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Abstract 1	
 2	
 3	
The dopamine system is thought to provide a reward prediction error signal that facilitates 4	
reinforcement learning and reward-based choice in corticostriatal circuits. While it is believed 5	
that similar prediction error signals are also provided to temporal lobe memory systems, the 6	
impact of such signals on episodic memory encoding has not been fully characterized. Here we 7	
develop an incidental memory paradigm that allows us to 1) estimate the influence of reward 8	
prediction errors on the formation of episodic memories, 2) dissociate this influence from other 9	
factors such as surprise and uncertainty, 3) test the degree to which this influence depends on 10	
temporal correspondence between prediction error and memoranda presentation, and 4) 11	
determine the extent to which this influence is consolidation-dependent. We find that when 12	
choosing to gamble for potential rewards during a primary decision making task, people 13	
encode incidental memoranda more strongly even though they are not aware that their 14	
memory will be subsequently probed. Moreover, this strengthened encoding scales with the 15	
reward prediction error, and not overall reward, experienced selectively at the time of 16	
memoranda presentation (and not before or after). Finally, this strengthened encoding is 17	
identifiable within a few minutes and is not substantially enhanced after twenty-four hours, 18	
indicating that it is not consolidation-dependent. These results suggest a computationally and 19	
temporally specific role for putative dopaminergic reward prediction error signaling in memory 20	
formation.   21	
 22	
  23	
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Introduction 1	
 2	
 3	
Behaviors are often informed by multiple kinds of memories. For example, a decision 4	
about what to eat for lunch might rely on average preferences that have been slowly 5	
learned over time and that aggregate over many previous experiences, but it might also 6	
be informed by specific, temporally precise memories (e.g., ingredients seen in the 7	
fridge on the previous day). These different kinds of memories prioritize different 8	
aspects of experience. For example, reinforcement learning typically aggregates 9	
information across relevant experience to form general preferences that are used guide 10	
behavior 1, whereas episodic memories allow access to details about specific, 11	
previously experienced events or scenes with limited interference from other similar 12	
ones. Computational modeling suggests that these two kinds of memories have different 13	
representational requirements and are likely subserved by anatomically distinct brain 14	
systems 2-4. In particular, a broad array of evidence suggests that reinforcement 15	
learning is implemented through cortico-striatal circuitry in the prefrontal cortex and 16	
basal ganglia 5-8 whereas episodic memory appears to be reliant on synaptic changes in 17	
medial temporal structures, especially the hippocampus 1,9-12. 18	
 19	
While the distinct anatomy of these systems allows them to operate over different 20	
representations, they are not independent. Medial temporal regions provide direct inputs 21	
into striato-cortical regions 2,3,13-15 and both regions receive shared information through 22	
common intermediaries 5-8,16. Furthermore, both systems receive neuromodulatory 23	
inputs that undergo context dependent fluctuations that can affect synaptic plasticity and 24	
alter information processing in both systems 17,18. Recent work in computational 25	
neuroscience has highlighted potential roles for two neuromodulators, dopamine and 26	
norepinephrine, in implementing and optimizing reinforcement learning in a changing 27	
world. In particular, dopamine is thought to supply a reward prediction error (RPE) 28	
signal that gates Hebbian plasticity in the striatum, facilitating repetition of rewarding 29	
actions 5,6,19,20. In untrained animals dopamine prediction error signals are observed in 30	
response to primary rewards, but with experience dopamine signals precede to the 31	
earliest cue predicting future reward 5. Such cue-induced dopamine signals are thought 32	
to serve a motivational role 21, biasing behavior toward the effortful and risky actions 33	
that could allow for acquisition of the upcoming reward 22-27. In contrast, norepinephrine 34	
has been proposed to provide a salience signal that amplifies overall learning from 35	
surprising events, irrespective of valence, or during periods of uncertainty 28-30. In many 36	
experimental tasks, such a salience signal would look very similar to a reward prediction 37	
error signal, but careful experimental design can result in their dissociation 31.   38	
 39	
While normative roles for dopamine and norepinephrine have frequently been discussed 40	
in terms of their effects on reinforcement learning and motivational systems, such 41	
signals likely also affect processing in medial temporal memory systems 32-35. For 42	
example, dopamine can enhance LTP 36 and replay 37 in the hippocampus, which could 43	
potentially provide a mechanism to prioritize behaviorally relevant information for longer 44	
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term storage 32. More recent work using optogenetics to perturb hippocampal dopamine 1	
inputs revealed a biphasic relationship, whereby low levels of dopamine suppress 2	
hippocampal information flow but higher levels of dopamine facilitate it 35. Given that the 3	
highest levels of dopamine are typically elicited by dopamine bursts 38, especially with 4	
larger reward prediction errors 5, this result suggests that memory encoding in the 5	
hippocampus might be enhanced for unexpectedly positive events.  6	
 7	
However, despite relatively strong evidence that dopaminergic projections signal reward 8	
prediction errors 5,39, and that dopamine release in the hippocampus can facilitate 9	
memory encoding in non-human animals 40,  evidence for a positive effect of reward 10	
prediction errors on memory formation in humans is scarce. Monetary incentives and 11	
reward expectation can be manipulated to improve episodic encoding, even of incidental 12	
memories, but it is not clear that such effects are driven by reward prediction errors 13	
rather than motivational signals or reward value per se 18,33,41,42. The few studies that 14	
have closely examined the relationship between reward prediction error signaling and 15	
episodic memory have not found evidence for a memory advantage after positive 16	
prediction errors 43,44. However, there are a number of technical factors that could mask 17	
a relationship between reward prediction errors and incidental memory formation in 18	
standard paradigms. For instance, such tasks typically have not controlled for salience 19	
signals, such as surprise and uncertainty, that can be closely related to RPEs, and that 20	
are thought to exert independent effects on episodic encoding through a separate 21	
noradrenergic neuromodulatory system 28-30,45. 22	
 23	
Here we combine a novel behavioral paradigm with computational modeling to clarify 24	
the impact of prediction error and surprise, elicited during reinforcement learning, on 25	
episodic encoding. Our paradigm required subjects to encode images in the context of a 26	
learning and decision-making task, and then to complete a surprise recognition 27	
memory test for the images. The decision-making task required subjects to decide 28	
whether to accept or reject a risky gamble based on the value of potential payouts and 29	
the reward probabilities associated with two image categories, which they learned 30	
incrementally based on trial-by-trial feedback. Our design allowed us to measure and 31	
manipulate reward prediction errors at multiple timepoints and to dissociate those RPEs 32	
from other computational factors that are often correlated with them. In particular, our 33	
paradigm and computational models allowed us to manipulate and measure surprise 34	
and uncertainty, which have also been implicated in learning and episodic encoding, 35	
and are often closely related to RPEs in many tasks. However, both surprise and 36	
uncertainty are thought be conveyed through noradrenergic modulation (rather than 37	
dopamine, which is thought to reflect RPE). We also assessed the degree to which 38	
relationships between these computations and episodic encoding depend on 39	
consolidation by testing recognition memories either immediately after the decision task 40	
or after a 24 hour delay.  41	
 42	
Our results reveal that subjects were more likely to remember images presented in trials 43	
in which they accepted the risky gamble. Moreover, the degree of this memory benefit 44	
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increased with the RPE experienced at the time of image presentation, but not by the 1	
RPE, surprise, or uncertainty associated with either the previous or subsequent trial 2	
outcome. These results were replicated in an independent sample, which also 3	
demonstrated sensitivity to counterfactual information about choices the participants did 4	
not make. Collectively, these data demonstrate a key role for reward prediction errors in 5	
episodic encoding, clarify the timescale and computational nature of interactions 6	
between reinforcement learning and encoding, and make testable predictions about the 7	
neuromodulatory mechanisms underlying both processes.  8	
 9	
 10	
Results 11	
 12	
The goal of this study is to elucidate how computational factors that govern trial-to-trial 13	
learning and decision-making might impact episodic memory encoding and retrieval. To 14	
do so, we designed a two-part task that included a learning and decision-making phase 15	
(Fig 1a) followed by a recognition memory phase (Fig 1c) (see Methods for additional 16	
details regarding the task, participants, and analysis). During the learning phase, on 17	
each trial subjects decided whether to accept (“play”) or reject (“pass”) an opportunity to 18	
gamble based on the potential reward payout. The magnitude of the potential reward 19	
was revealed numerically at the start of each trial, but its probability had to be learned 20	
via feedback. Subjects were presented with a visual image and were told that the 21	
probabilities of reward would depend on whether the (trial-unique) image belonged to 22	
one of two categories (animate or inanimate). The reward probability was yoked across 23	
categories, such that p(animate) = 1 – p(animate). On each trial, the subject integrated 24	
information about the trial payout (selected at random independently for each trial) and 25	
learned probability in order to decide whether to “play” or “pass” (Fig 1a). Furthermore, 26	
sequential presentation of value, probability and trial outcome information allowed us to 27	
manipulate subject reward expectations dynamically within a trial to separately elicit 28	
reward prediction errors before, during, and after image presentation (Fig 1b).  29	
 30	
The learning phase thus presented subjects with a series of unique stimuli (images from 31	
animate/inanimate categories) in a context that allowed for the statistical dissociation of 32	
three computational factors thought to govern learning from feedback: prediction error, 33	
surprise, and uncertainty. Dissociation of these three factors was achieved in part 34	
through the independent manipulation of reward probability and value, and in part 35	
through occasional change points in the assignments of the yoked reward probabilities 36	
to each of the two image categories (Fig 1d; 46). This design yielded estimates of 37	
surprise from an ideal observer model that spiked at improbable outcomes, including—38	
but not limited to—those observed after changes in the reward probabilities (Fig 1e). 39	
Estimates of uncertainty changed more gradually and tended to be highest during 40	
periods following surprise (i.e., when the reward outcomes are volatile, one becomes 41	
more uncertain about the learned probability; Fig 1f). Reward prediction errors at time of 42	
feedback were highly variable across trials and more related to the probabilistic (and 43	
bivalent) trial outcomes than to transitions in the reward structure (Fig 1g).  44	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/327445doi: bioRxiv preprint 

