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Abstract1

Why groups of individuals sometimes exhibit collective ‘wisdom’ and other times mal-2

adaptive ‘herding’ is an enduring conundrum. Here we show that this conflict is regulated by3

the social learning strategies deployed. We examined the patterns of human social learning4

through an interactive online experiment with 699 participants, varying both task uncertainty5

and group size, then used hierarchical Bayesian model-fitting to identify the individual learn-6

ing strategies exhibited by participants. Challenging tasks elicit greater conformity amongst7

individuals, with rates of copying increasing with group size, leading to high probabilities8

of maladaptive herding amongst large groups confronted with uncertainty. Conversely, the9

reduced social learning of small groups, and the greater probability that social information10

would be accurate for less-challenging tasks, generated ‘wisdom of the crowd’ effects in11

other circumstances. Our model-based approach provides novel evidence that the likelihood12

of swarm intelligence versus herding can be predicted, resolving a longstanding puzzle in13

the literature.14

Keywords:15

swarm intelligence, herding, social learning, computational modelling, web-based experi-16
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Understanding the mechanisms that account for accurate collective decision-making amongst18

groups of animals has been a central focus of animal behaviour research (Bonabeau et al., 1999;19

Camazine et al., 2001; Sumpter, 2010). There are a large number of biological examples showing20

that collectives of poorly informed individuals can achieve a high performance in solving cog-21

nitive problems under uncertainty (Krause et al., 2010). Examples of such ‘swarm intelligence’22

– the emergent wisdom of interactive crowds – have been found in a broad range of biological23

systems (Table 1). Although these findings suggest fundamental cognitive benefits of grouping24

(Krause and Ruxton, 2002), there is also a long-standing recognition, especially for humans, that25

interacting individuals may sometimes be overwhelmed by the ‘extraordinary popular delusions26

and madness of crowds’ (Mackay, 1841). Herd behaviour (i.e. an alignment of thoughts or be-27

haviours of individuals in a group) occurs because individuals imitate each others (Kameda and28

Hastie, 2015; Le Bon, 1896; Raafat et al., 2009), and it is thought to be a cause of financial29

bubbles (Chari and Kehoe, 2004; Mackay, 1841), ‘groupthink’ (Janis, 1972) and volatility in30

cultural markets (Muchnik et al., 2013; Salganik et al., 2006). More generally, herding is known31

to undermine the wisdom of crowds effect (Lorenz et al., 2011), whilst maladaptive aspects of32

information transfer are well-recognised in the biological literature (e.g. Giraldeau et al., 2002).33

It seems that information transmission among individuals, and making decisions collectively, is34

a double-edged sword: combining decisions may provide the benefits of swarm intelligence, but35

at the same time, increase the risk of maladaptive herding. Collectively, an understanding of36

whether and, if so, how it is possible to prevent or reduce the risk of maladaptive herd behaviour,37

while concurrently keeping or enhancing swarm intelligence, is largely lacking.38

A balance between using individual and social information may play a key role in determining39
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Table 1

Examples of swarm intelligence in diverse biological systems

Taxonomic families Examples and references

Slime moulds Finding conditions favorable to spore survival and dispersal (Reid and Latty, 2016)

Social insects Collective foraging (Seeley et al., 1991; Shaffer et al., 2013) and nest-site selection

(Franks et al., 2003; Sasaki and Pratt, 2012; Sasaki et al., 2013; Seeley and Visscher,

2004)

Fish Collective sensing (Berdahl et al., 2013; Sumpter et al., 2008), predator avoidance

(Ward et al., 2011) and foraging decisions (Webster et al., 2017)

Birds Collective foraging (Liker and Bokony, 2009; Morand-Ferron and Quinn, 2011) and

homing decisions (Sasaki and Biro, 2017)

Non-human primates Group coordination in where and when to move (King and Sueur, 2011)

Humans Decision-making in an estimation task (Krause et al., 2011; Rosenberg and Pescetelli,

2017) and in a multi-armed bandit task (Toyokawa et al., 2014)

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2018. ; https://doi.org/10.1101/326637doi: bioRxiv preprint 

https://doi.org/10.1101/326637
http://creativecommons.org/licenses/by-nc-nd/4.0/


the trade-off between collective wisdom and maladaptive herding (List et al., 2009). If individu-40

als are too reliant on copying others’ behaviour, any ideas, even a maladaptive one, can propagate41

in the social group (i.e. the ‘informational cascade’; Bikhchandani et al., 1992; Giraldeau et al.,42

2002; Richerson and Boyd, 2005). On the other hand, however, if individuals completely ignore43

social information so as to be independent, they will fail to exploit the benefits of aggregating44

information through social interactions. The extent to which individuals should use social in-45

formation should fall between these two extremes. Theoretical models predict that the balance46

between independence and interdependence in collective decision-making may be changeable,47

contingent upon the individual-level flexibility and inter-individual variability associated with48

the social learning strategies deployed in diverse environmental states (e.g. Arbilly et al., 2011;49

Boyd and Richerson, 1985; Feldman et al., 1996; Laland, 2004).50

Animals (including humans) are reported to increase their use of social information as re-51

turns from asocial learning become more unreliable (e.g. Kameda and Nakanishi, 2002; Kendal52

et al., 2004; Morgan et al., 2012; Toyokawa et al., 2017; Webster and Laland, 2008, 2011). In53

addition, individuals are predicted to be more likely to rely on social learning larger the number54

of individuals that share information (Boyd and Richerson, 1989; Bond, 2005; Kline and Boyd,55

2010; Morgan et al., 2012; Muthukrishna et al., 2014; Street et al., 2017). This selectivity in the56

predicted use of social information may have a substantial impact on collective decision-making57

because only a slight difference in the parameter values of social information use is known to58

be able to alter qualitatively the collective behavioural dynamics (e.g. Bonabeau et al., 1999;59

