predictors: (1) correlation between predicted age and chronological 10 

age in the test data set; (2) Root Mean Square Error (RMSE) of the predicted age in the test 11 

data set. Correlation indicates the strength of a linear relationship between the predicted 12 

age and chronological age and RMSE reveals the variation of the difference between 13 

predicted and chronological age. Two methods, namely Elastic Net 
18

 and BLUP 
19

 were used. 14 

Elastic Net was previously used by Horvath
7
 and Hannum et al.

6
 to build their age predictors 15 

and BLUP was used to predict age in Peters et al.
22

. These methods differ in how they select 16 

probes that are associated with age and how their effects are estimated. Results show that 17 

both methods have a decrease of RMSE (Figure 1) and an increase of correlation 18 

(Supplementary Figure 1) when the training sample size increased. The smallest RMSE 19 

based on Elastic Net was 2.04 years. This method gave better results with RMSE relative to 20 

BLUP for small training sample size, although the difference with BLUP became smaller with 21 

increased sample size (Supplementary Figure 2). 22 

 23 

Prediction accuracy and biological ageing 24 
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 6

The difference between predicted age from the Hannum/Horvath predictors and 1 

chronological age (AAR) was found to be associated with all-cause mortality in later life
13

. To 2 

investigate the relationship between the significance of this association and the prediction 3 

accuracy of the predictor, we examined the association between AAR and mortality using 4 

the  updated data in Marioni et al. 
13

. These data were from two cohorts: LBC1921 (wave 5 

one, N = 436, Ndeaths = 386) and LBC1936 (wave one, N = 906, Ndeaths = 214) (Materials and 6 

Methods). Age predictors excluding LBC1921/LBC1936 as part of the training set (sample 7 

size ranges from 335 to 12,710) were used. We observed a decrease of the test statistics for 8 

the effect of AAR on mortality from the survival analysis (Cox regression) with increasing 9 

sample size in training data set (Figure 2). No significant (P < 0.05) associations between 10 

AAR and mortality was found based on the largest training sample size in either LBC1921 or 11 

LBC1936 using BLUP or Elastic Net (Table 2 and Supplementary Table 1). In contrast, results 12 

based on the age predictors of Hannum and Horvath were significant (P < 0.05, Table 2). 13 

 14 

Enrichment analysis on AAR associated probes 15 

Variation in cellular compositions is known to be associated with both DNA methylation 
23

 16 

and mortality 
24

, which suggests it could be a confounder in the survival analysis. To 17 

investigate whether AAR is affected by cellular composition, we applied an epigenome-wide 18 

association study (EWAS) on AAR from different predictors. For each predictor, AAR 19 

associated (P < 0.05/319,607) probes were selected. We found that the selected CpG sites 20 

from age predictors of Hannum and Horvath were enriched in the probes that show 21 

heterogeneity in DNA methylation across cell types (cellular heterogeneity probes) 
25

 (Table 22 

3), indicating AAR in these predictors was associated with variation in cellular composition. 23 

We also observed a decrease of the odds ratio of the enrichment test with the increase of 24 
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 7

training sample size for both Elastic Net and BLUP based age predictors (Figure 3). No 1 

significant enrichment was found for the age predictors based on the largest training sample 2 

size (Table 3).  3 

 4 

To examine the effect of variation in cellular content in the association between AAR and 5 

mortality, we re-ran the survival analysis based on AAR adjusting for white blood cell (WBC) 6 

counts (basophils, eosinophils, monocytes, lymphocytes, and neutrophils) (Materials and 7 

Methods). A decrease of the test statistics (from survival analysis) after correcting for the 8 

WBC counts was observed, especially when the training sample size is small (Supplementary 9 

Figure 3). The effect of AAR on survival is reduced the most (the changes of test statistics 10 

from survival analysis are largest) when adding WBC to the models using the Hannum and 11 