https://doi.org/10.1101/327445
http://creativecommons.org/licenses/by-nc-nd/4.0/


While repeated-choice bandit tasks typically involve a prediction error at time of 1	
feedback, our task also provided some information about the probability of a rewarding 2	
outcome during the decision phase, coincident with the image presentation. This 3	
allowed us to examine the effects of a separate, image reward prediction error signal 4	
(Fig 1b). On some trials, the presented image category was associated with a higher-5	
than-expected reward probability leading to a positive image reward prediction error, 6	
whereas on other trials the presented image suggested a lower than expected reward 7	
probability leading to a negative image prediction error (Fig 1h). The image prediction 8	
errors could be thought of as the dopamine signal that would be expected to occur in 9	
response to the probabilistic reward cue provided by the memoranda themselves.  10	
 11	
 12	

 13	
  14	
Figure 1: Dissociating effects of reward prediction error, surprise and uncertainty on incidental memory 15	
encoding. a, In the learning task subjects were informed about the potential value of a successful gamble 16	
for the current trial (two seconds, 20 for example trial) and then shown a unique image belonging to one 17	
of two categories (animate/inanimate) for a total of three seconds, during which the subject would decide 18	
whether to accept (“play”) or reject (“pass”) the gamble. After a brief delay, subjects were informed about 19	
their earnings and, if they rejected the gamble, saw counterfactual information regarding the trial outcome. 20	
At the end of each trial a cumulative total score was displayed. b, The learning task facilitates the 21	
manipulation of reward prediction errors before, during, and after image presentation. Prediction errors 22	
elicited before image presentation would reflect the value information presented at trial outset (leftmost 23	
peak; colors indicate value), prediction errors at image presentation would reflect reward probability 24	
information conveyed by the image and its interaction with trial value (middle peak; solid/dashed lines 25	
reflect high/low reward probabilities), and prediction errors occurring after image presentation would 26	
convey information about trial outcome (rightmost peak; colors reflect trial outcome). c, After the learning 27	
task, subjects completed a surprise recognition memory test in which each image was either “old” (i.e., 28	
from the learning task) or “new” (i.e., a novel lure). Subjects were asked to provide a binary answer along 29	
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with a 1-4 confidence rating for each image. Importantly, the new images were semantically matched to 1	
the old images such that accurate responding depended on the retrieval of detailed perceptual information 2	
from encoding. d, Reward probabilities during the learning task were determined by image category, were 3	
yoked across categories, and were reset occasionally to require learning (black dotted line). Binary 4	
outcomes indicating whether the gamble would be rewarded (red/black dots) were governed by reward 5	
probabilities and could be used by an ideal observer model to infer the underlying reward probabilities 6	
(blue). e-g, The ideal observer learned in proportion to the surprise associated with a given trial outcome 7	
(e) and the uncertainty about its estimate of the current reward probability (f), both of which fluctuated 8	
dynamically throughout the task and were dissociable from reward prediction error signals at time of 9	
feedback (g) and at time of image presentation (h).  10	
 11	
Analyses of data from 199 subjects suggest that they (1) integrated reward probability 12	
and value information and (2) utilized reward prediction errors, surprise, and uncertainty 13	
to gamble effectively. Subjects increased the proportion of play (gamble) responses as 14	
a function of both trial value and the ground truth category reward probability (Fig 2a). 15	
To capture trial-to-trial dynamics of subjective category probability assessments, we fit 16	
play/pass data from each subject with a set of reinforcement learning models. The 17	
simplest such model fit betting behavior as a weighted function of reward magnitude 18	
and probability, with probabilities updated on each trial with a fixed learning rate. More 19	
complex models (see Methods for details) considered the possibility that this learning 20	
rate might itself be adjusted according to other factors such as surprise, uncertainty, or 21	
whether the subject had decided to gamble on the trial. Consistent with previous work 22	
30,31,47,48, the best fitting model adjusted learning according to normative measures of 23	
both surprise and uncertainty (Fig 2c). Coefficients describing the effects of surprise and 24	
uncertainty on learning tended to be positive across subjects, indicating that subjects 25	
were more responsive to feedback if it was surprising or was provided during a period of 26	
uncertainty (Fig 2d; surprise: t = 2.69, df = 198, p = 0.0078; uncertainty t = 6.38, df = 27	
198, p < 0.001). Thus, subject behavior in the learning task is best described as using 28	
surprise and uncertainty to scale the extent to which reward prediction errors are used 29	
to adjust subsequent behavior. 30	
 31	
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 1	
Figure 2: Subjects’ gambling behavior integrated reward value and subjective reward probability 2	
estimates, which were updated as a function of surprise and uncertainty. a, Proportion of trials in which 3	
the subjects chose to play, broken down by reward value and true reward probability. b, Subject choice 4	
behavior and model-predicted choice behavior. The model with the lowest BIC, which incorporated the 5	
effects of surprise and uncertainty on learning rate, was used to generate model behavior. Expected 6	
values for all trials were divided into 8 equally sized bins for both subject and model-predicted behavior. c, 7	
Bayesian information criterion of five reinforcement learning models with different parameters that affect 8	
learning rate. d, Mean maximum likelihood estimates of surprise and uncertainty parameters of the best 9	
fitting model (first bar on c). Error bars indicate standard error across subjects.  10	
 11	
 12	
Behavior in the recognition task confirmed that subjects formed memories about the 13	
unique images displayed in the learning task. Subjects completed a surprise recognition 14	
memory task either five minutes (no delay, n = 109) or twenty-four hours (24 hour delay, 15	
n = 90) after completion of the learning task. During the recognition memory task, 16	
subjects viewed all the “old” images from the learning task plus a semantically matched 17	
set of “new” foil images that were not shown previously. For each image, subjects 18	
provided a binary response indicating whether the image was old or new, along with a 19	
1-4 confidence measure.  20	
 21	
Subjects in both delay conditions reliably identified images that had been presented in 22	
the learning task with accuracy above chance (Fig 3a; mean(sem) d’ = 0.85(0.042) for 23	
no delay and 0.50(0.030) for 24 hour delay condition). The reliability of memory reports 24	
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was greater when subjects expressed higher levels of confidence (mean(sem) d’ = 1	
1.12(0.062) for no delay and 0.65(0.039) for 24 hour delay condition) than when they 2	
reported lower confidence (mean(sem) d’ = 0.44(0.038) for no delay and 0.25(0.037) for 3	
24 hour delay condition).  4	
 5	
To aggregate information provided in the binary reports and confidence measure we 6	
transformed these sources of data to create a single 1-8 memory score, such that 8 7	
reflected a high confidence “old” response and 1 reflected a high confidence “new” 8	
response. As expected, the true proportion of “old” images was higher when memory 9	
scores were highest, and the relationship between memory scores and ground truth was 10	
monotonic and roughly linear across both delay conditions (Fig 3b). Thus, subjects 11	
incidentally formed lasting memories for the images displayed in the learning task, and 12	
memory scores provided a measure of the subjective memory strength associated with 13	
each image.  14	
 15	
Recognition memory for an image depended on the context in which that image was 16	
presented during the learning task. Memory scores for previously viewed images were 17	
higher for images observed on trials in which subjects gambled (play) than for images 18	
observed on trials in which they passed (Fig 3c; FigS1). The difference between 19	
memory scores for old and new items was larger for play than pass trials (t=3.30, 20	
dof=198, p =0.001) and this did not differ across delay conditions (t=0.38, dof=198, p = 21	
0.70) (Fig 3d). Larger memory scores were produced, at least in part, by an increase in 22	
the sensitivity of memory reports. Across all possible memory scores, hit rate was 23	
higher for play trials than for pass trials and the area under subject-specific ROC curves 24	
generated in this way was greater for play as compared to pass trials (Fig 3e; t=3.12, 25	
dof=198, p = 0.002) but did not differ across delay conditions (t=0.34, dof=197, p=.73). 26	
In principle, this enhanced memory encoding could be driven by positive reward 27	
prediction errors, which would occur in response to high probability images (figure 1b) 28	
and motivate play decisions (figure 2a). In subsequent analyses we test this idea 29	
directly.    30	
 31	
 32	