Camazine et al., 2001; Nicolis and Deneubourg, 1999; Pratt and Sumpter, 2006). Therefore, re-60

searchers should expect populations to exhibit a higher risk of being trapped with maladaptive61
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behaviour with increasing group size and decreasing reliability of asocial learning (and concomi-62

tant increased reliance on social learning).63

From the viewpoint of the classic wisdom of crowds theory, increasing group size may in-64

crease collective accuracy (List, 2004; King and Cowlishaw, 2007; Wolf et al., 2013; Becker65

et al., 2017; Laan et al., 2017). The relative advantage of the collective over solitary individuals66

may also be highlighted by increased task difficulty, because there would be more room in the67

performance to be improved compared to easier tasks in which high accuracy can already be68

achieved by asocial learning only (Cronin, 2016). To understand the potential conflict between69

swarm intelligence and the risk of maladaptive herding requires fine-grained quantitative studies70

of social learning strategies and their relations to collective dynamics, linked to sophisticated71

computational analysis.72

The aims of this study were twofold. First, we set to test the hypothesis that the circum-73

stances under which collective decision making will generate ‘wisdom’ can be predicted with74

knowledge of the precise learning strategies individuals deploy, through a combination of exper-75

imentation and theoretical modelling. The choice of an abstract decision-making task allowed76

us to implement a computational modelling approach, which has been increasingly deployed in77

quantitative studies of animal social learning strategies (Ahn et al., 2014; Aplin et al., 2017; Bar-78

rett et al., 2017; McElreath et al., 2005, 2008; Toyokawa et al., 2017). In particular, computational79

modelling allowed us to conduct a parametric description of different information-gathering pro-80

cesses and to estimate these parameter values at an individual-level resolution. This approach81

allows us to characterize the complex relationship between individual-level decision, learning82

strategies and collective-level behavioural dynamics. Second, we added resolution to our analy-83
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ses by manipulating both task uncertainty and group size in our experiments with adult human84

subjects, predicting that these factors would induce heavier use of social information in humans,85

and thereby alter the balance between swarm intelligence and the risk of maladaptive herding.86

To do this, we focused on human groups exposed to a simple gambling task, where both aso-87

cial and social sources of information were available. Through development of an interactive,88

web-based collective decision-making task (i.e. multi-player multi-armed bandit), and use of89

hierarchical Bayesian statistical methods in fitting our computational model to the experimen-90

tal data, we identify the individual-level learning strategies of participants as well as quantify91

variation in different learning parameters, allowing us to conduct an informed exploration of the92

population-level outcomes. The results provide clear evidence that the conflict between swarm93

intelligence and maladaptive herding can be predicted with knowledge of human social learning94

strategies.95

Below, we firstly described our experimental task and summarise the computational model.96

Then, we deploy agent-based simulation to illustrate how the model parameters relating to social97

learning can in principle affect the collective-level behavioural dynamics. The simulation pro-98

vides us with precise, quantitative predictions on the complex relationship between individual99

behaviour and group dynamics. Finally, we present the findings of a multi-player web-based ex-100

periment with human participants that utilises the gambling task framework. Applying a hierar-101

chical Bayesian statistical method, we estimated the model’s parameters for each of 699 different102

individuals, allowing us to (i) examine whether and, if so, how social information use is affected103

by different group size and task uncertainty, and (ii) whether and how social-information use104

affects the balance between swarm intelligence and maladaptive herding.105
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Task overview: To study the relationship between social information use and collective106

behavioural dynamics, we focused on a well-established learning-and-decision problem called107

a ‘multi-armed bandit’ task, represented here as repeated choices between three slot machines108

(Figure S1, Video 1, for detail see Materials and methods). Individuals play the task for 70109

rounds. The slots paid off money noisily, varying around two different means during the first 40110

rounds such that there was one ‘good’ slot and two other options giving poorer average returns.111

From the round 41st, however, one of the ‘poor’ slots abruptly increased its mean payoff to112

become ‘excellent’ (i.e. superior to ‘good’). The purpose of this environmental change was113

to observe the effects of maladaptive herding by potentially trapping groups in the out-of-date114

suboptimal (good) slot, as individuals did not know whether or how an environmental change115

would occur. Through making choices and earning a reward from each choice, individuals could116

gradually learn which slot generated the highest rewards.117

In addition to this asocial learning, we provided social information for each member of the118

group specifying the frequency with which group members chose each slot. All group mem-119

bers played the same task with the same conditions simultaneously, and all individuals had been120

instructed that this was the case, and hence understood that the social information would be in-121

formative.122

Task uncertainty was experimentally manipulated by changing the difference between the123

mean payoffs for the slot machines. In the task with the least uncertainty, the distribution of124

payoffs barely overlapped, whilst in the task with the greatest uncertainty the distribution of125

payoffs overlapped considerably (Figure S3).126

Overview of the computational learning-and-decision-making model: We modelled in-127
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dividual behavioural processes by assuming that individual 𝑖 makes a choice for option 𝑚 at128

round 𝑡, in accordance with the choice-probability 𝑃𝑖,𝑡(𝑚) that is a weighted average of social and129

asocial influences:130

𝑃𝑖,𝑡(𝑚) = 𝜎𝑖,𝑡 × Social influence𝑖,𝑚,𝑡 + (1 − 𝜎𝑖,𝑡) × Asocial influence𝑖,𝑚,𝑡, (1)

where 𝜎𝑖,𝑡 is the social learning weight (0 ≤ 𝜎𝑖,𝑡 ≤ 1).131

For the social influence, we assumed a frequency-dependent copying strategy by which an132

individual copies others’ behaviour in accordance with the distribution of social frequency infor-133

mation (McElreath et al., 2005, 2008; Aplin et al., 2017; Barrett et al., 2017):134

Social influence𝑖,𝑚,𝑡 =

(
frequency𝑚,𝑡−1

)𝜃𝑖

∑
𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠

(
frequency𝑘,𝑡−1

)𝜃𝑖
, (2)

where frequency𝑚,𝑡−1 is a number of choices made by other individuals for the option 𝑚 in the135

preceding round 𝑡 − 1 (𝑡 ≥ 2). The exponent 𝜃𝑖 is individual 𝑖’s conformity exponent (−∞ ≤136