Horvath age predictors (Supplementary Figure 3). After adjustment for WBC, none of the 12 

associations remained significant (P < 0.05) except for the association in LBC1936 based on 13 

the predictor of Horvath (P = 0.032). Nevertheless, the significance of this association did 14 

not pass the Bonferroni corrected P value threshold (P < 0.05/4) (Table 2). These results 15 

suggest that the significant associations between AAR and mortality is biased due to the 16 

existence of confounders like WBC counts, and that improved prediction accuracy of the age 17 

predictor reduces the effect of these confounders in the survival analysis.  18 

 19 

Other factors related to chronological age prediction 20 

Although the potential effect of confounders limit the “epigenetic clock” to be a biomarker 21 

of ageing, a chronological age predictor with good prediction accuracy would be a useful 22 

tool in forensics and/or other fields where chronological age is needed but not observed. To 23 

determine the factors that explain prediction accuracy, we examined the contribution of 24 
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 8

age ranges (including absolute age difference between training and test set (Agediff) and 1 

standard deviation of age (Agesd) of the training set) to the RMSE/correlation of the 2 

prediction results in the test set by estimating the effect of Agediff, Agesd and sample size in 3 

the training set on the prediction accuracy jointly (Material and Methods). Results showed 4 

that RMSE was significantly associated (P < 0.05) with training sample size in 13 (out of 14) 5 

cohorts based on BLUP predictors, confirming that increasing the sample size leads to 6 

smaller prediction errors (Figure 1). In addition, eight out of 14 cohorts had a significant (P < 7 

0.05) and positive Agediff effect, indicating similar ages between training and test set results 8 

in better prediction accuracy (Supplementary Table 2). Five cohorts were found to have a 9 

statistically significant (P < 0.05) Agesd effect on RMSE, suggesting the prediction accuracy 10 

benefits from a larger age range of the samples in the training set. Similar results were 11 

found based on Elastic Net (Supplementary Table 3). In addition, we did not observe any 12 

steady improvement using power-transformed Beta values (Supplementary Figure 4, 13 

Materials and Methods), the M values of DNA methylation or the arcsine square root 14 

transformed Beta values (Supplementary Figure 5, Materials and Methods). 15 

 16 

There is a complex correlation structure in DNA methylation, and the effective number of 17 

independent methylation probes was previously reported to be around 200 
26

, indicating a 18 

dense correlation structure. To compare the prediction performance between using the full 19 

probe set (319,607 probes) and a pruned probe set (128,405 probes) (Material and 20 

methods), we applied the same cross-validation steps to both probe sets using BLUP and 21 

Elastic Net. We identified a higher RMSE and a lower correlation for the pruned set 22 

(Supplementary Figure 6), indicating a loss of information when using fewer methylation 23 

probes for prediction. In addition, we found that probes in the age predictors of Hannum 24 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2018. ; https://doi.org/10.1101/327890doi: bioRxiv preprint 

https://doi.org/10.1101/327890
http://creativecommons.org/licenses/by-nd/4.0/


 9

and Horvath were not necessary for age prediction. Compared with these two predictors, 1 

better prediction accuracy can still be observed based on the probe set without the probes 2 

from these predictors (Supplementary Figure 7, Material and methods), consistent with 3 

widespread correlation among probes. 4 

 5 

Age prediction in non-blood tissues 6 

The majority of our samples are from blood, and we observed a significant improvement in 7 

the prediction results for the samples from saliva when more blood samples were included 8 

in the training set (Figure 1, Supplementary Figure 1). This increase is expected since 9 

samples from saliva were reported to exhibit more than 80% contamination by immune 10 

cells
27

. To quantify whether our predictor has a good performance in non-blood tissues, we 11 

downloaded 13 data sets (Supplementary Table 4) that contain samples from other tissues. 12 

We compared the performance of our predictor (samples are from blood and saliva, age 13 

predictor generated by Elastic Net) with Horvath’s age predictor (samples from multiple 14 

tissues, using Elastic Net) in these cohorts and found that our predictor has better 15 

performance in samples from endometrium and saliva. On the other hand, Horvath’s age 16 

predictor outperformed our predictor in samples from brain (Figure 4). Their performance 17 

in other tissues (breast, liver, adipose and muscle) were similar, even though training 18 

samples in our predictor are not from these tissues. These results demonstrate that our 19 

predictor can also be used to predict the chronological age of samples from non-blood 20 

tissues. 21 

 22 

Discussion 23 
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We investigated the relationship between the prediction accuracy of an age predictor and 1 