 33	
Figure 3: Recognition memory is stronger for stimuli presented on trials in which subjects accepted the 34	
gamble. a, Average d’ for the two delay conditions. b, Average proportion of image stimuli that were “old” 35	
(presented during the learning task), separated by memory score. c, Mean memory score of “old” images 36	
for play trials versus pass trials. Each point represents a unique subject. A majority of subjects lie above 37	
the diagonal, indicating better memory performance for play trials. d, Mean pairwise difference in memory 38	
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score between the “old” images and their semantically-matched foil images. e, ROC curves for play vs. 1	
pass trials. Area under the ROC curves (AUC) shown in the inset. AUC was greater for play versus pass 2	
trials, indicating better detection of old versus new images for play trials compared to pass trials. Colors 3	
indicate time between encoding and memory testing; blue = no delay, red = 24 hour delay.  4	
 5	
 6	
The degree to which memory was enhanced on play trials depended on the magnitude 7	
of the reward prediction error at time of image presentation (see Fig 1a,b). In particular, 8	
memory scores for play trials increased as a function of the reward prediction error 9	
computed at the time of image presentation (Fig 4a,b; t = 4.29, df = 198, p = 3 x 10-5) in 10	
a manner that did not depend on delay condition (t = 0.09, df = 198, p = 0.93). 11	
Moreover, this effect was most prominent in the subjects that displayed gambling 12	
behaviors that were the most sensitive to trial-to-trial fluctuations in probability and value 13	
(spearman correlation of gambling GLM coefficients (probability & value) with memory 14	
score image RPE coefficient: ρ = 0.14, p = 0.04).  15	
 16	
To better understand the nature of this relationship, we show subsequent memory 17	
scores related to the constituent components of the reward prediction error signal. A key 18	
feature of an error in reward prediction at the time of image presentation is that it should 19	
depend directly on reward probability (i.e., the probability associated with the image 20	
category relative to the average reward probability across categories) as this is the 21	
reward information cued by the image. In contrast, the trial value should not directly 22	
influence RPE because this value was already indicated prior to image presentation, 23	
and should thus only inform reward predictions themselves, and not their errors. 24	
Consistent with a selective effect of RPE at time of image presentation, subsequent 25	
memories were stronger for play trials in which the image category was associated with 26	
a higher reward probability (Fig 4c,d; t = 3.31, df = 198, p = 0.001) but not for play trials 27	
with higher potential outcome value, which if anything were associated with slightly 28	
lower memory scores (Fig 4e,f; t = -1.97, df = 198, p = 0.051). Reward probability 29	
effects were stronger in subjects that displayed more sensitivity to probability and value 30	
in the gambling task (spearman correlation of gambling GLM coefficients (probability & 31	
value) with memory score image reward probability coefficient: ρ = 0.16, p = 0.02).  32	
 33	
 34	
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	  1	
Figure 4: Subsequent memory strength depends on the reward prediction error at time of image 2	
presentation, but not trial value. a,b, Reward prediction error during image presentation shows a positive 3	
association with subsequent recognition memory for the image in both no delay (a; blue) and 24 hour 4	
delay (b; red) conditions. c-f, Reward probability estimates (c,d), but not reward value (e,f) retained the 5	
positive association with subsequent memory. This suggests that prediction error that occurs during 6	
image presentation, but not the overall value of the image, is driving the subsequent memory effect. 7	
Colors indicate time between encoding and memory testing; blue = no delay, red = 24 hour delay. 8	
 9	
 10	
While subject gambling behavior depended critically on the reward prediction error, 11	
uncertainty, and surprise associated with trial feedback, to our surprise none of these 12	
factors influenced subsequent memory for the images. Specifically, memory scores 13	
were not systematically related to the reward prediction error experienced at time of 14	
feedback on the trial preceding image presentation (Fig 5a; t = 0.25, dof = 198, p = 15	
0.80) or immediately after image presentation (Fig 5b; t = -1.19, dof = 198, p = 0.26). 16	
Similarly, the surprise associated with feedback preceding (Fig 5b; t = -1.71, dof = 198, 17	
p = 0.088) or following (Fig 5d; t = 1.24, dof = 198, p = 0.16) image presentation was not 18	
systematically related to subsequent memory scores. Furthermore, there were no 19	
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obvious relationships between subsequent memory score and uncertainty, again 1	
despite the apparent impact of uncertainty on subject gambling behavior (fig 5e, 2	
previous trial uncertainty, t=1.70, dof=198, p=0.091; fig 5f, current trial uncertainty, t = -3	
0.63, dof = 198, p = 0.53).  4	
 5	
 6	

