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Abstract:11

Animals often assess each other by paying special attention to signals, which12

help to communicate the quality of each individual. When there is a conflict13

of interest between the signaler and the receiver, then the signaler has an14

incentive to cheat by producing signals which exaggerate its apparent quality.15

One opportunity for cheating might be to rely on sensory illusions, but it has16

been difficult to study sensory cheating because we have lacked quantitative17

models of complex visual perception. Here we address this problem by taking18

advantage of recent advances in modeling visual brain areas as convolutional19

neural networks. Given these models, we use the technique of adversarial20

perturbations to show how sensory cheating can shape animal appearance21

while nevertheless resulting in an evolutionarily stable signaling system. In22

our simulations, animals typically evolve exaggerated color patterns which23

might be analogous to the evolution of colorful body patterns in guppies.24

Introduction25

Convolutional neural networks (CNNs) have recently revolutionized the sci-26

entific understanding of image processing and perception [1]. CNNs now27

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2018. ; https://doi.org/10.1101/326652doi: bioRxiv preprint 

https://doi.org/10.1101/326652
http://creativecommons.org/licenses/by-nc-nd/4.0/


form the core component of most modern image recognition software and28

are routinely used as data analysis tools across many domains. Unlike many29

previous generations of machine learning models, CNNs are unique because30

they consist of neuron-like elements and they may thus be viewed as candi-31

date models for explaining the workings of biological visual systems as well.32

Quantitative comparisons between neural recordings and CNNs have indeed33

found a close resemblance between neural activity patterns inside CNNs and34

the mammalian visual cortex [2, 3].35

Improved quantitative models of visual perception may provide new ways36

to theoretically analyze previously intractable problems. Here we use CNN37

models to study the evolutionary stability of signaling in the presence of38

conflicts of interest [4]. Our focus will be on the paradigmatic example of39

aggressive signaling. During aggression, fighters display signals intended to40

induce their opponent to surrender without a fight [5]. Typically, the individ-41

ual who is of inferior fighting quality will be scared away by the higher quality42

individual because the higher quality individual can afford to produce more43

intense signals. Note that weak individuals theoretically have the option to44

cheat by somehow producing a more intense signal than the stronger oppo-45

nent. They are also motivated to do so because successful cheating would46

lead to easy access to mates and resources. The puzzle of signaling is to47

explain why cheating does not occur despite strong incentives to do so [4].48

Classical models emphasize that such cheating cannot evolve if more in-49

tense signals carry with them a greater cost of production, which only high50

quality individuals are able to bare [6]. This is the standard argument in-51

voked to explain phenomena like the large and uneconomical eyes of the52

stalk-eyed flies or the peacock’s conspicuous tails[7].53

However, the standard explanation can only be part of the answer, be-54

cause it does not examine stability against sensory cheating. Sensory cheat-55

ing entails a reshaping of the signal into a form which would make it appear56

more intense than it really is to the senses of the receiver. The animal would57

essentially use its own body as a canvas on which to craft a visual illusion.58

For example, a courting animal might modify its body pigmentation pattern59

to enhance its apparent height through the use of oriented vertical stripes [8]60

and subsequently reap the benefits of the illusion through enhanced mating61

success.62

Many animals harness visual illusions in various contexts like camouflage,63

escape and predator deterrence [9]. A paradigmatic case concerns animals64

that display large false eyes in order to appear more threatening to predators65

[10, 11]. Similar phenomena have been reported in the context of signaling66

as well. Bower birds, for example, are known to actively shape the visual67

environments of their mates to improve their own mating success [12, 13]. It68
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is therefore not inconceivable that in some species evolution might also shape69