its application as a biomarker of ageing. Age predictors with various prediction performance 2 

were built based on datasets with different sample sizes (ranging from n=335 to 13566). We 3 

ran survival analysis (based on age acceleration residuals AAR) using samples from LBC1921 4 

and LBC1936, with AAR calculated using different age predictors. We observed a decrease in 5 

the significance of association between mortality and AAR with the improvement of the age 6 

predictor. No significant (P < 0.05) associations were found based on the age predictor with 7 

the largest training sample size (Table 2), suggesting the improved prediction of 8 

chronological age from DNA methylation limits it as a biomarker of ageing. 9 

 10 

We found potential effects of confounders in the association between AAR and mortality in 11 

the age predictors of Hannum and Horvath. The AAR associated probes from the age 12 

predictors of Horvath and Hannum were enriched in CpG sites showing DNA methylation 13 

heterogeneity across cell types, suggesting that AAR from these predictors is affected by 14 

variation in cellular composition. The further sensitivity analysis confirmed that, although 15 

the AAR from these two predictors are associated with mortality in LBC1921 and LBC1936, 16 

no significant (P < 0.05/4) association was observed after adjusting for white blood cell 17 

counts. This demonstrates that although the Hannum and Horvath age predictors appear to 18 

capture differences in biological ageing between people of the same age, these effects are 19 

largely driven by differences in cellular makeup of the samples, and limits their usage as a 20 

marker of biological ageing. 21 

 22 

We also examined the factors that can affect the accuracy of chronological age prediction, 23 

including the effect of the training sample size, the age range of the training samples, the 24 
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 11

number of probes used and the statistical methods utilised. We found a positive association 1 

between the training sample size and the prediction accuracy in test sets. Our predictors 2 

showed substantially improved prediction accuracy compared to using the estimated 3 

coefficients previously reported by Hannum 
6
 and Horvath 

7
 in blood samples. Most of this 4 

improvement appears to come from simply increasing the experimental sample size in the 5 

training set. We also found that increased similarity of ages between samples in the training 6 

and test data set can improve the prediction accuracy in the test sets (Supplementary 7 

Tables 2 and 3). We provide estimated effect sizes on chronological age from the largest 8 

training set of 13,566 individuals for both Elastic Net and BLUP in Supplementary Table 5. 9 

 10 

Notwithstanding the highly correlated pattern of DNA methylation across the genome, we 11 

observed a decline of prediction accuracy when using a correlation pruned probe set, so 12 

that including more probes in the training model is beneficial, especially when the training 13 

sample size is small (Supplementary Figure 6). The improvement of prediction accuracy 14 

could be explained by the decrease of noise effect (such as batch effects) of DNA 15 

methylation in age prediction since using more probes can reduce the unexpected effects of 16 

the noise. It could also be caused by the existence of many probes with a small correlation 17 

with age and the cumulative effect of these may be lost when using a pruned set of probes.  18 

 19 

Although most of the samples in our age predictor are from blood, it showed good out-of-20 

sample prediction performance in samples from non-blood tissues. Compared with 21 

Horvath’s age predictor, we observed larger correlations (between predicted age and 22 

chronological age) in samples from saliva and endometrium, but smaller correlations in 23 

samples from brain. These smaller correlations are expected since a large proportion (23.4%) 24 
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of training samples in Horvath’s age predictor are from brain. Moreover, these two 1 

predictors have similar performance in other tissues, which implies that our age predictor is 2 

also useful in samples from non-blood tissues.   3 

 4 

Our results have several implications for the utility of DNA methylation patterns of age as 5 

biomarkers of ageing. From the REML analysis on the SGPD and GS cohorts we estimated 6 

that almost 100% of variation in chronological age in those samples could be effectively 7 

captured by all the DNA methylation probes on the arrays. For prediction, this implies that 8 

for a very large training set a near-perfect predictor of chronological age can be built. Our 9 

results showing that larger sample sizes lead to more accurate prediction is consistent with 10 

this implication. It is clear that DNA methylation measured in blood is associated with 11 

environmental exposures such as smoking, sex and BMI 
28-30

. In addition, “age acceleration”, 12 

the difference between actual age and that predicted from methylation, has been reported 13 