𝜃𝑖 ≤ +∞). When this exponent is larger than zero (𝜃𝑖 > 0), higher social influence is afforded to137

an option chosen by more individuals (i.e. positive frequency bias), with conformity bias arising138

when 𝜃𝑖 > 1, such that disproportionally more social influence is given to the most common139

option (Boyd and Richerson, 1985). When 𝜃𝑖 < 0, on the other hand, higher social influence is140

afforded to the option that fewest individuals chose in the preceding round 𝑡 − 1 (i.e. negative141

frequency bias). Note, there is no social influence when 𝜃𝑖 = 0 because in this case the ‘social142

influence’ favours an uniformly random choice, i.e., Social influence𝑖,𝑚,𝑡 = 𝑓 0
𝑚∕(𝑓

0
1 +𝑓 0

2 +𝑓 0
3 ) =143

1∕3, independent of the social frequency distribution.144
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For the asocial influence, we used a standard ‘softmax’ choice rule well-established in the145

reinforcement-learning literature (Sutton and Barto, 1998) and widely applied in human social146

learning studies (e.g. McElreath et al., 2005, 2008; Toyokawa et al., 2017).147

In summary, the model has two key social learning parameters, the social learning weight 𝜎𝑖,𝑡148

and the conformity exponent 𝜃𝑖, with 𝜎𝑖,𝑡 a time-dependent variable (i.e. individuals could modify149

their reliance on social learning as the task proceeded). Varying these parameters systematically,150

we conducted an individual-based simulation so as to establish quantitative predictions concern-151

ing the relationship between social information use and collective behaviour. We then fitted this152

model to our experimental data using a hierarchical Bayesian approach. This method allows153

us to specify with precision how each individual subject learns (i.e. which learning strategy or154

strategies they deploy), and thereby to describe the range and distribution of learning strategies155

deployed across the sample, and to investigate their population-level consequences.156

1 Results157

1.1 The relationship between social information use and the collective behaviour158

Figure 1 shows the relationship between the average decision accuracy and individual-level social159

information use obtained from our individual-based model simulations. Figure 1a and 1c show160

that individuals in larger groups perform better both before and after the environmental change161

when the mean conformity exponent 𝜃̄ is small (i.e. 𝜃̄ = (
∑

𝑖 𝜃𝑖)∕individuals = 1). In the162

absence of conformity, even when the average social learning weight is very high (i.e. 𝜎̄ =163

(
∑

𝑖
∑

𝑡 𝜎𝑖,𝑡)∕(individuals × rounds) = 0.9), larger groups are still able to recover the decision164
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accuracy after the location of the optimal option has been switched.165

On the other hand, when the mean conformity exponent is large (i.e. 𝜃̄ = 3; strong confor-166

mity bias), the group dynamics become less flexible, and become vulnerable to getting stuck on167

a suboptimal option after environmental change. Here, the recovery of performance after envi-168

ronmental change takes more time in larger compared to smaller groups (Figure 1b). When both169

the conformity exponent 𝜃̄ and the social learning weight 𝜎̄ are large (Figure 1d), performance170

is no longer monotonically improving with increasing group size, and it is under these circum-171

stances that the strong herding effect becomes prominent. Figure 2c and 2d indicate that when172

both 𝜃̄ and 𝜎̄ are large the collective choices converged either on the good option or on one of the173

poor options almost randomly, regardless of the option’s quality, and that once individuals start174

converging on an option the population gets stuck. As a result, the distribution of the groups’175

average performance over the replications becomes a bimodal ‘U-shape’. Interestingly, however,176

the maladaptive herding effect remains relatively weak in smaller groups (see Figure 2c; the black177

histograms). This is because the majority of individuals in smaller groups (i.e. two individuals178

out of three) are more likely to break the cultural inertia by simultaneously exploring for another179

option than the majority in larger groups (e.g. six out of ten). As expected, herding does not180

occur in the absence of conformity (Figure 2a, 2b).181

In summary, the model simulation suggests an interaction between social learning weight 𝜎̄182

and conformity exponent 𝜃̄ on decision accuracy and the risk of maladaptive herding: When the183

conformity exponent is not too large, swarm intelligence is prominent across a broad range of184

the mean social learning weights (i.e. increasing group size can increase decision accuracy while185

concurrently retaining decision flexibility). When the conformity bias becomes large, however,186
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the risk of maladaptive herding arises, and, when both social learning parameters are large, swarm187

intelligence is rare and maladaptive herding dominates.188

(a) (b)

(c) (d)

Figure 1: Findings of the individual-based model showing the effects of social information use on the average

decision accuracy over replications. The x-axis gives the round and y-axis gives the proportion of individuals

expected to choose the optimal slot (i.e. decision accuracy) averaged over all replications. The vertical dashed line

indicates the timing of environmental (i.e. payoff) change (at 𝑡 = 41). Different group sizes are shown by different

styles (black (dotted): 𝑛 = 3, orange (dashed): 𝑛 = 10, red (solid): 𝑛 = 30). We set the average slopes for the social

learning weight to be equal to zero for the sake of simplicity; namely, 𝜇𝛿 = 0. Other free parameter values (i.e. 𝜇𝛼 ,

𝜇𝛽∗0
, 𝜇𝜖 ,𝜈𝛼 , 𝜈𝛽∗0 , 𝜈𝜖 , 𝜈𝜎 , 𝜈𝛿 and 𝜈𝜃) are best approximates to the experimental fitted values (see Table 2 and Table S1).
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(a) (b) (c) (d)

Figure 2: Results from the individual-based model simulations showing the distribution of each group’s mean

accuracy before environmental change. The x-axis gives the mean decision accuracy over the first 40 rounds (i.e. the

environment 1) for each replication. Different group sizes are shown by different styles (black (dotted): 𝑛 = 3,

orange (dashed): 𝑛 = 10, red (solid): 𝑛 = 30). Again, 𝜇𝛿 = 0, and other free parameter values (i.e. 𝜇𝛼 , 𝜇𝛽∗0
, 𝜇𝜖 ,𝜈𝛼 ,