body patterns so as to trick the sensory systems of the receivers.70

In order to quantitatively study the process of sensory cheating, we study71

a signaling contest where the variable being estimated is body size. We72

use body size as our variable because larger animals typically win aggressive73

signaling contests and many animals actively display during conflict to signal74

their size [5]. We train CNNs to estimate the sizes of model birds placed in75

natural images. We then let the body pattern of the birds evolve in order76

to fool the networks and we analyze the emergent dynamics to see if the77

signaling system remains reliable throughout the process [14].78

Results79

Our study considers aggressive contests, where two individuals meet, assess80

each other’s size and the smaller individual subsequently retreats. Under81

this scenario, any individual can improve its fitness if it can somehow modify82

its appearance to appear larger than it really is to the perceptual system of83

other animals.84

To analyze this scenario, we first require a model of the size estima-85

tion perceptual system. We therefore compiled a catalog of natural images86

wherein we placed birds of various sizes. Then we trained a CNN to estimate87

the size of the bird in each image. After that, we let the birds evolve their88

appearance in ways that fooled the networks’ perception.89

We began by compiling a catalog of 4000 100 by 100 colored natural90

images. The raw images were downloaded from the natural scene statistics91

database [15] and 100 by 100 patches were extracted from the first 10 images92

in the database. We created ten copies of each image and then we placed93

inside these images the image of a model bird (Figure 1 left panel). In94

order to model natural variability in bird appearance, the bird varied in95

height between 20 and 40 pixels, in rotation between -90 and 90 degrees and96

its location in the image was also sampled randomly. Further, a different97

sample of random noise was added to the body of the bird for each image98

and its intensity was also varied. We thus created a highly variable and99

non-trivially structured set of 40 000 images whose complexity was designed100

to mimic the complexity of the natural environment. Sample images of the101

resulting catalog can be seen in Figure 1 left panel.102

Next we trained a four-layered CNN to predict the size of the bird in103

each image (see Supplementary methods). Training the CNNs by gradient104

descent resulted in good predictive accuracy on both the training and the105

test set (Figure 1 right panels). The CNNs were thus able to solve the106
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task of separating the birds from the backgrounds and measuring the size of107

the bird while ignoring irrelevant features like variation in orientation and108

intensity.109

Figure 1: Training the network. Left panel: sample images from the
catalog (the center of each bird is marked with a red dot for ease of viewing,
the dots were not present in the images on which the CNN was trained). Top
right panel: learning curves for the training and test set (batch size was 128
images). Bottom right: correspondence between the ground truth and the
output of the trained network.

In order to model the evolution of body patterns, we adapted the tech-110

nique used to find adversarial examples in artificial neural networks [16].111

Briefly, we took three bird images of size 20, 30 and 40 pixels (small, medium,112

large) and for each image, we calculated the gradient of the output of the113

network with respect to each pixel of each image. This computation involved114

estimating the average gradient by taking a sample mean across many back-115

grounds, orientations and illumination levels (see Supplementary meth-116

ods). Then we performed gradient ascent to make the birds appear progres-117

sively larger over each iteration. The evolution of the largest bird’s appear-118

ance can be seen in Figure 2 on the left and the evolution of apparent size119

is depicted in Figure 2 right panel.120

The birds increase in size by accentuating their edges and decreasing the121

intensity of the center. They also evolve towards displaying unusual color122

patterns which are not encountered in the training set. It is noted that123

though the small, medium and large birds all considerably increase in appar-124

ent size, the relative ranking of the sizes of the three birds remains stable125
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throughout evolution and signaling thus remains reliable [14]. Reliability may126

be conserved because larger individuals are able to cheat more than smaller127

individuals, because they have more body pixels which they can manipulate.128

This may help larger individuals maintain their advantage over time.129

Figure 2: Evolution of apparent size. Left panel: changes in the ap-
pearance of the largest bird over time. Time is marked by numbers on the
panels, each panel is separated from its predecessor by 60 iterations. Right
panel: evolution of apparent size for the small, medium and large bird. Note
that all birds considerably increase in size as time progresses but the relative
ranking of the sizes nevertheless remains stable.