to be associated with a number of outcomes, including mortality 
13,16

. However, there is 14 

currently no good DNA-methylation-based estimator of an individual’s “epigenetic clock” 15 

that is free from confounders (e.g., white blood cell counts) and from prediction error 16 

caused by other factors (e.g., measurement error). The difference between actual and 17 

predicted age contains both a prediction error term based on unknown factors and possible 18 

effects of confounders. These confounders could bias the results when using “epigenetic 19 

clock” as a biomarker of ageing, for example the association between “age acceleration” 20 

and mortality is confounded by the variation in cellular composition. 21 

 22 

Methods  23 

Data 24 
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We collected 14 data cohorts with samples measured on the DNA methylation 450K chips 1 

and Illumina EPIC (850K) arrays (Table 1), eight of which were from the public domain and 2 

six datasets from the investigators. Details of the BSGS and LBC cohorts can be found in 3 

Powell et al. 
31

 and Deary et al. 
32,33

. GS is a population and family based cohort recruited 4 

through the NHS Scotland general practitioner research network 
34,35

. The SGPD cohort is 5 

from a collaborative research project on systems genomics of Parkinson’s Disease. Similarly, 6 

the MND cohort is from a systems genomics study of Motor Neuron Disease in Chinese 7 

subjects (see descriptions in Benyamin et al. 
36

). For the purpose of this study, age at sample 8 

collection was the focus, disease status and ethnicity of individuals were not considered in 9 

any cohort. DNA methylation Beta value at each probe was used for analysis.  10 

 11 

A total of 319,607 probes (No Pruned Set) passed our quality control and 128,405 probes 12 

(Pruned Set) were retained after pruning based upon the pairwise correlation of probes (see 13 

next section). To test the performance of age predictors in non-blood tissues, we 14 

downloaded 13 cohorts from GEO database with accession ID GSE61431 (brain)
37

, GSE59685 15 

(brain)
38

, GSE80970 (brain), GSE101961 (breast)
39

, GSE108213 (breast), GSE48325 (liver)
40

, 16 

GSE61257 (adipose)
41

, GSE61258 (liver)
41

, GSE61259 (breast)
41

, GSE88883 (breast)
42

, 17 

GSE90060 (endometrium)
43

, GSE92767 (saliva)
44

, GSE99029 (saliva)
45

. 18 

 19 

Quality Control 20 

All the samples were measured on either the Illumina HumanMethylation450 arrays or 21 

Illumina EPIC arrays. Probes with call rate less than 0.95 were removed, and probes found to 22 

contain SNPs or potentially cross-hybridizing to different locations were excluded from 23 
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further analysis 
46

. After combining all the samples from different cohorts, a set of 319,607 1 

probes remained (called No Pruned set). Pruning was performed by removing one of two 2 

probes on the same chromosome when their correlation (R
2
) was higher than 0.2; this 3 

resulted in a set of 128,405 probes (called Pruned set). Both sets were used for further 4 

analysis. DNA methylation Beta value was standardized by removing the mean value and 5 

divided by the standard deviation for each sample. 6 

 7 

Selection of DNA methylation cohorts 8 

We collected 14 different cohorts in total, including a single cohort (GSE78874) measured in 9 

saliva rather than blood tissue. Since DNA methylation is sensitive to batch effects, cell type 10 

and tissue type
23

, we applied a PCA analysis (using probes from the No Pruned Set) on the 11 

samples from these 14 cohorts to assess the presence of any “outlier” cohorts (i.e. cohorts 12 

with a low prediction accuracy from the age predictor based on the other cohorts). All the 13 

cohorts were closely matched with the exception of GSE78874 and GS (Supplementary 14 

Figure 8). Samples in GSE78874 were from saliva instead of blood, and the samples in GS 15 

were measured using Illumina EPIC arrays instead of 450K DNA methylation arrays. To 16 

investigate if this difference could potentially adversely influence performance in age 17 

prediction for these two cohorts, we used a “leave-one-cohort-out” strategy to leave these 18 

two cohorts out as the test set separately and built the age predictor based on the 19 

remaining cohorts. We found both of them to have good prediction accuracy (GS: R = 0.98, 20 