	  7	
Figure 5: Subsequent memory is not affected by unexpected rewards, surprise, or outcome uncertainty 8	
during the feedback preceding or following image presentation. a,b, Reward prediction error during the 9	
feedback phase of the previous trial (a) or current trial (b) did not affect subsequent memory. c,d, 10	
Surprise associated with the feedback phase of the previous (c) or current (d) trial did not affect 11	
subsequent memory. e,f, Uncertainty during the previous (e) or current (f) trial did not affect subsequent 12	
memory. Colors indicate time between encoding and memory testing; blue = no delay, red = 24 hour 13	
delay. 14	
 15	
 16	
 17	
 18	
 19	
 20	
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To better estimate the contributions of learning-related computations to subsequent 1	
memory strength, we constructed a hierarchical regression model capable of 1) pooling 2	
information across subjects and delay conditions in an appropriate manner, 2) 3	
estimating the independent contributions of each factor while simultaneously accounting 4	
for all others, and 3) accounting for the differences in memory scores attributable to the 5	
images themselves. The hierarchical regression model attempted to predict memory 6	
scores by estimating coefficients at the level of items and subjects, as well as estimating 7	
the mean parameter value over subjects and the effect of delay condition for each 8	
parameter (Fig 6a).  9	
 Consistent with the results presented thus far, the hierarchical regression results 10	
support the notion that encoding was strengthened by the decision to gamble (play vs. 11	
pass) and reward prediction errors elicited at the time of image presentation, but not by 12	
the computational factors that controlled learning rate (surprise and uncertainty). Play 13	
trials were estimated to contribute positively to encoding, as indexed by uniformly 14	
positive values for the posterior density on the play/pass parameter (Fig 6b top row of 15	
column 2; table 1). The reward probability associated with the displayed category was 16	
positively related to subsequent memory on play trials (Fig 6b column 3; table 1), as 17	
was its interaction with value (Fig. 6b column 5; table 1)–although there was no reliable 18	
effect of value itself (Fig 6b columns 6; table 1). The direction of the interaction effect 19	
suggests that subjects were more sensitive to image probability on trials in which there 20	
were more points available to be won, consistent with the more nuanced predictions of a 21	
reward prediction error at time of image presentation (Fig 1b). All observed effects were 22	
selective for the old items that subjects observed in the task, as the same model fit to 23	
the new, foil images yielded coefficients near zero for each of these terms (Fig S2). 24	
Consistent with our previous analysis, coefficients for the uncertainty and surprise terms 25	
were estimated to be near zero (Fig 6b rightmost columns; table 1). 26	
 In addition to supporting our previous analyses, our model allowed us to examine 27	
the extent to which any subsequent memory effects required a consolidation period. In 28	
particular, any effects on subsequent memory that were stronger in the 24hr delay 29	
condition vs. the immediate condition might reflect an effect of post-encoding processes. 30	
Despite evidence from animal literature that dopamine can robustly affect memory 31	
consolidation (e.g., Bethus et al., 2010), we did not find strong support for any of our 32	
effects being consolidation dependent (note lack of positive coefficients in bottom row of 33	
Fig 6b, which would indicate effects stronger in the 24 hour condition). As might be 34	
expected, subjects in the no delay condition tended to have higher memory scores 35	
overall (Fig 6b bottom of column 1; table 1) but their memory scores also tended to 36	
change more as a function of reward probability (Fig 6b bottom of column 3; table 1) 37	
than did their counterparts in the 24hr delay condition. These results reveal the 38	
expected decay of memory over time, and suggest that the image prediction errors 39	
induced by categories associated with higher reward probability are associated with an 40	
immediate and decaying boost in memory accuracy.  41	
 42	
 In summary, behavioral data and computational modeling support a role for 43	
computation of surprise, uncertainty and reward prediction error in the learning phase of 44	
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our paradigm. However, only decisions to gamble and the instantaneous reward 1	
prediction error at the time of image presentation were related to subsequent memory. 2	
To better understand the reward prediction error effect, and to ensure the reliability of 3	
our findings, we conducted a second experiment.   4	

 5	
Figure 6: Hierarchical regression model reveals effects of choice and positive prediction errors on 6	
recognition memory encoding. a: Graphical depiction of hierarchical regression model. Memory scores for 7	
each subject and item (Ms,i) were modeled as normally distributed with subject specific variance (σs) and a 8	
mean that depended on the sum of two factors: 1) subject level predictors related to the decision context 9	
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in which an image was encountered (i.e., whether the subject played or passed) linearly weighted 1	
according to coefficients (βs,x) and 2) item level predictors specifying which image was shown on each 2	
trial and weighted according to their overall memorability across subjects (βi). Coefficients for subject level 3	
predictors were assumed to be drawn from a global mean value for each coefficient (μx) plus an offset 4	
related to the delay condition (Dx). Parameters were weakly constrained with priors that favored mean 5	
coefficient values near zero and low variance across subject and item specific coefficients. b: Posterior 6	
probability densities for mean predictor coefficients (μx; top row) and delay condition parameter difference 7	
(Dx; bottom row) estimated through MCMC sampling over the graphical model informed by the observable 8	
data (Ms,i).  9	
 10	
 11	
Experiment 2 12	
 13	
Our previous findings suggested that variability in the strength of memory encoding was 14	
related to computationally-derived RPE signals and the gambling behavior that elicited 15	
them. However, the yoked reward probabilities in Experiment 1 ensured that the reward 16	
probability associated with the image category presented would be perfectly anti-17	
correlated with the reward probability associated with the other category that was not 18	
presented. Thus, while a high reward category item would increase the expected reward 19	
relative to before the trial and hence elicit an RPE, we were unable to disentangle 20	
whether the observed effects were driven by the reward probability directly, the 21	
counterfactual reward associated with the alternate category, or, as would be predicted 22	
by a true reward prediction error, their difference. To address this issue we conducted a 23	
second experiment in which expectations about reward probability were manipulated 24	
independently of the actual reward probability on each trial allowing us to distinguish 25	
between these alternative explanations.  26	
 27	
Specifically, we modified the design of our task such that the learning phase included 28	
separate manipulations of reward probability for the two image categories. Thus, during 29	
some trials both categories would be associated with a high reward probability and in 30	
some sessions both would be associated with a low reward probability (Fig 7a-b). In this 31	
design, RPEs are relatively small when the reward probabilities are high for both 32	
categories and deviate much more substantially when the reward probability differs 33	
across image category (Fig 7c). Thus, if the factor boosting subsequent memory scores 34	
is truly a reward prediction error, it should depend positively on the reward probability 35	
associated with the image category, but negatively with the reward probability 36	
associated with the other category.  37	
 38	
Subjects in both delay conditions reliably identified images presented in the learning 39	
task with accuracy above chance (Fig 7d; mean(sem) d’ = 0.91(0.058) for no delay and 40	
0.54(0.034) for 24 hour delay condition). We also observed a robust replication of the 41	
difference in memory scores for trials in which subjects either gambled or passed on the 42	
offer to gamble (Fig 7e; t=3.89, dof=172, p<0.001; difference across delay condition, t=-43	
0.60, dof=171, p=0.55). 44	
 45	
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In the new experimental design, we could analyze variability in memory scores for each 1	
old image as a function of its associated category reward probability (“image category”) 2	
and the reward probability associated with the other category (“other category”). Based 3	
on the RPE account, we hypothesized that we would see a positive effect of the 4	
experienced reward (image category) and a negative effect of the reward that would 5	
have otherwise been available (other category) on subsequent memory. Consistent with 6	
this prediction, for both delay conditions, there was a cross-over effect whereby memory 7	
scores scaled positively with the probability associated with the image category (Fig 7f,g 8	
t=2.37, dof=172, p=0.019), and negatively with the probability associated with the other 9	
category (t=-2,27, dof=172, p=0.024). These effects did not differ across delay 10	
conditions (current category, t=0.55, dof=171, p=0.58; other category, t=0.36, dof=171, 11	
p=0.72).  12	
 13	
 14	

		  15	
Figure 7: Experiment 2 allowed us to separately estimate the effects of both category probabilities on 16	
subsequent memory recall. a: In the new learning task, the true reward probabilities of the two categories 17	
were independent, and were restricted to either 0.2 or 0.8. The change-points occurred randomly, 18	
ensuring that each subject completed a unique learning task. Restrictions were applied so that each task 19	
contained at least one block (constituting at least 20 trials) of the four possible reward probability 20	
combinations (0.2/0.2, 0.2/0.8, 0.8/0.2, 0.8/0.8). b: Trial-by-trial reward probability shows stretches of 21	
stable reward probability (0.2/0.2, 0.8/0.8), or varying reward probability (0.2/0.8, 0.8/0.2). c; The 22	
variability of imRPE is influenced by the reward probability conditions. d: Average d’ for both delay 23	
conditions. e: Mean pairwise difference in memory score between the “old” images and their semantically-24	
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matched foil images. f,g: There is a positive association between reward probability of the currently 1	
shown stimulus category and subsequent recognition memory, and a negative association between the 2	
reward probability of the other stimulus category and memory. In panels d-f, colors indicate time between 3	
encoding and memory testing; blue = no-delay, red = 24 delay. 4	
 5	
To better estimate the effects of image category, other category, and play/pass behavior 6	
on subsequent memory we fit memory score data with a modified version of the 7	
hierarchical regression model that included separate reward probability terms for the 8	
“image” and “other” categories. Posterior density estimates for the play/pass coefficient 9	
were greater than zero (Fig 8a; table 1), replicating our previous finding. The posterior 10	
density for the “image category” and “other category” probabilities was concentrated in 11	
the region over which image category was greater than other category (mean [95% CI] 12	
image category coefficient – other category coefficient: 0.052 [0.015,0.94]) and 13	
supported independent and opposite contributions of both category probabilities (Fig 8b; 14	
table 1). These results, in particular the negative effect of “other category” probability on 15	
the subsequent memory scores, are more consistent with an effect of prediction error 16	
than a direct effect of reward prediction itself. More generally, these results support the 17	
hypothesis that reward prediction errors elicited at the time of image presentation 18	
enhance the degree to which such images are encoded in episodic memory systems.  19	

