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Summary  
During speech perception, a central task of the auditory cortex is to analyze complex acoustic 

patterns to allow detection of the words that encode a linguistic message. It is generally 

thought that this process includes at least one intermediate, phonetic, level of representations 

[1–6], localized bilaterally in the superior temporal lobe [7–10]. Phonetic representations re-

flect a transition from acoustic to linguistic information, classifying acoustic patterns into lin-

guistically meaningful units, which can serve as input to mechanisms that access abstract word 

representations [11–13]. While recent research has identified neural signals arising from suc-

cessful recognition of individual words in continuous speech [14–17], no explicit neurophysio-

logical signal has been found demonstrating the transition from acoustic/phonetic to symbolic, 

lexical representations. Here we report a response reflecting the incremental integration of 

phonetic information for word identification, dominantly localized to the left temporal lobe. 

The short response latency, approximately 110 ms relative to phoneme onset, suggests that 

phonetic information is used for lexical processing as soon as it becomes available. Responses 

also tracked word boundaries, confirming previous reports of immediate lexical segmentation 

[18,19]. These new results were further investigated using a cocktail-party paradigm [20,21] in 
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which participants listened to a mix of two talkers, attending to one and ignoring the other. 

Analysis indicates neural lexical processing of only the attended, but not the unattended, 

speech stream. Thus, while responses to acoustic features reflect attention through selective 

amplification of attended speech, responses consistent with a lexical processing model reveal 

categorically selective processing. 

Results and discussion 
Magnetoencephalography (MEG) responses to continuous, narrative speech were analyzed 

with a framework designed to measure acoustic and lexical processing simultaneously. Source-

localized brain responses were modeled as a linear filter response to multiple predictor varia-

bles that reflect acoustic and lexical properties of continuous speech (see Figure 1). Each 

source’s response time-course was modeled as a sum of responses to all predictors, such that 

all predictors competed for explaining variance in the response [15].  

Acoustic properties were modeled through the envelopes of an 8 band auditory spectro-

gram, and their half wave rectified derivatives, to model both continuously varying ACOUSTIC 

ENVELOPE ENERGY and ACOUSTIC ONSETS [22].  

A binary PHONEME ONSET variable was included to model responses to phonemes in general. 

Further variables with impulses of variable size at phoneme locations were used to model the 

modulation of phoneme responses due to lexical processing. All variables were based on the 

premise, widely supported by behavioral experiments, that phonetic information is used to in-

crementally constrain possibilities for the word that is currently being processed (e.g., 

[13,23,24]); this entails initial activation of multiple candidate lexical items, which are subse-

quently discarded when they become incompatible with the input. For example, after hearing 

the phoneme sequence /noI/, both noble and notable might be activated as potential candi-

dates, but once the next phoneme /b/ becomes available (generating the prefix /noIb/), nota-

ble would be discarded as a possibility. This model suggests that at the occurrence of each pho-

neme in a word, there is a cohort of lexical items compatible with the current prefix. By using 

the word’s frequency in a large speech corpus [25] as proxy for its prior probability, a condi-

tional probability distribution for the next phoneme can be computed at each stage in a word. 

The statistical variable PHONEME SURPRISAL associated with this probability distribution is a 

measure for how unexpected each phoneme is, based on the actual occurrence of the preced-

ing phonemes, i.e., how much new, unexpected information it provides. COHORT ENTROPY is de-

fined as the Shannon entropy [26] over all lexical items compatible with the input at the given 

point in the word. Both phoneme surprisal and cohort entropy have previously been shown to 

be associated with reaction times [27,28] and MEG responses [29–32] to isolated spoken 

words. Related measures of COHORT SIZE and COHORT REDUCTION were also included in the 

framework because they are correlated with surprisal and entropy (see Table S1 and S2), but 

may be associated with different cognitive mechanisms. WORD ONSETS, i.e. word-initial pho-

nemes, were modeled separately from subsequent phonemes (black and blue in Figure 1), to 

account for the possibility that word onsets might involve different or additional processes, 

e.g., activation of an initial cohort as opposed to modification of an existing cohort (see also 

[32,33]). 
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Responses to single speaker  

MEG recordings from participants listening to a single talker were used to determine which var-

iables were significant predictors of brain responses. Taken together, the 8 lexical processing 

variables significantly improved model predictions (p < .001). Because these variables are not 

independent (see Table S1 and S2), a first step consisted of reducing the initial set of variables 

to a set in which each variable explained a distinct proportion of the variance in the data. To 

this end, the significance of each lexical variable was evaluated, and the model was reduced by 

sequentially excluding non-significant predictors until only significant variables remained (cf. 

e.g. [27]). The model resulting from this procedure, henceforth called the baseline model, is 

shown in Figure 2; Figure 2 also shows results for non-lexical predictors in the baseline model. 