RMSE = 3.52, GSE78874: R = 0.88, RMSE = 5.39), indicating a small difference between these 21 

two cohorts and other cohorts in age prediction. We used all cohorts for subsequent 22 

analyses.  23 
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 1 

Generation of training set 2 

We generated training sets from the 14 cohorts. Each training set has a certain number of 3 

cohorts ranging between 1 to 13. For each number, we repeated random sampling five 4 

times. In total, 65 (13 × 5) training sets were generated. 5 

 6 

Proportion of variance of chronological age explained by DNA methylation 7 

The GS and SGPD samples were used in estimating the proportion of variance of 8 

chronological age explained by DNA methylation. Among the 5,101 samples in the GS cohort, 9 

a subset of 2,586 unrelated individuals, with a genetic relationship coefficient below 0.05 10 

and with no shared nuclear family environment were considered for the analysis. 1,299 11 

unrelated (genetic relationship coefficient < 0.05) individuals with available age information 12 

in SGPD were selected. Variance of age was estimated by the REML method implemented in 13 

OSCA
21

. 14 

 15 

Prediction algorithm 16 

We compared the age prediction performance of two methods, namely Elastic Net and 17 

BLUP. Both methods are based on a linear regression: 18 

� � ��� �� � � 

where Y is the chronological age, Xi is the DNA methylation of probe i and e is the Gaussian 19 

noise. 20 

Elastic Net is a regularized regression method
18

, and its objective function is defined as: 21 

�	
, �� � ||� � ��||� � �	���
�
�|�|�

�

� � 
�|�|�
�
�  22 
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where 
 and lambda are regularisation parameters. �|�|�
�

 is defined as ∑ |��|�

���  and �|�|�
�

�

 1 

equals ∑ ����

��� , with n the number of probes. 
 is set to 0.5 and � is chosen based on cross-2 

validation. We used the implementation of Elastic Net from the Python package glmnet
47

. 3 

 4 

BLUP is special case of ridge regression with a fixed �. 5 

�� � 	��� � �������� with � � 	�
�

	
�

�
, 6 

�
� the variance of the effect size of the probe set, and ��� the variance of the residuals. We 7 

used the R package rrBLUP
48

 to build the age predictor, and �
� and ��� were estimated using 8 

the REML analysis implemented in this package. 9 

 10 

Survival analysis 11 

We followed the same analysis approach as previously described
13

. Briefly, Cox proportional 12 

hazards regression models were used to detect the association between the AAR and 13 

mortality with age at sample collection and sex as the covariates. AAR is defined as the 14 

difference between mage and chronological age, where mage is the predicted age correcting 15 

for plate, array, position on the array, and hybridisation date (all treated as fixed effect 16 

factors), all of which could be confounder in survival analysis. Additional adjustments of AAR 17 

were made for WBC counts measured on the same blood samples that were analysed for 18 

methylation. Hazard ratios for AAR were expressed per five years of methylation age 19 

acceleration (Table 2) and per standard deviation of methylation age acceleration 20 

(Supplementary Table 1), respectively. Cox models were performed utilizing the ‘survival’ 21 

library
49

 in R. Samples from wave one of LBC1921 and LBC1936 were used in this analysis. 22 

 23 
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Transformation of DNA methylation 1 

There are non-linear patterns in age-related DNA methylation
50

. To investigate if 2 

transformed data can remove the nonlinearity and hence improve the prediction accuracy, 3 

we selected eight DNA methylation cohorts with sample size larger than 600 to evaluate the 4 

impact of data transformation: LBC1921, LBC1936, GS, BSGS, SGPD, MND, GSE40279 and 5 

GSE42861. For each cohort, we randomly selected 70% of the samples as training set, and 6 

the remaining 30% were used as test set. Only 50,000 randomly selected probes were used 7 

for computational efficiency. Power parameter λ (ranges from 0.1 to 2 with 0.05 as the 8 

interval) was used to transform the original Beta value of DNA methylation BV to BV
λ
. Only 9 

BLUP was used for age prediction because of its low bias. DNA methylation M value and 10 

arcsine square root transformed methylation Beta value were also used to compare to raw 11 