To establish the suitability of our methods for the study of biological130

signaling, we further tested whether our conclusions were robust to variation.131

In biological systems, the cheaters may need to be able to fool multiple132

networks, since individual brains are known to vary [17]. Though most brains133

are expected to produce similar outputs for similar inputs, they may be134

achieving this feat in slightly different ways because internal connections will135

vary somewhat due to factors like variability in brain development and early136

visual environment. One way to simulate the variability would be to train137

many different neural networks from different initial weight values and with138

a different sequence of training examples.139

We implemented this differential training process for five neural networks.140

We then evolved a bird against the first network and then examined how the141

findings generalized when the resulting body patterns were shown to the the142

four other networks. We found that examples developed against one network143

typically generalized to the other four networks (Figure 3 top left). We144

further found that this conclusion held even if we changed the internal archi-145

tecture of the network when we showed birds evolved against a network using146

a relu non-linearity to a network using a hyperbolic tangent non-linearity as147
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shown in Figure S1 left (hyperbolic tangent non-linearities could be viewed148

as more biologically realistic due to its saturating behavior which more closely149

mimics neuronal biophysics [18]). As expected, this conclusion did not hold150

true when the images were shown to an untrained neural network (Figure151

S1 right).152

Figure 3: Evolution of apparent size. Top left: Birds evolved against one
network are able to fool other networks which they did not encounter during
evolution (each trace represents a separate network). Top right: evolution
of mean apparent size when viewing distance varies. Bottom left: perceived
size versus viewing distance at the beginning (orange) and end (blue) of evo-
lution. The blue dots tend to lie above the red dots for all viewing distances
indicating the ability of the mutant to robustly fool the CNN under many
conditions. Bottom right: the final appearance of the large bird that fools
CNNs at all distance.

We also tested whether our results are robust for all viewing distances.153

When viewed from an identical distance, smaller animals should always oc-154

cupy a smaller area on the retina than larger animals. However, signaling155

displays are often complex spatial maneuvers during which the viewing dis-156
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tance may vary [19]. A good quality visual system would presumably be able157

to distinguish between a big animal that is far away from a small animal that158

is close even if both images occupy similar sizes on its retina. Based on these159

concerns, we trained adversarial examples to be robust against variations in160

viewing angle (see Supplementary methods). Our system was able to find161

bird pigmentation perturbations which appeared larger than the original bird162

image at all viewing distances (Figure 3 top right and bottom panels). We163

conclude that sensory cheating should be possible even against a visual sys-164

tem which integrates information about image size with information about165

inter-animal distances.166

Discussion167

We have demonstrated how convolutional neural networks could be applied168

to the study of the evolutionary stability of signaling. We suggest that fu-169

ture studies which examine the stability of signaling models should augment170

traditional low-dimensional game theory analysis with a high-dimensional171

analysis of signal form and natural image statistics [4, 6]. Our work shows172

that unless sensory cheating is ruled out, the stability of any equilibrium173

cannot be guaranteed.174

Our approach made use of the technique of adversarial perturbations,175

which was originally developed as a method to find small perturbations that176

will cause machine classifiers to mis-classify an image [16]. Although these177

perturbations were initially believed to be relevant only in the context of178

artificial intelligence, recent research indicates that adversarial examples have179

a limited ability to confuse human observers as well [20]. Our study indicates180

that adversarial examples may also have further biological relevance in the181

evolution of signaling and body patterns. Future work could also attempt182

to apply these techniques to the study of segmentation systems and the183

evolution of camouflage [21].184

Our work is not the first to recognize the usefulness of explicit cognitive185

models for the study of evolution. Pioneering theoretical work by Enquist186

and others used artificial neural networks like the multi-layer perceptron as187

a tool in the theoretical study of evolution [22]. This early work was of188

limited applicability because slow computers did not allow these systems189

to be trained on complex real world tasks. With the availability of fast190

modern hardware, it should become increasingly easy to design and probe191

the function of complex pattern recognition systems through an evolutionary192

lens.193

One of the empirical findings of our work was that in the later stages194
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of evolution, the model birds evolved to display unusual colors. This is an195

outcome that likely occurs because adaptive systems are typically tuned to196

work accurately only on their training domain as they do not face selective197

pressure to correctly analyze out of domain signals. Since bright and pure198

colors lie outside the typical statistics of natural images, it is not surprising199