The left half of the figure shows anatomical plots, indicating where the predictor significantly 

improved predictions. Significance was assessed by comparing the predictive power of the 

baseline model to a model in which the predictor under investigation was shuffled in a way 

consistent with the appropriate null hypothesis. The right half of Figure 2 shows the filter ker-

nels estimated for the baseline model, the so-called temporal response functions (TRFs). TRFs 

reflect the estimated response to an elementary temporal feature in the stimulus [34,35,15], 

and are thus a continuous analogue of evoked responses related to temporally distinct events. 

These responses were all estimated concurrently for the baseline model, i.e. they reflect each 

predictor’s contribution to the predictions of the model. 

The baseline model revealed significant left-lateralized contributions from both phoneme 

surprisal (p = .037, left > right p = .013) and cohort entropy (p < .001, left > right p = .028). The 

effect of surprisal was localized to core auditory cortex and nearby, whereas the effect of co-

hort entropy spread into more anterior and ventral regions, across the superior temporal sul-

cus, suggesting that the two variables reflect two different stages of speech processing. Con-

sistent with this, the effect of surprisal peaked slightly earlier, at approximately 100-110 ms, 

whereas the effect of cohort entropy peaked at approximately 120-130 ms. This distinction is 

also consistent with the information that the two variables encode: Surprisal is a more local 

measure of phoneme prediction error [29], reflecting the frequency distribution of possible 

phoneme sequences up to the current phoneme. Cohort entropy on the other hand incorpo-

rates information about the frequency distribution over the cohort of lexical items that consti-

tute possible continuations, possibly reflecting lexical competition [29,36]. More broadly, such 

activation of form and lexical item information in the superior and middle temporal lobe is con-

sistent with reports of hemodynamic activity in this region [37–39], for example, effects of 

speech intelligibility [40] and generalization across different acoustic realizations of the same 

sentence [41]. Our results suggest that by 110 ms, acoustic information is used to update pho-

netic expectations held in the STG, and by 130 ms this update is used to constrain the activated 

cohort of lexical items. While the earliness of these effects might be surprising, evidence from 

gating studies suggests that 50-100 ms of input is sufficient to correctly identify the initial pho-

neme of a word [42], and it is plausible that the cortex uses this information as soon as it be-

comes available. Furthermore, these latencies are calculated from phoneme onset, without ad-

ditional consideration of coarticulation cues. Since lexical processing is sensitive to 

coarticulation cues [5,43,44], information about phoneme identity may benefit from priming 

prior to the nominal phoneme onset.  
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None of the cohort-based predictors for word-initial phonemes remained in the model, 

suggesting that responses to initial phonemes could not be modeled by lexical distributions.  

On the other hand, the effect of word-onset alone was highly significant (p < .001). Despite 

a numerically larger effect in the left hemisphere, lateralization was not significant (p = .087). 

Localization and TRF peak latency of this model variable were very similar to those of phoneme 

surprisal, suggesting that the two responses might be related to a shared mechanism. Indeed, 

word onset should be associated with disproportionately large surprisal, with little or no pre-

ceding phonetic information to constrain the cohort. A detailed examination of the TRFs sug-

gests, however, that this explanation may not hold: the word onset TRF peak at 110 ms has the 

opposite polarity (i.e., current direction) from the corresponding peak in the surprisal TRF. One 

explanation consistent with this reversal in current direction arises from cohort theory, in which 

lexical candidates are activated at word onset, and then subsequently deactivated when a pho-

neme adds contradictory information [23]. In particular, when surprisal is high, candidates that 

were highly activated can be deactivated; when surprisal is low, expectations are confirmed and 

less change in activation levels is expected. A more general implication of this response is that 

word boundaries should be perceptually salient, despite the observation that clear cues for 

word boundaries are generally missing from speech waveforms [e.g. 45]. A similar word-onset 

electroencephalographic (EEG) response [19]  emerged only after listeners learned to segment 

an artificial language into words [18], suggesting that it is not a response to local acoustic prop-

erties alone. A response tightly locked to word onset suggests that whichever cues listeners use 

to detect word boundaries [46–48], boundaries seem to be generally detected as they occur, 

rather than after incorporating cues occurring subsequent to word onset.  