𝜈𝛽∗0 , 𝜈𝜖 , 𝜈𝜎 , 𝜈𝛿 and 𝜈𝜃), we approximated using experimental data (see Table 2 and Table S1).
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1.2 Estimation of human social information use189

Table 2 reveals how the social learning weight 𝜎𝑖,𝑡 and conformity exponent 𝜃𝑖 were influenced190

by task uncertainty in our behavioral experiment. It gives posterior estimation values for each of191

the global means of the learning model parameters, obtained by the hierarchical Bayesian model192

fitting method applied to the experimental data (see the Materials and methods). The fitted global193

variance parameters (i.e. 𝜈) are shown in the Supporting Table S1.194
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We were able to categorize the participants as deploying three different learning strategies195

based on their fitted conformity exponent values; namely, the ‘positive frequency-dependent196

copying’ strategy (𝜃𝑖 ≫ 0), the ‘negative-frequency dependent copying’ strategy (𝜃𝑖 ≪ 0) and197

the ‘random choice’ strategy (𝜃𝑖 ≈ 0). Note that we could not reliably detect the ‘weak positive’198

frequency-dependent strategy (0 < 𝜃𝑖 ≤ 1) due to the limitation of statistical power (Figure S10199

and S17). Some individuals whose ‘true’ conformity exponent fell between zero and one would200

have been categorised as exhibiting a random choice strategy (Figure S10). Individuals identi-201

fied as exhibiting a positive frequency-dependent copiers were mainly those whose conformity202

exponent was larger than one (𝜃𝑖 > 1).203

Figure 3a-c show the estimated frequencies of different learning strategies. Generally speak-204

ing, participants were more likely to utilize a positive frequency-dependent copying strategy205

than the other two strategies (the 95% Bayesian CI of the intercept of the GLMM predicting the206

probability to use the positive frequency-dependent copying strategy is above zero, [1.05, 2.50];207

Table S2). We found that positive frequency-dependent copying decreased with increasing task208

uncertainty (the 95% Bayesian CI of task uncertainty effect is below zero, [-1.88, -0.25]; Table209

S2). We found no clear effects of either the group size, age or gender on adoption of the positive210

frequency-dependent copying strategy, except for the negative interaction effect between age and211

task uncertainty (the 95% Bayesian CI of the age × uncertainty interaction = [-1.46, -0.15]; Table212

S2).213

We also investigated the effects of group size and task uncertainty on the fitted individual214

parameter values. We found that the individual mean social learning weight parameter (i.e.215

𝜎𝑖 = (
∑

𝑡 𝜎𝑖,𝑡)∕70) increased with group size (the 95% Bayesian CI = [0.15, 0.93]; Figure 3d-f;216
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Table S3), and decreased with uncertainty (the 95% Bayesian CI = [-0.98, -0.22]), and age of217

subject (the 95% Bayesian CI = [-0.36, -0.02]). However, the negative effects of task uncertainty218

and age disappeared when we focused only on 𝜎𝑖 of the positive frequency-dependent copying219

individuals, and only the positive effect of the group size was confirmed (Table S4; Figure S16).220

It is worth noting that the meaning of the social learning weight is different between these three221

different strategies: The social learning weight regulates positive reactions to the majorities’ be-222

haviour for positive frequency-dependent copiers, whereas it regulates avoidance of the majority223

for negative-frequency dependent copiers, and determines the probability of random decision-224

making for the random choice strategists.225

The individual conformity exponent parameter 𝜃𝑖 increased with task uncertainty (the 95%226

Bayesian CI = [0.38, 1.41]), but we found no significant effects of group size, age, gender or227

interactions (Figure 3g-i; Table S5). These results were qualitatively unchanged when we focused228

only on the positive frequency-dependent copying individuals (Table S6; Figure S16).229

We observed extensive individual variation in social information use. The greater the task’s230

uncertainty, the larger were individual variances in both the mean social learning weight and the231

conformity exponent (the 95% Bayesian CI of the GLMM’s variation parameter for 𝜎𝑖 was [1.11,232

1.62] (Table S3) and for 𝜃𝑖 was [1.07, 1.54] (Table S5)). This was confirmed when focusing only233

on the positive frequency-dependent copying individuals: The Bayesian 95% CIs were [1.14,234

1.80] (Table S4) and [0.71, 1.10] (Table S6), respectively.235

The manner in which individual variation in social-information use of positive frequency-236

dependent copying individuals changes over time is visualised in Figure 4a-c. The social learn-237

ing weights generally decreased with experimental round. However, some individuals in the238
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Moderate- and the High-uncertain conditions accelerated rather than decreased their reliance on239

social learning over time. Interestingly, those accelerating individuals tended to have a larger240

conformity exponent (Figure S18). In addition, the time-dependent 𝜃𝑖,𝑡 in our alternative model241

generally increased with experimental round in the Moderate- and the High-uncertainty condi-242

tions (see the appendix; Figure S26), although the fitting of 𝜃𝑖,𝑡 in the alternative model was243

relatively unreliable (Figure S20). These findings suggest that conformists tended to use asocial244

learning at the outset but increasingly started to conform as the task proceeded.245

Extensive variation in the temporal dynamics of the social learning weight 𝜎𝑖,𝑡 was also found246

for the negative-frequency dependent copying individuals but not found for the random choice247

individuals (Figure S14). Individuals deploying a random choice strategy exhibited a 𝜎𝑖,𝑡 that ap-248

proached to zero, indicating that their decision-making increasingly relied exclusively on asocial249

reinforcement learning as the task proceeded.250

No significant fixed effects were found in other asocial learning parameters such as the learn-251

ing rate 𝛼𝑖 and the mean inverse temperature 𝛽𝑖 = (
∑

𝑡 𝛽𝑖,𝑡)∕70 (Table S7, Table S8 and Figure252

S15).253

In summary, our experiments on adult humans revealed asymmetric influences of increasing254

task uncertainty and increasing group size on the social learning parameters. The conformity255

exponent increased with task uncertainty on average but the proportion of positive frequency-256

dependent copying individuals showed a corresponding decrease, due to the extensive individual257

variation emerging in the High-uncertain condition. Conversely, group size had a positive effect258

on the mean social learning weight, but did not affect conformity (Figure 3, 4a-c).259
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Random choice