that these signals turned out to be effective at driving spurious signaling200

activity in the networks. These findings may have some parallels with the201

evolution of bright body colors in Trinidadian guppies [23]. When relived202

from predation pressure, Trinidadian guppies evolve to display bright colors203

for the purposes of increasing their attractiveness to potential mates. It may204

be the case that these bright body patterns function partly as adversarial ex-205

amples or hyper-stimuli that are particularly effective at driving the activity206

of the sexual quality assessment network of the fish brain.207

Our work focused on the evolution of body patterns without considering208

the simultaneous evolution of the neural network used for assessment. We209

made this modeling choice because signaling equilibriums may be understood210

as Bourgeois strategies (where the asymmetry happens to be correlated but211

need not remain so throughout evolution) and no individual has an incentive212

to deviate from consensus assessments [24]. Since our modeling finds that213

signaling remains reliable, it could also serve as a useful model for scenar-214

ios where body pattern evolution is for some reason much more rapid than215

the evolution of the assessment network. For more complex scenarios like216

the study of sexual selection, this approximation may not remain valid and217

future work must find ways to extend our methods to take into account the218

aforementioned complexities [14].219

Finally, it will be interesting to study if certain body patterns or brain220

architectures are less vulnerable to cheating. It might be expected that pure221

bright colors which are already unusual for a given environment and easy to222

separate from the background might be rather immune to cheating. Also,223

there may be other neural networks which utilize movement information or do224

a more complex segmentation that will prove more difficult to hack. Future225

work will need to explore these issues in more extensive detail.226
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Supplementary materials227

Supplementary figures228

Figure 4: Generalization of examples. Left: Birds evolved against a
relu network shown to a hyperbolic tangent network. Right: Birds evolved
against a trained relu network shown to an incompletely trained (100 instead
of 7000 mini-batches) relu network.

Supplementary methods229

Details on neural networks230

We used 4 convolutional layers with relu non-linearities, each followed by a231

2-by-2 max pooling layer. All layers used 5x5 filters. Filter numbers by layer232

were 32, 64, 64, 64. The fully connected layer used 512 neurons. We trained233

the network using gradient descent on the mean squared error loss function234

with the Adam optimizer using a learning rate of 10−4 with mini-batches of235

size 128. The training set consisted of 35 000 images from which mini-batches236

were sampled randomly. For the relu networks training process used 7000237

mini-batches. For the tanh non-linearity training took 200 000 mini-batches.238

Training was implemented in Tensorflow.239

Adversarial examples240

During evolution, birds will evolve towards greater apparent size. The image241

of a bird can be regarded as a set of pixels. To predict how the birds will242
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evolve, we must predict which pixel changes would increase the expected243

apparent size of the bird. In other words, we must predict the gradient of244

the expected apparent size with respect to each pixel of the bird. In order245

to estimate the expected value of the gradient, we must average over all246

possible locations, orientations, backgrounds, noise perturbations, etc. We247

calculate the estimate using Monte Carlo sampling. We first embed the bird248

in 128 images, whose orientation, location, background, etc statistics are249

sampled from the same distribution as was used for generating the training250

set. For each image, we use standard Tensorflow procedures to estimate the251

gradient of the output (the estimated size) with respect to all the image252

pixels. Then we back-transform this gradient onto the bird image template253

by shifting and rotating the image such that the birds in all the images will254

line up exactly. The gradient estimate is the sample mean of these back-255

transformed gradients. Then we add the learning-rate weighted gradient256

onto the bird images to obtain a new bird image and repeat the procedure257

again. The same procedure was used to in the viewing distance invariant258

scenario, but there we also added an extra image scaling step to the back-259

transformation step to compensate for the fact that the size of the bird in260

each images varied depending on the viewing distance (the viewing distance261

was sampled uniformly at random between 20 and 40 units). Further details262

on the code are available from the authors on request and all code will be263

deposited at a public repository after publication of the manuscript.264
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