Both sets of acoustic predictors, envelopes and onsets, were associated with strong bilat-

eral effects (both p < .001). Both were localized close to core auditory cortex, with acoustic on-

sets somewhat more predictive in the right hemisphere (lateralization p = .035). Significant ef-

fects extended over much of the temporal lobe, though the extended area could be due to spa-

tial dispersion of MEG source estimates rather than genuine responses outside of core auditory 

regions [15]. Overall, the acoustic onset responses generate larger predictive power than the 

envelope responses, and thus may have absorbed some of the variance usually attributed to 

acoustic envelope representations when onsets are not considered [35,49]. TRFs to both sets of 

predictors exhibit two main peaks, consistent with earlier results [15,35,50]. Acoustic envelope 

energy was associated with peaks around 30 and 110 ms, of approximately opposite current 

direction. The latency of the pair of analogous peaks to the acoustic onsets is delayed, as ex-

pected due to the relationship between the two variables: The derivative operation shifts peaks 

in the acoustic energy towards earlier time points (the time of maximum rising slope precedes 

the time of maximum amplitude), thus increasing the distance between peaks in the predictor 

variable and specific time points in the neural response. The presence of analogous peaks in the 

TRFs to both acoustic representations might indicate that they jointly arise from a single, more 

complex underlying neural response type, reflecting both onset and continuous acoustic prop-

erties [51,52]. On the other hand, spatially, the effect of acoustic onsets localized posterior to 

acoustic envelope energy, which might instead indicate that the two responses stem from dis-

tinct neural populations that do not overlap completely. 
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The model also showed indications of a small effect of cohort-reduction (p = .016), localized 

to the planum temporale, although the TRFs barely reached significance. 

Responses to two concurrent speakers 

A reduced framework, consisting of the significant predictors for responses to a single speaker, 

was then used to model acoustic and lexical processing in a version of the cocktail-party para-

digm [20,21]. Participants listened to a single-channel acoustic mixture of a male and a female 

speaker, attending to one and ignoring the other. This made it possible to specifically test 

whether the lexical processing observed for a single speaker is restricted to the attended 

speech stream, or whether it occurs for both attended and unattended streams. Figure 3 shows 

the predictive power of groups of predictors modeling relevant processing stages, and TRFs for 

the full model fitted to the two-speaker data. 

Responses were significantly modulated by acoustic features of both the attended and the 

unattended speaker (both p < .001; lateralization p = .031 and .002). The relative amplitudes of 

the TRF peaks to acoustic onsets were consistent with previous results [35,50,53], with an earli-

er (~ 70 ms) peak predominantly reflecting the raw acoustic mixture (without selective en-

hancement of either speaker), and a later (~ 150 ms) peak predominantly reflecting acoustic 

energy in the attended speech. The TRFs to acoustic envelope energy almost exclusively re-

flected processing of the acoustic mixture, suggesting that auditory stream segregation may be 

predominantly reflected in onset processing. 

In contrast to the acoustic models, only the lexical processing model for the attended 

speech showed significant effects (p < .001); lexical properties of the unattended stream did not 

(p = .275), and the effect of lexical processing of the attended speech was significantly greater 

than for unattended speech (p < .001). TRFs also supported this conclusion, with significant re-

sponse to word onset and cohort entropy in the attended speech only. These responses were 

very similar to the corresponding single speaker responses, although with reduced amplitude, 

and an additional delay of ~ 10 ms. 