Positive freq. dep.

freq. dep.
Negative

Figure 3: Model fitting for the three different task’s uncertain conditions (the Low-, Moderate- and

High-uncertainty) and the different group size. Three different learning strategies are shown in different styles

(red-triangle: positive frequency-dependent learning, blue-circle: negative frequency-dependent learning;

grey-circle: nearly random choice strategy). (a-c) Frequencies of three different learning strategies. Note that a sum

of the frequencies of these three strategies in the same group size does not necessarily equal to 1, because there are a

small number of individuals eliminated from this analysis due to insufficient data. (d-f) Estimated social learning

weight, and (g-i) estimated conformity exponent, for each individual shown for each learning strategy. The 50%

Bayesian CIs of the fitted GLMMs are shown by dashed lines and shaded areas. The horizontal lines in (g-i) show a

region −1 < 𝜃𝑖 < 1.
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a-c) Change in fitted values (i.e. median of the Bayesian posterior distribution) of the social learning

weight 𝜎𝑖,𝑡 with time for each individual, for each level of task uncertainty. Thick dashed lines are the median values

of 𝜎𝑖,𝑡 across the subjects for each uncertainty condition. Individual conformity exponent values 𝜃𝑖 are shown in

different colours (higher 𝜃𝑖 is darker). (d-f) Change in average decision accuracy of the individual-based post-hoc

model simulations using the experimentally fit parameter values (main panels). The inner panels show the average

decision accuracies of the experimental participants. Each line indicates different group-size categories (red-solid:

large groups, orange-halfdashed: small groups, grey-dashed: lone individuals). All individual performances were

averaged within the same size category. The large or small groups were categorised using the median sizes for each

experimental condition, i.e. small groups were: 𝑛 ≤ 9, 𝑛 ≤ 6 and 𝑛 ≤ 11 for the Low-, Moderate- and

High-uncertain conditions, respectively.
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1.3 A balance between the collective decision accuracy and the herding effect260

Figure 4d-f show the change over time in performance with different group sizes and different261

uncertainty conditions, generated by the post-hoc simulations of the parameter-fitted model. The262

mean decision accuracies of the experimental groups are shown in the inner windows. Because263

the post-hoc simulations were run for 5,000 replications for each group size, which should gen-264

erate more robust pattern than the raw experimental data basing only on a limited number of265

experimental replications, and given the correspondence between simulations and data, below266

we concentrate our interpretation on the simulated results.267

Prior to the environmental change (Round 1 to 40), larger groups performed better on average268

than did both smaller groups and lone individuals across all the uncertainty levels, suggesting269

swarm intelligence was operating. However, after the environmental change (i.e. from Round 41)270

performance differed between the conditions. In the Low-uncertain condition, where we found271

that the participants were most likely to have a relatively weak positive frequency-dependence272

(i.e. 𝜃̄ = 1.65), large groups again made more accurate decisions than small groups (Figure 4d,273

from Round 41). However, in the Moderate- and the High-uncertain condition, where we found274

that participants were most likely to have strong positive frequency dependence (𝜃̄ = 3.00 and275

2.67, c.f. 1.65 in the Low-uncertainty condition), the large groups seemed to get stuck on the276

suboptimal option after the change (Figure 4e and 4f, from Round 41), although the decision277

accuracy did not substantially differ with group size in the High-uncertain condition.278

Lone individuals in the Low-uncertain condition recovered performance more quickly than279

did both the small and large groups even though the lone individuals performed worse in the first-280

half of the task (Figure 4d), suggesting that asocial learners are more capable of detecting the281
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environmental change than individuals in groups. This might be due to the higher exploration rate282

of lone individuals (both 𝜇𝛽∗0 and 𝜇𝜖 of solitary individuals were smaller than those of grouping283

individuals; Table 2).284

Overall, the pattern of results was broadly consistent with our predictions (Figure 1). We285

confirmed that in the Low-uncertainty condition, where individuals have weaker positive fre-286

quency bias, larger groups were more accurate than smaller groups while retaining flexibility287

in their decision-making (i.e. swarm intelligence dominates). However, in the Moderate- and288

the High-uncertain conditions, larger groups performed better prior to environmental change but289

were vulnerable to getting stuck with an out-dated maladaptive option due to the larger estimated290

conformity exponent, thereby generating the conflict between swarm intelligence and maladap-291

tive herding.292

2 Discussion293

We investigated whether and how human social learning strategies regulate the conflict between294

swarm intelligence and herding behaviour using a collective learning-and-decision-making task295

combined with simulation and model fitting. We examined whether manipulating the reliability296

of asocial learning and group size would affect the use of social information, and thereby alter the297

collective decision dynamics, as suggested by our computational model simulation. Although a298

theoretical study has suggested that reliance on social learning and conformity bias would play a299

role in collective dynamics (Kandler and Laland, 2013), thus far no empirical studies have quan-300

titatively investigated the population-level consequences of these two different social learning301

processes. Our high-resolution, model-based behavioural analysis using a hierarchical Bayesian302
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statistics enabled us to identify individual-level patterns and variation of different learning pa-303

rameters and to explore their population-level outcomes. The results provide strong support for304

our hypothesis that the conflict between the swarm intelligence effect and maladaptive herding305

can be predicted with knowledge of human social learning strategies.306

Consistent with previous empirical findings (e.g., Morgan et al., 2012; Muthukrishna et al.,307

2014), adult human participants were increasingly likely to make a conformity-biased choice as308

the uncertainty of the task went up (i.e. as it became more difficult to determine the best option.309

Figure 3g-i). The fitted global mean values of the conformity exponent parameters were 3.0 and310