DNA methylation Beta value in prediction accuracy. 12 

 13 

Age prediction without probes from age predictors of Horvath and Hannum 14 

We compared the probes selected by Elastic Net (based on 13,566 training samples) with 15 

those in Horvath’s and Hannum’s age predictors. 11 out of the 514 probes in our analysis 16 

were identified in Horvath’s age predictor and 30 in Hannum’s age predictor. In addition, we 17 

estimated the squared correlation (R
2
) of DNA methylation between probes selected by 18 

Elastic Net and probes from the age predictor of Hannum/Horvath. We found 11 (Elastic 19 

Net-Hannum) and 10 (Elastic Net-Horvath) pairs with an R
2
 larger than 0.5 (Supplementary 20 

Figure 9), indicating that most of the probes selected by Elastic Net are not strongly 21 

correlated with those in the other two predictors. To quantify whether the probes in the 22 

Hannum and Horvarth predictors were necessary for age prediction, we re-built our age 23 

predictors by excluding these probes. No difference in prediction accuracy was found before 24 
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and after removing these probes for the BLUP based method (Supplementary Figure 10). 1 

The prediction accuracy decreased for the Elastic Net based method; however, its 2 

performance was still better than when using the Hannum and Horvath age predictors 3 

(Supplementary Figure 7). 4 

 5 
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Table 1: Description of DNA methylation cohorts 1 

COHORT
1 SAMPLE 

SIZE
2
 

NUMBER OF 

SAMPLES 

WITH VALID 

AGE 

MEAN 

AGE(SD) 
AGE RANGE SOURCE DISEASE  

LBC1921
32,33

 692 692 82.3 (4.3) [77.8, 90.6] blood Not Available 

LBC1936
32,33

 2326 2326 72.4 (2.8) [67.7, 77.7] blood Not Available 

BSGS
31

 614 614 21.4 (14.1) [9.9, 74.9] blood Not Available 

SGPD  1962 1556 67.2 (9.5) [23.0,104.0] blood 
Parkinson’s Disease: 988, Control: 

974 

MND
36 

695 600 45.2 (15.0) [17.0,76.0] blood 
Motor Neuron Disease (MND): 

497, Control: 198 

GS
34,35

 5101 5100 48.5(14.0) [18.0,94.5] blood Not Available 

GSE72775
51

 335 335 70.2 (10.3) [36.5,90.5] blood Not Available 

GSE78874
51

 259 259 68.8(9.7) [36.0,88.0] saliva Not Available 

GSE72773
51

 310 310 65.6 (13.9) [35.1,91.9] blood Not Available 

GSE72777
51

 46 46 14.7 (10.4) [2.2,35.0] blood Not Available 

GSE41169
52

 95 95 31.6 (10.3) [18.0,65.0] blood Schizophrenia:62, Control:33 

GSE40279
6
 656 656 64.0 (14.7) [19.0,101.0] blood Not Available 

GSE42861
53

 689 689 51.9 (11.8) [18.0,70.0] blood 
Rheumatoid Arthritis:354, 

Control:335 

GSE53740
54

 384 383 67.8(9.6) [34.0,93.0] blood 

Alzheimer’s Disease:15, 

Corticobasal Degeneration:1, 

Frontotemporal Dementia 

(FTD):121, FTD/MND:7, 

Progressive Supranuclear 

Palsy:43, Control:193, Unknown:4 

 2 
1
 LBC = Lothian Birth Cohort; BSGS = Brisbane Systems Genomics Study; SGPD = Systems Genomic of Parkinson’s Disease 3 

consortium; MND = Motor Neuron Disease cohort; GS = Generation Scotland. Cohorts with prefix GSE are from the GEO 4 
database.  5 
2
 The number of samples in each cohort. Some samples in LBC were measured from the same individual but at different 6 

chronological age.  7 
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Table 2:  Summary details of two LBC cohorts and the relationship between all-cause 1 
mortality and predicted age from different methods (before and after cell counts correction) 2 

 LBC1921 wave one LBC1936 wave one 

N 436 906 

Ndeaths 386 214 

Chronological Age: mean (SD)
1
 79.1 (0.6) 69.5 (0.8) 