This finding suggests that well-known interference effects from meaningful content of unat-

tended speech [20,54–56] do not arise from lexical processing of the unattended stream. While 

recent research suggests that processing of information contingent on successful word recogni-

tion is suppressed for unattended speech [14,16], these findings left open the possibility that 

unattended speech is processed up to and including identification of lexical items, but without 

retrieval of the recognized words’ properties. The results of the present investigation indicate 

that lexical processing of unattended speech is suppressed at the level of detecting word forms.  

The absence of lexical responses to unattended speech raises the possibility that lexical 

processing constitutes a bottleneck in speech perception. Lexical perception is thought to be 

massively parallel by involving activation of multiple candidate lexical representations through 

the cohort [11]. The mechanisms implementing this multiple activation might involve mental 

resources that cannot be shared across multiple parallel instances of the same process, making 

it impossible for more than one cohort to be represented at the same time.  

In sum, MEG responses to continuous speech reflect a transformation of the speech signal 

from acoustic representations, which can be characterized with spectro-temporal receptive 

fields, to probabilistically driven activation of lexical units. Phonetic cues are rapidly analyzed 
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for their relevance to word perception, updating a lexical processor in the left temporal lobe 

within ~ 130 ms. In the presence of two competing speakers, this transformation is restricted to 

the attended speech stream. While the analysis presented here is naturally limited to a specific 

kind of listening condition, and adults with normal hearing, the framework introduced here 

lends itself to studying the influence of different conditions and individual differences on 

speech processing. 
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Figures 

 
Figure 1. Analysis framework, illustrated with an excerpt from one of the stimuli. The acoustic 

waveform (top row) is shown for reference only. Subsequent rows show the predictor variables 

used to model responses to a single speaker. Acoustic predictors were based on an auditory 

spectrogram aggregated into 8 frequency bands. For the phoneme-based predictor variables, 

the initial phoneme of each word is drawn in black, whereas all subsequent phonemes are 

drawn in blue. The last row contains estimated brain responses from three virtual current di-

poles, representative of the modeled signal. The anatomical plot of the cortex is shaded to indi-

cate the temporal lobe, the anatomical region of interest (only the left hemisphere is shown, but 

both hemispheres were analyzed). 
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Figure 2. Brain responses to single speaker. Left column: significant predictive power (p ≤ .05 

corrected). Colors reflect the difference in z-scored correlation between the full and the appro-

priately shuffled model. Color-maps are normalized for each predictor to maximize visibility of 

internal structure, as appropriate for evaluating source localization results: due to spatial dis-

persion of minimum norm source estimates, effect peaks are relatively accurate estimates, but 

strong effects can cause spurious spread whose amplitude decreases with distance from the 

peak. Right column: Temporal response functions (TRFs) estimated for the baseline model. Each 

line reflects the TRF at one virtual current dipole, with color coding its location by hemisphere, 

and saturation coding significance (p ≤ .05 corrected). Anatomical plots display TRFs at certain 

time points of interest (only significant values are shown), with color coding current direction 

relative to the cortical surface. Acoustic TRFs were averaged across frequency band for display 

as visual inspection revealed no major differences apart from amplitude differences between 

frequency bands. Effect peak locations are listed in Table S3. 
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Figure 3. Brain responses to two concurrent speakers. Details analogous to Figure 2. The three 

columns display results for the model components for: the attended speech stream (left), the 

actual acoustic stimulus mixture (middle), and the unattended speech stream (right). The upper 

part of the figure displays results for acoustic features, the lower part for lexical processing. 
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Methods 

Participants 

MEG data were recorded from 28 native speakers of English, recruited by media advertise-

ments from the Baltimore area as control group for another study. Participants with medical, 

psychiatric or neurological illnesses, head injury, and substance dependence or abuse were ex-

cluded. All subjects signed informed consents and were paid for their participation. Data from 

two participants were excluded, one due to corrupted localizer measurements, and one due to 

excessive magnetic artifacts associated with dental work. The sample analyzed was composed 

of 18 male and 8 female participants with mean age 45.2 (range 22 - 61). All subject provided 

informed consent in accordance with the University of Maryland Baltimore Internal Review 

Board. 

Three participants were left handers. Excluding them from analysis did not change the major 

results, but some individual effects changed significance. For responses to a single speaker, the 

effect of cohort reduction lost significance (p = .091), and, after dropping this variable from the 

model, the effect of bare phoneme onset became significant (p < .001, right > left p = .018). In 

the two-speaker model, now fitted without cohort reduction, the lateralization of the acoustic 

and lexical model for the attended speaker lost significance (p = .082 and p = .106). 