2.7 in the Moderate- and the High-uncertain conditions, respectively (Table 2), and these values311

were sufficiently high to cause larger populations to get stuck on a suboptimal option following312

environmental change (Figure 1b; Figure 4e, 4f). Conversely, in the Low-uncertain condition313

individuals exhibited relatively weak conformity (i.e. 𝜃̄ ≈ 1.65), allowing larger groups to escape314

the suboptimal option, and retain their swarm intelligence (Figure 1a; Figure 4d). Although315

the social learning weight was also found to be contingent upon the environmental factors, the316

estimated mean value was 𝜎𝑖 = 0.3 (Figure 3d-f; Figure S14). This implies a weaker social317

than asocial influence on decision-making as reported in several other experimental studies (e.g.318

Efferson et al., 2008; McElreath et al., 2005; Mesoudi, 2011; Toyokawa et al., 2017). Thanks to319

this relatively weak reliance of social learning, the kind of herding that would have blindly led a320

group to any option regardless of its quality (like the ‘symmetry breaking’ known in social insect321

collective foraging systems. Figure 2c,d; Camazine et al., 2001; Sumpter, 2010), did not occur.322

Research that explores the factors that can induce higher social learning weights in humans,323

in order to understand under which circumstances herd behaviour would dominate, would be324
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valuable.325

Individual differences in exploration might also play a crucial role in shaping collective de-326

cision dynamics. Although a majority of participants adopted a positive frequency-dependent327

copying strategy, some individuals exhibited negative frequency dependent or random decision-328

making strategy (Figure 3a-c). It is worth noting that the random choice strategy was associated329

with more exploration than the other strategies, because it led to an almost random choice at a330

rate 𝜎𝑖, irrespective of the options’ quality. In addition, negative-frequency dependent copying331

individuals could also be highly exploratory. These individuals tended to avoid choosing an op-332

tion upon which the other people had converged and would explore the other two ‘unpopular’333

options. Interestingly, in the High-uncertain condition the mean social learning weights of the334

negative-frequency dependent copying individuals (𝜎𝑖 ≈ 0.5) were larger than that of the other335

two strategies (𝜎𝑖 ≈ 0.1, Figure S14), indicating that these individuals engaged in such majority-336

avoiding exploration relatively frequently. Such high exploratory tendencies would prevent in-337

dividuals from converging on a better option, leading to a diminishing of swarm intelligence in338

high-uncertainty circumstances (Figure 4f).339

Individual differences have received increasing attention in both collective behaviour and340

animal social learning studies (e.g. Jolles et al., 2018; Michelena et al., 2010; Planas-sitja et al.,341

2015), and across the human behavioural sciences (e.g. Gray et al., 2017; Mesoudi et al., 2016).342

Our finding that the effects of individual variation depend on uncertainty implies that human343

subjects’ use of social learning strategies is deployed plastically, and is not a fixed propensity (i.e.344

personality trait), that differs rigidly between individuals (Dingemanse et al., 2010; Toyokawa345

et al., 2017). Our approach of combining with individual-based simulation and experimentation346
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could potentially prove a powerful tool with which to explore decision-making in other animals.347

Another methodological advantage of using computational models to study social learn-348

ing strategies is its explicitness of assumptions about the temporal dynamics of behaviour. It349

has been argued that just observing the final frequencies of learned behaviour does not provide350

enough information to determine what asocial and/or social learning processes might have been351

used because multiple learning-and-decision mechanisms are equally likely to produce the same352

population-level patterns (Barrett, 2018; Hoppitt and Laland, 2013). For example, very exploita-353

tive asocial reinforcement learners (i.e. exploitation parameter 𝛽𝑖,𝑡 is large and the social learning354

weight 𝜎𝑖,𝑡 is nearly zero) and conformity-biased social learners (conformity exponent 𝜃𝑖 is large355

and 𝜎𝑖,𝑡 is positive) would eventually converge on the same option, resulting in the same final356

behavioural steady state. However, how they explored the environment, as well as how they re-357

acted to the other individuals in the same group, are significantly different and they could produce358

qualitatively different collective temporal dynamics. A time-depth perspective is crucially im-359

portant in order to model the relationship between individual behavioural mechanisms and group360

behavioural dynamics (Biro et al., 2016).361

The Internet-based experimentation allowed us to conduct a real-time interactive behavioural362

task with larger subject pools than a conventional laboratory-based experiment. This enabled us363

not only to quantify the individual-level learning-and-decision processes (e.g. Ahn et al., 2014;364

Daw et al., 2006) but also to map these individual-level processes on to the larger-scale collec-365

tive behaviour (Raafat et al., 2009; Salganik et al., 2006; Sumpter, 2010). Although there are366

always questions about the validity of participants’ behaviour when deploying the web-based367

method, we believe that the computational modelling approach coupled with higher statistical368
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power due to the large sample size, compensates for any drawbacks. The fact that our learning369

model could approximate the participants’ decision trajectories effectively suggest that most of370

the participants engaged seriously with solving the task. An increasing body of evidence sup-371

ports the argument that web-based behavioural experiments are as reliable as results from the372

laboratory (e.g. Dandurand et al., 2008; Hergueux and Jacquemet, 2015).373

The diverse effects of social influence on the collective wisdom of a group has been drawing374

substantial attention (e.g. Becker et al., 2017; Jayles et al., 2017; Lorenz et al., 2011; Lorge et al.,375

1958; Muchnik et al., 2013). The bulk of this literature, including many jury models and elec-376

tion models (Hastie and Kameda, 2005; List, 2004), has focused primarily on the static estimation377

problem, where the ‘truth’ is fixed from the outset. However, in reality, there are many situations378

under which the state of the true value is changing over time so that monitoring and tracking379

the pattern of change is a crucial determinant of decision performance (Payzan-Lenestour and380

Bossaerts, 2011). In such temporally dynamic environments, decision-making and learning are381

coordinated to affect future behavioural outcomes recursively (Sutton and Barto, 1998). Our382

experimental task provides a simple vehicle for exploring collective intelligence in a dynamic383

situation, which encompasses this learning-and-decision-making feedback loop. Potentially, in-384

tegrating the wisdom of crowds with social learning and collective dynamics research will facil-385

itate the more tractable use of swarm intelligence in a temporary changing world.386