Before cell counts correction 

Hannum: mean (SD) 80.3 (6.2) 71.3 (5.7) 

Hannum: Hazard Ratio (P-value, 95% CI)
2
 1.12 (0.016, 1.02-1.23) 1.18 (0.020, 1.02-1.37) 

Horvath: mean (SD) 73.8 (6.9) 66.1 (6.4) 

Horvath: Hazard Ratio (P-value, 95% CI) 1.09 (0.038, 1.00-1.20) 1.19 (0.0022, 1.06-1.32) 

Elastic Net: mean (SD)
3
 77.4 (3.6) 72.5 (3.2) 

Elastic Net: Hazard Ratio (P-value, 95% CI) 1.08 (0.38, 0.91-1.27) 1.00 (0.96, 0.79-1.28) 

BLUP: mean (SD)
3
 77.3 (3.3) 72.5 (2.8) 

BLUP: Hazard Ratio (P-value, 95% CI) 1.20 (0.066, 0.99-1.46) 1.25 (0.12, 0.95-1.64) 

After cell counts correction 

Hannum: Hazard Ratio (P-value, 95% CI) 1.10 (0.057, 1.00-1.21) 1.11 (0.15, 0.96-1.29) 

Horvath: Hazard Ratio (P-value, 95% CI) 1.07 (0.13, 0.98-1.17) 1.14 (0.032, 1.01-1.28) 

Elastic Net: Hazard Ratio (P-value, 95% CI)
3
 1.07 (0.39, 0.91-1.27) 1.03 (0.79, 0.82-1.31) 

BLUP: Hazard Ratio (P-value, 95% CI)
3
 1.21 (0.05, 1.00-1.48) 1.21 (0.17, 0.92-1.60) 

 3 
1
 Mean (predicted) age and its standard deviation. 4 

2
 Hazard Ratio, P-value and 95% confidence interval from the survival analysis based on the predicted age. Hazard Ratios 5 

were expressed per 5 years of methylation age acceleration. 6 
3
 Both results of Elastic Net and BLUP were based on the age predictor with largest training sample size (sample size = 7 

10,411 for LBC1936 and sample size = 12,710 for LBC1921). 8 
  9 
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Table 3: Enrichment test on the AAR associated CpG sites from different methods 1 

 2 

 

Number of 

significant 

associations (P < 

0.05/319,607) 

λmedian 

Number of CpG sites 

showing significant cellular 

heterogeneity 

Odds ratio (P-value)
1
 

Hannum 12,015 3.6 4,958 3.85 (P < 2.2×10
-16

) 

Horvath 18,847 5.4 5,955 2.53 (P < 2.2×10
-16

) 

Elastic Net
2

 159 2.1 21 0.78 (P = 0.33) 

BLUP
2
 793 2.6 130 1.00 (P = 1.0) 

 3 
1 

The odd ratio for the enrichment of EWAS significant CpG sites in the probe set showing significant cellular heterogeneity. 4 
2
 Both results of Elastic Net and BLUP were based on the age predictor with largest training sample size (sample size = 5 

10,411 for LBC1936 and sample size = 12,710 for LBC1921). 6 
 7 
  8 
  9 
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 1 
Figure 1: The relationship between training sample size and predictor error measured at the 2 
square root of the mean squared error (RMSE) in test data sets. Each point represents the 3 
RMSE of the test result based on predictors with different sample size and methods. 4 
Prediction results from Horvath are marked as black dash line, and black solid line 5 
represents prediction result from Hannum’s age predictor. 6 
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 1 
Figure 2: Relationship between the training sample size and the test statistics (t-test) from 2 
the association between age acceleration residual (AAR) and mortality. Each point 3 
represents the test statistic from the survival analysis based on the predicted ages from 4 
predictors with different training sample sizes.  5 

  6 
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 1 

Figure 3: The change of odds ratio from the enrichment test with the increase of training 2 
sample size. The enrichment test examines whether AAR associated CpG sites are enriched 3 
in probes with cellular heterogeneity. 4 
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 1 
Figure 4: Comparison of prediction performance (correlation) between the predictor from 2 
this study (based on Elastic Net) and Horvath’s age predictor in non-blood samples. 3 
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