Method details 

Stimuli 
One minute long segments were extracted from audiobook recordings of A Child’s History of 

England by Charles Dickens, one chapter read by a male and one by a female speaker 

(https://librivox.org/a-childs-history-of-england-by-charles-dickens/, chapters 3 and 8). Pauses 

longer than 300 ms were shortened to an interval randomly chosen between 250 and 300 ms, 

and loudness was matched perceptually. Cocktail party stimuli were generated by additively 

combining two segments, one form each speaker.  

Four segments were extracted for each speaker: male-1 through 4 and female-1 through 4; 

mix-1 through 4 were constructed by mixing male-1 and female-1, and so forth. Participants 

listened four times to mix-1, while attending to one speaker and ignoring the other (which 

speaker they attended to was counterbalanced across subject), then 4 times to mix-2 while at-

tending to the other speaker. Then, the four segments just heard were all presented once indi-

vidually. The same procedure was repeated for stimulus segments 3 and 4. After each mix seg-

ment, participants answered a question relating to the content of the attended stimulus.  

Participants lay supine and were instructed to keep their eyes closed during stimulus 

presentation (to minimize ocular artifacts and head movement). Stimuli were delivered through 

foam pad earphones inserted into the ear canal.  

MEG data acquisition and preprocessing 
Continuous MEG data were acquired with the 157 axial gradiometer whole head MEG system 

(KIT, Kanazawa, Japan) inside a magnetically-shielded room (Vacuumschmelze GmbH & Co. KG, 

Hanau, Germany) at the University of Maryland, College Park. Sensors (15.5 mm diameter) are 

uniformly distributed inside a liquid-He Dewar, spaced ~ 25 mm apart, and configured as first-
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order axial gradiometers with 50 mm separation and sensitivity > 5 fT·Hz
-1/2

 in the white noise 

region (> 1 KHz). Data were recorded with an online 200 Hz low-pass filter and a 60 Hz notch 

filter at a sampling rate of 1 kHz.  

Recordings were pre-processed using mne-python [57,58]. Flat channel responses were au-

tomatically detected and excluded. Extraneous artifacts were removed with temporal signal 

space separation [59]. Data were filtered between 1 and 40 Hz with a zero-phase FIR filter 

(mne-python 0.15 default settings). Responses time-locked to the onset of the speech stimuli 

were extracted and downsampled to 100 Hz.  

Source localization 
Before the MEG recording, each participant’s head shape was digitized (Polhemus 3SPACE 

FASTRAK) and five marker coils were attached to their head. The marker coils were localized 

with respect to the MEG sensors at the beginning and at the end of the recording session, and 

these position measurements were used to determine the head position relative to the MEG 

sensors. The digitized head shape was used to coregister the FreeSurfer [60] “fsaverage” tem-

plate brain to each subject’s head shape using rotation, translation and uniform scaling. 

A source space was defined using four-fold icosahedral subdivision on the white matter sur-

face of the fsaverage brain, with all source dipoles oriented perpendicularly to the cortical sur-

face. Based on this source space, ℓ2 minimum norm current estimates [61,62] were computed 

for all data using depth weighting parameter of 0.8 [63]. Analysis was restricted to the temporal 

lobe of both hemispheres, based on anatomical labels in the “aparc” parcellation [64]. 

Quantification and statistical analysis 

Predictor variables 
Predictor variables were generated as uniform time series with a sampling rate of 100 Hz to 

match the processed MEG data. Figure 1 illustrates the predictor variables, aligned with an ex-

cerpt from one of the stimuli. 

Responses to the acoustic features of the speech signal were modeled using a model of 

acoustic transformations in the brain stem, the so called auditory spectrogram [65]. The audito-

ry spectrogram was computed using the NSL Toolbox 

(http://www.isr.umd.edu/Labs/NSL/Software.htm) and shifted by -20 ms in order to compen-

sate for the intrinsic delay introduced by this transformation. A predictor reflecting moment by 

moment ACOUSTIC ENVELOPE POWER was generated by summing the auditory spectrogram in 8 

logarithmically spaced frequency bands. Because brain responses are known to be sensitive to 

contrast and changes, and phonetic information is often specifically located in acoustic onsets 

[22], it was important to control for responses to such acoustic onsets in the acoustic signals. 