In summary, a powerful combination of experimentation and theoretical modeling sheds new387

light on when groups of individuals will exhibit the wisdom of the crowds and when maladap-388

tive herding. Our analysis implies that herding is most likely amongst individuals in large groups389

exposed to challenging tasks. That is because challenging tasks lead to greater uncertainty and390
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thereby elicit greater conformist learning amongst individuals, whilst rates of copying increase391

with group size. Difficult tasks, by definition, render identification of the optimal behavior more392

challenging, allowing groups sometimes to converge on maladaptive outcomes. Conversely, the393

reduced conformity levels of individuals in small groups, and the greater probability that social394

information would be accurate for less-challenging tasks, generated ‘wisdom of the crowd’ ef-395

fects in most other circumstances. Our findings provide clear evidence that the conflict between396

swarm intelligence and maladaptive herding can be predicted with knowledge of human social397

learning strategies.398

3 Material and methods399

3.1 Computational learning-and-decision model400

We modelled a learning and decision process based on standard reinforcement-learning theory401

(Sutton and Barto, 1998). Following previous empirical studies of social learning strategies in402

humans (e.g. McElreath et al., 2005, 2008; Toyokawa et al., 2017), our model consists of two403

steps. First, an individual 𝑖 updates the estimated average reward associated with an option 𝑚 at404

round 𝑡, namely Q-value (𝑄𝑖,𝑡(𝑚)), according to the Rescorla-Wagner rule (Trimmer et al., 2012)405

as follows:406

𝑄𝑖,𝑡+1(𝑚) = 𝑄𝑖,𝑡(𝑚) + 𝛼𝑖1(𝑚,𝑚𝑖,𝑡)
(
𝑟𝑖,𝑡(𝑚) −𝑄𝑖,𝑡(𝑚)

)
, (3)

where 𝛼𝑖 (0 ≤ 𝛼𝑖 ≤ 1) is a learning rate parameter of individual 𝑖 determining the weight given to407

new experience and 𝑟𝑖,𝑡(𝑚) is the amount of monetary reward obtained from choosing the option408
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𝑚 in round 𝑡. 1(𝑚,𝑚𝑖,𝑡) is the binary action-indicator function of individual 𝑖, given by409

1(𝑚,𝑚𝑖,𝑡) =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑚𝑖,𝑡 = 𝑚 or 𝑡 = 1,

0, otherwise.

(4)

Therefore, 𝑄𝑖,𝑡(𝑚) is updated only when the option 𝑚 was chosen; when the option 𝑚 was not410

chosen, 𝑄𝑖,𝑡(𝑚) is not updated (i.e. 𝑄𝑖,𝑡+1(𝑚) = 𝑄𝑖,𝑡(𝑚)). Note that, only in the first round 𝑡 = 1,411

all Q-values are updated by using the chosen option’s reward 𝑟𝑖,1(𝑚), so that the individual can412

set a naive ‘intuition’ about the magnitude of reward values she/he would expect to earn from a413

choice in the task; namely, 𝑄𝑖,𝑡=2(1) = 𝑄𝑖,𝑡=2(2) = 𝑄𝑖,𝑡=2(3) = 𝛼𝑖𝑟𝑖,𝑡=1(𝑚). In practical terms,414

this prevents the model from being overly sensitive to the first experience. Before the first choice,415

individuals had no prior preference for either option (i.e. 𝑄𝑖,1(1) = 𝑄𝑖,1(2) = 𝑄𝑖,1(3) = 0).416

Second, a choice is made for an option 𝑚 by individual 𝑖 at the choice probability 𝑃𝑖,𝑡(𝑚) that417

is determined by a weighted average of social and asocial influences:418

𝑃𝑖,𝑡(𝑚) = 𝜎𝑖,𝑡𝑆𝑖,𝑡(𝑚) + (1 − 𝜎𝑖,𝑡)𝐴𝑖,𝑡(𝑚), (5)

where 𝜎𝑖,𝑡 is the social learning weight (0 ≤ 𝜎𝑖,𝑡 ≤ 1), and 𝑆𝑖,𝑡(𝑚) and 𝐴𝑖,𝑡(𝑚) are social and419

asocial influences on the choice probability, respectively (0 ≤ 𝑆𝑖,𝑡(𝑚) ≤ 1 and 0 ≤ 𝐴𝑖,𝑡(𝑚) ≤ 1).420

Note that the sum of choice probabilities, the sum of social influences and the sum of asocial421

influences are all equal to 1; namely,
∑

𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝑃𝑖,𝑡(𝑘) = 1,
∑

𝑘 𝑆𝑖,𝑡(𝑘) = 1 and
∑

𝑘𝐴𝑖,𝑡(𝑘) = 1.422

As for the asocial influence 𝐴𝑖,𝑡, we assumed the so-called softmax (or logit choice) function,423
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which is widely used in the reinforcement-learning literature:424

𝐴𝑖,𝑡(𝑚) =
exp

(
𝛽𝑖,𝑡𝑄𝑖,𝑡(𝑚)

)
∑

𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠 exp
(
𝛽𝑖,𝑡𝑄𝑖,𝑡(𝑘)

) , (6)

where 𝛽𝑖,𝑡, called inverse temperature, manipulates individual 𝑖’s sensitivity to the Q-values (in425

other words, controlling the proneness to explore). As 𝛽𝑖,𝑡 goes to zero, asocial influence approx-426

imates to a random choice (i.e. highly explorative). Conversely, if 𝛽𝑖,𝑡 → +∞, the asocial influ-427

ence leads to a deterministic choice in favour of the option with the highest Q-value (i.e. highly428

exploitative). For intermediate values of 𝛽𝑖,𝑡, individual 𝑖 exhibits a balance between exploration429

and exploitation (Daw et al., 2006; Toyokawa et al., 2017). We allowed for the possibility that430

the balance between exploration-exploitation could change as the task proceeds. To depict such431

time dependence in exploration, we used the equation: 𝛽𝑖,𝑡 = 𝛽∗𝑖,0 + 𝜖𝑖𝑡∕70. If the slope 𝜖𝑖 is432

positive (negative), asocial influence 𝐴𝑖,𝑡 becomes more and more exploitative (explorative) as433

round 𝑡 increases. For a model fitting purpose, the time-dependent term 𝜖𝑖𝑡 is scaled by the total434

round number 70.435

We modelled the social influence (i.e. the frequency-dependent copying) on the probability436

that individual 𝑖 chooses option 𝑚 at round 𝑡 as follows (McElreath et al., 2005, 2008; Aplin et al.,437