 20	
Figure 8: Memory scores in experiment two depend on subject gambling behavior and the probabilities 21	
associated with both image categories. Memory score data from experiment two was fit with a version of 22	
the hierarchical regression model described in figure 6A to replicate previous findings and determine 23	
whether reward probability effects were attributable to both observed and unobserved category 24	
probabilities. a: Posterior probability estimates of the mean play/pass coefficient were greater than zero 25	
and consistent with those measured in the first experiment. b: Image category probability (observed) 26	
coefficients are plotted against other category probability (unobserved) coefficients revealing that subjects 27	
tended to have higher memory scores for images that were associated with high reward probabilities 28	
(upward shift of density relative to zero) and when the unobserved image category was associated with a 29	
low reward probability (leftward shift of density relative to zero). 30	
 31	
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Despite the general agreement between the two experiments, there was one noteworthy 1	
discrepancy. While hierarchical models fit to both datasets indicated higher probability of 2	
positive coefficients for the interaction between value and probability (e.g. positive 3	
effects of probability on subsequent memory are greater for high value trials), the 95% 4	
credible intervals for these estimates in experiment two included zero as a possible 5	
coefficient value (table 1) indicating that the initial finding was not replicated in the 6	
strictest sense.  7	
 8	
To better understand this discrepancy, and make the best use of the data from both 9	
experiments we extended the hierarchical regression approach to include additional 10	
coefficients capable explaining differences across the two experiments and fit this 11	
extended model to the combined data. As expected, this model provided evidence for a 12	
memory advantage on play trials, and an amplification of this advantage for trials with a 13	
high reward probability based on image category (Fig S4; table 1). Across the combined 14	
dataset there was also positive effect of the interaction between value and probability 15	
(Fig S4; table 1), supporting our initial observation in experiment one. Furthermore, we 16	
observed that the reward probability effect was greater in the no delay condition (Fig S4; 17	
table 1), with no evidence for any memory effects being stronger in the 24 hour delay 18	
condition (table 1; all other delay difference ps >.19).  19	
 20	
 21	
Discussion 22	
 23	
An extensive prior literature has linked dopamine to reward prediction errors elicited 24	
during reinforcement learning 5,6,19,39,49-51, and a much smaller literature has suggested 25	
that dopamine can also influence the encoding and consolidation of episodic memories 26	
by modulating activity in the medial temporal lobes 18,40,52. To date, however, there has 27	
been mixed evidence regarding the relationship between prediction error signaling and 28	
memory encoding. Here we used a novel two-stage learning and memory paradigm 29	
along with computational modeling to better characterize how prediction error signals 30	
affect the strength of incidental memory formation. 31	
 32	
We found that memory encoding was stronger for trials in which the subjects observed 33	
an image that was associated with high reward probability (figure 5c,d). This effect was 34	
only evident for trials in which subjects accepted the risky offer (consistent with the fact 35	
that trial outcome was always zero on pass trials), was evident even after controlling for 36	
other potential confounds (figure 6b column 3), and was amplified for trials in which 37	
more points were on the line (figure 6b column 5). These results are all consistent with a 38	
direct effect of reward prediction error at time of image presentation on memory 39	
encoding (figure 5a,b). This interpretation is bolstered by evidence that individuals that 40	
were more sensitive to value and probability in the decision making task showed reward 41	
prediction error memory benefits to a greater degree. Experiment two further supported 42	
the reward prediction error interpretation by demonstrating that memory benefits were 43	
composed of equal and opposite contributions of the reward probability associated with 44	
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the observed image category and that of the unobserved, counterfactual, one (Figure 1	
7f,g, Figure 8b). Together, these results provide evidence for the hypothesis that reward 2	
prediction errors enhance the encoding of simultaneously presented incidental visual 3	
information for subsequent memory. 4	
 5	
We also found that subjects encoded memoranda to a greater degree on trials in which 6	
they selected a risky bet (figure 3). This finding is consistent with a positive relationship 7	
between prediction error signaling and memory strength, in that subject behavior 8	
provides a proxy for the subjective reward probability estimates (figure 2A). However, 9	
this behavioral effect was prominent in both experiments, even after controlling for 10	
model-based estimates of reward prediction error (figures 6b & 8a). Therefore, while we 11	
suspect that this result may at least partially reflect the direct impact of reward prediction 12	
error, it may also reflect other factors associated with risky decisions. On play trials, 13	
subjects view items while anticipating the uncertain gain or loss of points during the 14	
upcoming feedback presentation whereas on pass trials, subjects are assured to 15	
maintain their current score. The possibility that this difference in risk might contribute to 16	
the subsequent memory effects observed for choice behavior would be consistent with 17	
recent work showing that memoranda presented immediately prior to feedback are 18	
better remembered if they preceded more uncertain feedback 53. One potential 19	
confound for these choice effects is the heightened state of attention that might occur 20	
before receiving a more informative task outcome. While we are unable to rule this 21	
possibility out completely, our study minimizes this possibility by presenting 22	
counterfactual information on pass trials that is nearly identical to the experienced 23	
outcome information. We find that subjects are slightly more influenced by outcome 24	
information provided on play trials, suggesting that anticipatory attention might differ 25	
somewhat between the two conditions (Fig S3a); however the degree of this difference 26	
was small enough that model selection favored a model that did not distinguish between 27	
play and pass trials for learning (Fig 2c). Furthermore, there was no relationship 28	
between the degree to which subjects modulated learning from feedback on play versus 29	
pass trials and the degree to which they showed subsequent memory improvements on 30	
play trials (Fig S3b). Given that risky decisions tend to be preceded by higher levels of 31	
dopamine, the possibility of a direct effect of risk taking on subsequent memory would 32	
still be consistent with a dopaminergic mechanism 22-24,27.  33	
 34	
This relationship between reward prediction errors and memory is consistent with a 35	
broad literature highlighting the effects of dopaminergic signaling on hippocampal 36	
plasticity 32,35,36 and memory formation 40 as well as an equally broad literature 37	
suggesting that dopamine provides a reward prediction error signal 5,19 through 38	
projections that extend both to the striatum and the hippocampus 17. Our results support 39	
the behavioral consequences that might be predicted to result from such mechanisms, 40	
however they also refine them substantially. In particular, we show that the timing of 41	
reward prediction error signaling relative to the memorandum is key; we saw no effect of 42	
the reward prediction error elicited by prior or subsequent feedback on memory strength 43	
(Figure 4a&b), despite strong evidence that this feedback was used to guide 44	
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reinforcement learning and decision making (Figure 2). Furthermore, we showed that 1	
prediction error effects on memory emerged immediately after task performance and 2	
were not enhanced after 24 hours (Figure 5a&b; Figure 6b column 3). These results are 3	
somewhat at odds with previous literature suggesting that dopamine dependent memory 4	
enhancement emerges only after an extended consolidation period 40. It is unclear to 5	
what extent we should expect generalization of these results to our study, given the 6	
differences in experimental paradigm, timescale, memory demands, and species in the 7	
two paradigms. However, our results open the door for future research to (1) directly 8	
test whether prediction error driven memory enhancements are mediated by changes in 9	
dopamine, and (2) characterize the conditions under which dopamine mediated 10	
changes to memory encoding do and do not require a consolidation period.  11	
 12	
More generally, our results provide insight into the apparent inconsistency in previous 13	
behavioral studies that have attempted to link reward prediction error signals to memory 14	
encoding. Consistent with previous work (e.g. 54), our results emphasize the importance 15	
of choice in the degree to which image valence contributed to memorability. Indeed, for 16	
trials in which the subjects passively observed outcomes, we saw no relationship 17	
between model derived reward prediction error estimates and subsequent memory 18	
strength (Figure 5a&b dotted lines). This might help to explain the lack of a signed 19	
relationship between reward prediction errors and subsequent memory strength in a 20	
recent study by Rouhani and colleagues that leveraged a Pavlovian design that did not 21	
require explicit choices to be made 44. In contrast to our results, Rouhani and colleagues 22	
observed a positive effect of absolute prediction error, similar to our model-based 23	
surprise estimates, on subsequent memory. While we saw no effect of surprise on 24	
subsequent memory, other work has highlighted a role for such signals as enhancing 25	
hippocampal activation and memory encoding 55,56. One potential explanation for this 26	
discrepancy is in the timing of image presentation. Our study presented images only 27	
briefly during the choice phase of the decision task. By contrast, Rouhani and 28	
colleagues presented the memoranda for an extended period that also encompassed 29	
the epoch containing trial feedback, potentially explaining why they observed effects 30	
related to outcome surprise. More generally, the temporally selective effects of reward 31	
prediction error observed here suggest that the reward prediction error effects may differ 32	
considerably from other, longer timescale manipulations thought to enhance memory 33	
consolidation through dopaminergic mechanisms 18,33,41,42.  34	
 35	
Our results appear somewhat incompatible on first glance with those of Wimmer and 36	
colleagues 43, who show that stronger prediction error encoding in the ventral striatum is 37	
associated with weaker encoding of incidental information. We suspect that the 38	
discrepancy between these results is driven by differences in the degree to which 39	
memoranda are task relevant in the two paradigms. In our task, subjects were required 40	
to encode the memoranda sufficiently to categorize them in order to perform the primary 41	
decision-making task, whereas in the Wimmer study, memoranda were unrelated to the 42	
decision task and thus might not be well-attended on all trials. Taken together, these 43	
results suggest that reward prediction errors are most likely to enhance memory when 44	
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they are elicited by the memoranda themselves, with the potential influence of 1	
secondary tasks eliminated or at least tightly controlled.  2	
 3	
In summary, our results demonstrate a role for reward prediction errors in prioritizing 4	
information for memory storage. We show that this role is temporally and 5	
computationally precise, independent of consolidation duration (at least in the current 6	
paradigm), and contingent on decision-making behavior. These data should help clarify 7	
inconsistencies in the literature regarding the relationship between reward learning and 8	
memory, and they make detailed predictions for future studies exploring the relationship 9	
between dopamine signaling and memory formation.   10	
 11	
 12	
 13	
Methods 14	
 15	
Experiment 1 16	
 17	
Experimental procedure 18	
 19	
The task consisted of two parts: the learning task and memory task. The learning task 20	
was a reinforcement learning task with random change-points in reward contingencies 21	
of the targets. The memory task was a surprise recognition memory task using image 22	
stimuli that were presented during the learning task and foils.  23	