For this reason, an ACOUSTIC ONSET predictor was constructed from the half-wave rectified de-

rivative of the acoustic envelope predictor. 

All phoneme-based predictors were modeled as impulses at phoneme onset (see Figure 1). 

Phoneme onsets in the stimuli were automatically determined by the Gentle forced aligner 

(https://lowerquality.com/gentle/) and then adjusted by hand where appropriate. A phonetic 

lexicon with lexical statistics was generated by combining pronunciations from the CMU Pro-

nouncing Dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) and word frequency sta-
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tistics from the SUBTLEX subtitle database [25]. Stress information was stripped from all pho-

nemes. Missing pronunciations were manually added, and words occurring in the stimuli but 

missing from SUBTLEX were assigned a frequency count of 1. 

The cohort refers to the set of words compatible with the acoustic input at any point during 

a word [11]. For each phoneme, the cohort was determined by selecting from the phonetic lexi-

con those entries that started with the phoneme sequence from the beginning of the word to 

the current phoneme. The COHORT SIZE variable was the log of the size of the cohort at each 

phoneme. The COHORT REDUCTION variable was the log of the number of words at the current 

phoneme minus the number of words at the previous phoneme or, for the initial phoneme, mi-

nus the number of words in the whole lexicon. While these two variables are not as widely used 

as surprisal and entropy (see below), they are potentially more fundamental variables that 

should be controlled for before drawing conclusions about surprisal and entropy. 

While cohort size variables depend only on number of words, the frequency of individual 

words is known to affect lexical processing [13,66]. This is taken into account by the measures 

of phoneme surprisal and entropy. PHONEME SURPRISAL is defined as the inverse of the condi-

tional probability of each phoneme, given the preceding phonemes in the current word: 

���������� 	 
�����������������/���������������� 

Where cohorti is the cohort at phoneme with position i, and freq(c) is the summed frequency of 

all words in cohort c. COHORT ENTROPY is defined as the entropy [26] of the cohort at each pho-

neme. Entropy at phoneme i is given by: 

�� 	 
 � ����� log�����
	�
����

����

 

Where pword is the probability of the given word form, here modeled as the relative frequency. 

To account for the possibility that the initial phoneme of each word is processed differently 

from the subsequent phonemes (see e.g. [11]), we modeled the initial phoneme of each word 

separately from the subsequent phonemes for each variable (indicated by a different color of 

the word-initial phonemes in Figure 1). 

Model estimation 
For each subject, the localized current at each potential neural source dipole was modeled as a 

sum of linear convolutions of the stimulus variables with a filter of 500 ms duration. Optimal 

filters were estimated for all predictor variables concurrently with a coordinate descent algo-

rithm [15,67] minimizing the ℓ1 error between predicted and actual current time course. Filters 

were generated from a basis of 50 ms Hamming windows, centered at each time point in the 

kernel. This smoothness constraint on the filters was imposed to improve the reliability of pre-

dictions, compensating for the temporal sparseness of the impulse representation of pho-

nemes. Algorithms used for model estimation and statistical analysis are publicly available in 

the Eelbrain open source Python package [68] (https://github.com/christianbrodbeck/Eelbrain). 

Statistical analysis 
Model fit was estimated using the z-transformed Pearson correlation between estimated and 

measured responses. Model fit z-maps were smoothed with a Gaussian kernel (STD = 5 mm) to 

account for granularity caused by local variation in source dipole orientation. To compare the fit 
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of two models, a t-map was computed by applying a related measures t-test at each source di-

pole. The resulting map was processed with threshold-free cluster enhancement (TFCE) [69], 

and a distribution of the largest expected TFCE value per t-map under the null-hypothesis was 

computed with 10,000 permutations, randomly switching condition labels within subject 

[69,70]. A p-value for each dipole was computed by locating the original TFCE-value on the 

permutation distribution.  