Subjects completed either the no delay or 24-hour delay versions of the task. In 24	
the no delay condition, the memory task followed the learning task only after a short 25	
break, during which a demographic survey was given. Therefore, the entire task was 26	
performed in one sitting. In the 24-hour delay condition, subjects returned 20-30 hours 27	
after completing the learning task to do the memory task.  28	
 29	
Subjects 30	
A total of 287 subjects (142, no delay condition; 145, 24hr-delay condition) completed 31	
the task via Amazon Mechanical Turk. From this, 88 subjects (33, no delay; 55, 24hr-32	
delay) were excluded from analysis because they previously completed a prior version 33	
of the task or didn’t meet our criteria of above-chance performance in the learning task. 34	
To determine whether a subject’s performance was above-chance, we simulated 35	
random choices using the same task structure, then computed the total score achieved 36	
by the random performance. We then repeated such simulations 5000 times, and 37	
assessed whether the subject’s score was greater than 5% of the score distribution from 38	
the simulations. The final sample had a total of 199 subjects (109, no delay, 90, 24hr-39	
delay; 101 males, 98 females) with the age of 32.2 ± 8.5 (mean ± SD). Informed 40	
consent was obtained in a manner approved by the Brown University Institutional 41	
Review Board. 42	
 43	
Learning task 44	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/327445doi: bioRxiv preprint 

https://doi.org/10.1101/327445
http://creativecommons.org/licenses/by-nc-nd/4.0/


The learning task consisted of 160 trials, where each trial consisted of three phases – 1	
value, image, and feedback (Figure 1a). During the value phase, the amount of reward 2	
associated with the current trial was presented in the middle of the screen for 1.5 s. This 3	
value was equally sampled from [1, 5, 10, 20, 100]. After an interstimulus interval (ISI) of 4	
0.5 s, an image appeared in the middle of the screen for 3 s (image phase). During the 5	
image phase, the subject made one of two possible responses using the keyboard: 6	
PLAY (press 1) or PASS (press 0). When a response is made, a colored box indicating 7	
the subject’s choice (e.g. black = play, white = pass) appeared around the image. The 8	
pairing of box color and subject choice was pseudorandomized across subjects. After 9	
this image phase, an ISI of 0.5 s followed, after which the trial’s feedback was shown 10	
(feedback phase).  11	

Each trial had an assigned reward probability, such that if the subject chose 12	
PLAY, they would be rewarded according to that probability. If the subject chose PLAY 13	
and the trial was rewarding, they were rewarded by the amount shown during the value 14	
phase (Figure 1a). If the subject chose PLAY but the trial was not rewarding, they lost 15	
10 points regardless of the value of the trial. If the choice was PASS, the subject neither 16	
earned nor lost points (+0), and was shown the hypothetical result of choosing PLAY 17	
(Figure 1a). During the feedback phase, the reward feedback (+value, -10, or 18	
hypothetical result) was shown for 1.5s, followed by an ISI (0.5 s), and a 1 s 19	
presentation of the subject's total accumulated score.  20	

All image stimuli belonged to one of two categories: animate (e.g. whale, camel) 21	
and inanimate (e.g. desk, shoe). Each image belonged to a unique exemplar, such that 22	
there were no two images of the same animal or object. Images of the two categories 23	
had reward probabilities that were oppositely yoked. For example, if the living category 24	
has a reward probability of 90%, the non-living category had a reward probability of 25	
10%. Therefore, the subjects only had to learn the probability for one category, and 26	
simply assume the opposite probability for the other category.  27	

The reward probability for a given image category remained stable until a 28	
change-point occurred, after which it changed to a random value between 0 and 1 29	
(Figure 1d). Change-points occurred with a probability 0.16 on each trial. To facilitate 30	
learning, change-points did not occur in the first 20 trials of the task and the first 15 trials 31	
following a change-point. Each subject completed a unique task with pseudorandomized 32	
order of images that followed these constraints.  33	

The objective was to maximize the total number of points earned. Subjects were 34	
advised to pay close attention to the value, probability, and category of each trial in 35	
order to decide whether it is better to PLAY or PASS. Subjects were thoroughly 36	
informed about the possibility of change-points, and that the two categories were 37	
oppositely yoked. They underwent a practice learning task in which the reward 38	
probabilities for the two categories were 1 and 0 to clearly demonstrate these features 39	
of the task. Subjects were awarded a bonus compensation proportional to the total 40	
points earned during the learning and memory tasks.  41	

 42	
Memory task 43	
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During the memory task, subjects viewed 160 "old" images from the learning task 1	
intermixed with 160 "new" images (Figure 1c). Images were selected such that there 2	
was a new image for each unique exemplar from the learning task. This was to ensure 3	
that subjects had to make judgments about the actual image itself, rather than the fact 4	
that they saw a particular exemplar (e.g. “I remember seeing THIS desk” vs. "I 5	
remember seeing A desk").   6	

The order of old and new images was pseudorandomized. On each trial, a single 7	
image was presented, and the subject selected between OLD and NEW by pressing 1 8	
or 0 on the keyboard, respectively (Figure 1c). Afterwards, they were asked to rate their 9	
confidence in the choice from 1 (Guess) to 4 (Completely certain). Subjects were not 10	
provided with correct/incorrect feedback on their choices.  11	

 12	
 13	
Bayesian optimal learning model 14	
The optimal learning model computed inferences over the probability of a binary 15	
outcome that evolves according to a change-point process. The model was given 16	
information about the true probability of a change-point occurring on each trial (H; 17	
hazard rate) by dividing the number of change-points by the total number of trials for 18	
each subject. For each trial, a change-point was sampled according to a Bernoulli 19	
distribution using the true hazard rate (CP ~ B(H)). If a change-point did not occur (CP = 20	
0), the predicted reward rate (µ!) was updated from the previous trial (µ!!!). When a 21	
change-point did occur (CP = 1), µ! was sampled from a uniform distribution between 0 22	
and 1. The posterior probability of each trial's reward rate given the previous outcomes 23	
can be formulated as follows: 24	
 25	
 p µ! X!:!  ∝  p(X!|µ!) p µ! CP!, µ!!! p CP! p µ!!! X!:! p(X!:!!!)

!!!!!"!

 (1) 

Where p(X!|µ!) is the likelihood of the outcomes given the predicted reward rate, 26	
p µ! CP!, µ!!!  represents the process of accounting for a possible change-point (when 27	
CP = 1, µ! ~ U(0,1)), p CP!  is the hazard rate, and p µ!!! X!:!  is the prior belief of the 28	
reward rate. 29	

Using the model-derived reward rate, we quantified the extent to which each new 30	
outcome influenced the subsequent prediction as the learning rate in a delta-rule:  31	
 32	

B!!! = B! + α!δ! 
δ! = X! − B! 

 33	
where B is the belief about the current reward rate, α is the learning rate, and δ is the 34	
prediction error, defined as the difference between the observed (X) and predicted (B) 35	
outcome. Rearranging, we were able to compute the trial by trial learning rate: 36	
 37	

(2) 
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 α =
B!!! − B!
X! − B!

 

 

(3) 

Trial by trial modulation of change-point probability (i.e. surprise) was calculated by 1	
marginalizing over µ!:  2	
 3	
 p CP! X!:!  ∝  p(X!|µ!) p µ! CP!, µ!!! p CP! p µ!!! X!:! p(X!:!!!)

!!!!!!

 (4) 

 4	
Uncertainty was determined by calculating the entropy of a discrete random variable X 5	
(i.e. reward rate) with possible values {x1,x2,…xi} for a finite sample (Shannon, 2001): 6	
 7	
 H X = − P x! ln (p(x!))

!

 

 

(5) 

 8	
	9	
	10	
 11	
 12	
Descriptive analysis  13	
 14	
Memory scores for each image were computed by transforming the recognition and 15	
confidence reports provided by the subject. On each trial of the recognition memory 16	
task, subjects first chose between “old” and “new”, then reported their confidence in that 17	
choice on a scale of 1-4. We converted these responses so that choosing “old” with the 18	
highest confidence (4) was a score of 8, while choosing “new” with the highest 19	
confidence was a score of 1. Similarly, choosing “old” with the lowest confidence (1) 20	
was a score of 5, while choosing “new” with the lowest confidence was a score of 4. As 21	
such, memory scores reflected a confidence-weighted measure of memory strength 22	
ranging from 1 to 8. These memory scores were used for all analyses involving 23	
recognition memory.  24	
 25	
Statistical analyses were performed in a between-subject manner. For each subject, we 26	
computed the mean memory score of each trial type in question, then subtracted the 27	
overall average memory score of the subject. Therefore, the memory scores used in our 28	
analyses reflect the degree to which a certain trial condition led to better or worse 29	
subsequent memory compared to average performance within each subject.  30	
 31	
Relationships between computational factors and memory scores were assessed by 32	
estimating the slope of the relationship between each computational factor and the 33	
subsequent memory score separately for each computational variable and subject. 34	
Statistical testing was performed using one sample t-tests on the regression coefficients 35	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/327445doi: bioRxiv preprint 

https://doi.org/10.1101/327445
http://creativecommons.org/licenses/by-nc-nd/4.0/


across subjects (for overall effects) and two sample t-tests for differences between 1	
delay conditions (for delay effects). Regression coefficients (slopes) for individual 2	
subjects were related to individual differences in decision making task performance 3	
(coefficients from a GLM describing subject choices (play/pass) in terms of reward 4	
probability and trial value) using spearman rank order correlation.  5	
 6	
To generate the descriptive figures, we performed a binning procedure for each subject 7	
to ensure that each point on the x axis contained an equal number of elements. For 8	
each subject, we divided the y variable in question into quartiles and used the mean y 9	
value of each quartile as the binned value. To plot data from all subjects on the same x 10	
axis, we first determined the median x value for each bin per subject, then took the 11	
average of the four bin median values across subjects. For figures containing more than 12	
one plot, we shifted the x values of each plot slightly off-center to avoid overlap of 13	
points.  14	
 15	
A set of reinforcement learning models were fit directly to the subject behavior using a 16	
constrained search algorithm (fmincon in Matlab) that maximized the total log posterior 17	
probability of betting behavior given the optimal reward probability estimates, trial 18	
values, and prediction errors (Fig c&d). All models contained four fixed parameters that 19	
affected choice behavior: 1) a temperature parameter of the softmax function used to 20	
convert trial expected values into action probabilities, 2) a value exponent term that 21	
scales the relative importance of the trial value in making choices, 3) a play bias term to 22	
indicate a tendency to attribute higher value to gambling behavior, and 4) an intercept 23	
term for the effect of learning rate on choice behavior. The value estimated from 24	
gambling on a given trial was given by: 25	
 26	

𝑉 𝑡 = 𝑝𝑙𝑎𝑦𝐵𝑖𝑎𝑠 + (𝑃!"# ∗ 𝑡𝑟𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒!"#$%! + 1− 𝑃!"# ∗ −10 !"#$%&) 
 27	
Where playBias is the play bias term, valExp is the value exponent, and Prew is the 28	
reward probability inferred from the optimal model. The model fit with the above fixed 29	
parameters (the base model) was then compared to models that contained additional 30	
parameters that may affect trial-to-trial modulation of learning rate, including surprise, 31	
uncertainty, learning rate computed from the optimal Bayesian model, and subject 32	
choice behavior (play versus pass). In particular, learning rates were controlled through 33	
a logistic function of a weighted predictor matrix that included an intercept term as well 34	
as additional terms to capture the degree to which learning changed according to other 35	
factors. Maximum likelihood weights for each predictor in the matrix (as listed above) 36	
were estimated using gradient decent (fmincon in matlab) simultaneous with estimating 37	
the decision related parameters described above. The best fitting model was 38	
determined by computing the Bayesian information criterion (BIC) for each model, then 39	
comparing these values to that of the base model 57. Weak priors favoring normative 40	
learning parameters were used to regularize parameter estimates for parameter 41	
estimation but not model selection. 42	
 43	
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To compare subject behavior to model-predicted behavior, we simulated choice 1	
behavior using the model with the lowest BIC, which incorporated surprise and 2	
uncertainty variables in determining learning rate (Fig 2b). On each trial, we used the 3	
expected trial value (V(t)) computed above, and the parameter estimates of the 4	
temperature variable as inputs to a softmax function to generate choices.  5	
 6	
 7	
 8	
Hierarchical regression model 9	
 10	
Subject memory scores were modeled using a hierarchical mixture model that assumed 11	
that the memory score reported for each item and subject would reflect a linear 12	
combination of subject level predictors and item level memorability (Figure 6A). The 13	
hierarchical model was specified in STAN (http://mc-stan.org) using the matlabSTAN 14	
interface (http://mc-stan.org) 58. In short, memory scores on each trial were assumed to 15	
be normally distributed with a variance that was fixed across all trials for a given subject. 16	
The mean of the memory score distribution on a given trial depended on 1) a trial-to-trial 17	
task predictors that were weighted according to coefficients estimated at the subject 18	
level and 2) item-to-item predictors that were weighted by coefficients estimated across 19	
all subjects. Subject coefficients for each trial-to-trial task predictor were assumed to be 20	
drawn from a group distribution with a mean and variance offset by a delay variable, 21	
which allowed the model to capture differences in coefficient values for the two different 22	
delay conditions. All model coefficients were assumed to be drawn from prior 23	
distributions and for all coefficients other than the intercept (which captured overall 24	
memory scores) prior distributions were centered on zero. The code used to specify the 25	
hierarchical model is included as supplementary code.     26	
 27	
 28	
 29	
Experiment 2 30	
 31	
Experimental procedure 32	
 33	
In experiment 2, the learning task was modified to dissociate reward rate from reward 34	
prediction error. The reward probability of the two image categories (living vs. nonliving) 35	
were independent and set to either 0.8 or 0.2, allowing for a 2x2 design (0.8/0.8, 0.8/0.2, 36	
0.2/0.8, 0.2/0.2; Figure 7a). Change-points occurred with a probability 0.05 on every trial 37	
for the two categories independently. Change points did not occur for the first 20 trials of 38	
the task and the first 20 trials following a change point. Tasks were generated to contain 39	
at least one block of each trial type in the 2x2 design. Each subject completed a unique 40	
task with pseudorandomized order of images that followed these constraints. The task 41	
instructions explicitly stated that the two image categories had independent reward 42	
probabilities that need to be tracked separately. The rest of the task, including the 43	
recognition memory portion, was identical to that of Experiment 1. 44	
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 1	
Subjects 2	
A total of 279 subjects (157, no delay condition; 122, 24hr-delay condition) completed 3	
the task via Amazon Mechanical Turk. 105 subjects (64, no delay; 41, 24hr-delay) were 4	
excluded from analysis because they previously completed a prior version of the task or 5	
didn’t meet our criteria of above-chance performance in the learning task. Therefore, the 6	
final sample had a total of 174 subjects (93, no delay, 81, 24hr-delay; 101 males, 71 7	
females, 2 no response) with the age of 34.0 ± 9.1 (mean ± SD). Informed consent was 8	
obtained in a manner approved by the Brown University Institutional Review Board. 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
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Supplementary figures: 10	
 11	