To test for significant contributions of a given predictor, the predictive power of the full 

model was compared to an alternative model, which was identical except for the predictor un-

der investigation, which was shuffled in a way appropriate for the hypothesis being tested. A 

predictor was considered significant if it significantly improved model fit across participants. 

This procedure allowed testing for incremental model improvement due to a specific predictor, 

without introducing bias by changing the degrees of freedom. Under the null hypothesis that 

there is no significant association between the given predictor and the responses, a shuffled 

version of the predictor should be equally effective as the properly aligned version. A difference 

in model fit between the full and the shuffled model thus indicates a significant temporally spe-

cific relationship between predictor and responses. Table S3 lists for each significant effect the 

anatomical location of maximum model fit improvement. 

Tests of hemispheric asymmetry were performed by comparing the model fit improvement 

between the two hemispheres. First, a difference map was computed by subtracting from the z-

values of the full model those from the shuffled model. The resulting difference maps from 

both hemispheres were mapped to the left hemisphere of the “fsaverage_sym” brain [15,71], 

masked by the region of significant model improvement in at least one hemisphere, and com-

pared with a two-tailed t-test while controlling for multiple comparisons with TFCE as described 

above. 

Temporal response functions, i.e. the kernels of the optimal filters determined through 

boosting, were analyzed similarly, but including the additional dimension of time. A spatio-

temporal t-map was computed for a one-sample t-test against 0. This map was again processed 

with TFCE and a two-tailed distribution for the maximum TFCE value was computed based on 

10.000 permutations. For graphical display only, time series were upsampled to 500 Hz to min-

imize visual discretization artifacts. 

Single speaker analysis 

Responses to a single speaker were used to determine variables that reflect lexical processing 

of phonetic information. To test for an effect of lexical variables without inflated type I error 

due to multiple comparisons, an initial test was performed against a shuffled model in which all 

8 lexical variables were shuffled together. Subsequently, the set of lexical variables was reduced 

to a set in which each variable explained a distinct proportion of the variance. To this end, the 

model was reduced one predictor at a time by removing the predictor whose model contribu-

tion was least significant, until only significant predictors were left (see e.g. reference [27] for a 

similar approach). Once only significant lexical predictors remained (henceforth called the re-

duced model), the other variables in the model were also evaluated for significance (shown in 

Figure 2). 
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The way in which variables were shuffled depended on the nature of the variable and the cor-

responding null hypothesis: Lexical variables were shuffled by randomly reordering the values 

(e.g. phoneme surprisal) while leaving the phoneme time locations constant. Acoustic predic-

tors were shuffled by swapping the first half (0-30 s) of each stimulus with the second half (30-

60 s). To test the effect of word onset, word onsets were randomly assigned to phoneme loca-

tions, while keeping all phoneme locations constant. To test for the effect of phoneme location 

above word onsets, the time-series representing subsequent phonemes (excluding word onset 

phonemes) was swapped in the same manner as the acoustic predictors. In each case, all re-

maining predictors were left unchanged in the control model. 

Two speaker analysis 
For modeling responses to stimuli with a mixture of two speakers, separate predictors were in-

cluded for the attended and the unattended speech stream, both based on the reduced single 

speaker model. In addition, acoustic predictors were generated for the acoustic mixture of the 

two speakers, i.e., for the raw acoustic stimulus that was actually presented to the participants. 

Models were assessed by grouping predictors modeling each process of interest. Since the 

acoustic mixture is closely approximated by a linear combination of attended and unattended 

signal (in all bands r > .95 for acoustic envelope energy and r > .88 for acoustic onsets), predic-

tive power of the mix could not be assessed independently. Instead, predictive power of the 

attended stimulus was assessed by shuffling both attended and mix acoustic predictors, and the 

unattended stimulus was assessed by shuffling both unattended and mix acoustic predictors. 

Nevertheless, acoustic TRFs could be analyzed for all three streams, since the coordinate de-

scent algorithm determines which predictor can reduce the error most efficiently, regardless of 

whether the same model fit could be achieved by a linear combination of other, less efficient 

predictors. Lexical processing was assessed separately for attended and unattended streams, by 

shuffling all the values among phoneme locations, but leaving phoneme locations themselves 

unchanged. Thus, the model comparison controlled for responses associated with all phonemes 

independent of lexical processing.  
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