 12	
Supplementary figure 1 Replication of main effects after omitting all trials in which subsequent memory 13	
had low confidence (“guess”). To rule out the possibility that low confidence trials are driving our results or 14	
adding unnecessary noise, we repeated the main findings of the study after omitting all trials in which the 15	
confidence score was 1 (both target and foil). (a) The ROC curves for play/pass trials. (b) Area under the 16	
ROC curve was greater for play versus pass (t(198) = 2.78, p = 0.0060; group difference, t(197) = -0.083, 17	
p = 0.93). (c) Mean pairwise difference in memory score between the “old” images and their semantically-18	
matched foil images was greater for play versus pass (t(197) = 3.49, p < 0.001; group difference, t(196) = 19	
0.89, p = 0.37). (d,e) Positive relationship between imRPE and subsequent memory (t(198)=2.48, 20	
p=0.014; group difference, t(197)=-0.33, p=0.74). (f,g) Positive relationship between reward probability 21	
and subsequent memory (t(198)=2.99, p=0.0031, group difference, t(197)=0.078, p=0.94). (h,i) No 22	
relation between reward value and subsequent memory (t(198)=-1.74, p=0.084, group difference, 23	
t(197)=0.82, p=0.41).  24	
 25	
 26	
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 1	
 2	

 3	
Supplementary figure 2: Hierarchical regression estimating memory scores for foil items. Posterior 4	
probability densities for mean predictor coefficients (μx; top row) and delay condition parameter difference 5	
(Dx; bottom row) estimated through MCMC sampling over the graphical model described in figure 6A 6	
informed by data for foil items semantically matched to the images presented in the decision making task. 7	
Unlike fits to the target items (Figure 6B), coefficients for task predictors related to reward probability and 8	
play/pass did not deviate appreciably from zero. However, delay condition difference coefficients were 9	
positive for the intercept term, indicating that subjects in the 24 hour delay condition tended to report 10	
higher memory scores for foils, consistent with the poorer discriminability in the 24 hour delay condition 11	
(see figure 3C).  12	
 13	
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 1	
Supplementary figure 3 Subject learning rates differed across choice conditions but this difference did 2	
not predict the strength of choice effects on subsequent memory.  a: Parameter estimates quantifying the 3	
degree to which learning rate is modulated by subject play/pass decisions in the choice model (positive 4	
values indicate more learning on after play decisions) for all subjects in experiment 1 (gray points) and the 5	
mean/SEM values across subjects (bar/error line; mean parameter estimate = 0.42, t = 7.18, p < 0.001).  6	
b: The degree to which subjects (black points) adjusted learning rate according to play/pass behavior 7	
(abscissa) showed no association with the degree to which they enhanced memory of items presented on 8	
play trials (ordinate; spearman rho = 0.045, p = 0.53).  9	
 10	
 11	
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1	
Supplementary figure 4 Coefficient estimates for hierarchical model fit to all subjects across both 2	
experiments.  Top: Posterior probability density over mean coefficient estimates at the population level for 3	
each parameter in the hierarchical model fit to subject memory scores. Leftmost column reflects the 4	
intercept indicating overall memory scores for old items, whereas all other columns reflect the degree to 5	
which learning task-related factors affected subsequent memory. The model included two separate terms 6	
to model the probability associated with the shown image category (“cat prob(play)”; third column) and the 7	
probability associated with the non-displayed image category (“non-cat prob(play”; fourth column) despite 8	
the fact that these two terms were perfectly anti-correlated for all participants who completed experiment 9	
1. Middle: Posterior probability density over delay difference estimates for each parameter in the 10	
hierarchical model. Bottom: Posterior probability density over experiment difference estimates quantifying 11	
the difference in coefficient values across the two experiments for each parameter in the hierarchical 12	
model.  13	
 14	
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4/15/18 4:05 PM /.../hierarchicalModSpecForPub.m 1 of 2

 
%% Specify hierarchical model:
mem_code = {
    ’data {’
    ’    int<lower=0> S; ’    % Number of subjects
    ’    int<lower=0> TPS; ’  % trials per subject
    ’    int<lower=0> N; ’    % Number of trials
    ’    int<lower=0> Ps; ’   % number of predictors
    ’    int<lower=0> Is; ’   % number of items/foils
    ’    vector[TPS] memScore[S]; // memory score 1−8 ’ % single array of 
vectors
    ’    matrix[N,Ps] predMat; // predictor matrix ’    % predictor matrix
    ’    matrix[N,Is] itemPredMat; // item predictor matrix ’ % predictor 
matrix
    ’    int delay[S];’
    ’}’
    ’transformed data {’ % ok, wouldn’t have thought this necessary, send 
data in two dimensions and convert to 3...
    ’matrix[TPS,Ps] predMatSub[S];’
    ’matrix[TPS,Is] itemPredMatSub[S];’
    ’    for (t in 1:TPS) {’  
    ’        for (s in 1:S) {’
    ’            for (p in 1:Ps) {’
    ’               predMatSub[s, t, p]<−predMat[(s−1)*TPS+t, p];’
                 ’}’
    ’            for (i in 1:Is) {’
    ’               itemPredMatSub[s, t,i]<−itemPredMat[(s−1)*TPS+t, i];’
                 ’}’
             ’}’
         ’}’
    ’}’
    ’parameters {’    % OK, we need mean and variance of coefficients
    ’    vector[Ps] group_beta_mu; ’    
    ’    vector[Ps] delayBetaOffset; ’  % how much does group beta get 
pushed around by delay condition?
    ’    vector <lower=0> [Ps]  group_beta_sigma; ’
    ’    vector[Ps] sub_betas[S]; ’
    ’    real <lower=0> item_sigma;’
    ’    real <lower=0> group_gammaScale;’
    ’    real <lower=0> group_gammaShape;’
    ’    real <lower=0> sub_sigmas[S]; ’
    ’    vector[Is] itemBs; ’
    ’}’
    ’transformed parameters {’ 
    ’    real <lower=0> sub_sigmaSquared[S]; ’
        ’for (s in 1:S) {’
             ’sub_sigmaSquared[s]<−pow(sub_sigmas[s],2);’
        ’}’
    ’}’
    ’model {’    
    ’    group_beta_mu[1] ~ normal(4.5, 2);’      % Group mean for intercept 
term −− somewhere around avg memory score
    ’    group_beta_sigma[1] ~ gamma(1, 1);’      % Group sigma for 
intercept term 
    ’       delayBetaOffset[1] ~ cauchy(0, 1);’   % relatively stiff prior 
over the conditional difference. 
    ’    group_gammaScale ~ cauchy(0,3);’         % gamma distribution over 
subject variance gamma distribution (Scale parameter)
    ’    group_gammaShape ~ cauchy(0,3);’         % gamma distribution over 
subject variance gamma distribution (Shape parameter)
    ’    item_sigma ~ cauchy(0,1);’               % prior over variance 
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 1	
Supplementary code: Hierarchical regression model for experiment 1 spefified in matlabStan. All code 2	
and data will be available by the authors upon request.  3	
 4	
 5	
 6	
 7	
 8	
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