2017; Barrett et al., 2017):438

𝑆𝑖,𝑡(𝑚) =

(
𝐹𝑡−1(𝑚) + 0.1

)𝜃𝑖

∑
𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠

(
𝐹𝑡−1(𝑘) + 0.1

)𝜃𝑖
, (7)

where 𝐹𝑡−1(𝑚) is a number of choices made by other individuals (excluding her/his own choice)439

for the option 𝑚 in the preceding round 𝑡 − 1 (𝑡 ≥ 2). 𝜃𝑖 is individual 𝑖’s conformity exponent,440
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−∞ ≤ 𝜃𝑖 ≤ +∞. When this exponent is larger than zero, higher social influence is given to441

an option which was chosen by more individuals (i.e. positive frequency bias). When 𝜃𝑖 < 0,442

on the other hand, higher social influence is given to an option that fewer individuals chose in443

the preceding round 𝑡 − 1 (i.e. negative frequency bias). To implement the negative frequency444

dependence, we added a small number 0.1 to 𝐹 so that an option chosen by no one (i.e. 𝐹𝑡−1 = 0)445

could provide the highest social influence when 𝜃𝑖 < 0. Note, there is no social influence when446

𝜃𝑖 = 0 because in this case the ‘social influence’ favours an uniformly random choice, 𝑆𝑖,𝑡(𝑚) =447

1∕(1 + 1 + 1) = 1∕3, independent of the social frequency distribution. Note also that, in the448

first round 𝑡 = 1, we assumed that the choice is only determined by the asocial softmax function449

because there is no social information available.450

We considered that the social learning weight 𝜎𝑖,𝑡 could change over time as assumed in the451

inverse temperature 𝛽𝑖,𝑡. To let 𝜎𝑖,𝑡 satisfy the constraint 0 ≤ 𝜎𝑖,𝑡 ≤ 1, we used the following452

sigmoidal function:453

𝜎𝑖,𝑡 =
1

1 + exp(−(𝜎∗
𝑖,0 + 𝛿𝑖𝑡∕70))

. (8)

If the slope 𝛿𝑖 is positive (negative), the social influence increases (decreases) over time. We454

set the social learning weight equal to zero when group size is one (i.e. when an individual455

participated in the task alone and/or when
∑

𝑘∈𝑜𝑝𝑡𝑖𝑜𝑛𝑠 𝐹𝑡−1(𝑘) = 0).456

We modelled both the inverse temperature 𝛽𝑖,𝑡 and the social learning weight 𝜎𝑖,𝑡 as a time457

function since otherwise it would be challenging to distinguish different patterns of learning in458

this social learning task (Barrett, 2018). The parameter recovery test confirmed that we were459

able to differentiate such processes under these assumptions (Figure S8-S12). While we also460
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considered the possibility of the conformity exponent being time-dependent (i.e. 𝜃𝑖,𝑡 = 𝜃∗𝑖,0 +461

𝛾𝑖𝑡∕70), the parameter recovery test suggested that the individual slope parameter 𝛾𝑖 was not462

reliably recovered (Figure S20 and S21), and hence we concentrated our analysis on the time-463

independent 𝜃𝑖 model. We confirmed that instead using the alternative model where both social464

learning parameters were time-dependent (i.e. 𝜎𝑖,𝑡 and 𝜃𝑖,𝑡) did not qualitatively change our results465

(Figure S25 and S26).466

In summary, the model has six free parameters that were estimated for each individual human467

participant; namely, 𝛼𝑖, 𝛽∗𝑖,0, 𝜖𝑖, 𝜎∗
𝑖,0, 𝛿𝑖, and 𝜃𝑖. To fit the model, we used a hierarchical Bayesian468

method (HBM), estimating the global means (𝜇𝛼, 𝜇𝛽∗0 , 𝜇𝜖, 𝜇𝜎∗0 , 𝜇𝛿, and 𝜇𝜃) and the global vari-469

ations (𝜈𝛼, 𝜈𝛽∗0 , 𝜈𝜖, 𝜈𝜎∗0 , 𝜈𝛿, and 𝜈𝜃) for each of the three experimental conditions (i.e. the Low-,470

Moderate- and High-uncertain condition), which govern overall distributions of individual pa-471

rameter values. It has become recognised that the HBM can provide more robust and reliable472

parameter estimation than conventional maximum likelihood point estimation in complex cogni-473

tive models (e.g. Ahn et al., 2014), a conclusion with which our parameter recovery test agreed474

(Figure S10-S12).475

3.2 Agent-based model simulation476

We ran a series of individual-based model simulations assuming that a group of individuals play477

our three-armed bandit task (under the Moderate-uncertainty condition) and that individuals be-478

have in accordance with the computational learning-and-decision model. We varied the group479

size (𝑛 ∈ {3, 10, 30}), the mean social learning weight (𝜎̄ ∈ {0.01, 0.1, 0.2, 0.3, ..., 0.9}) and480

the mean conformity exponent (𝜃̄ ∈ {0.5, 1, 3, 6}), running 10,000 replications for each of the481
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possible parameter × group size combinations. As for the other parameter values (e.g. the aso-482

cial reinforcement learning parameters; 𝛼, 𝛽∗0 , 𝜖), here we used the experimentally fitted global483

means (Table 2 and Table S1). Relaxation of this assumption (i.e. using a different set of aso-484

cial learning parameters) does not qualitatively change our story (e.g. Figure S4-S7). Note that485

each individual’s parameter values were randomly drawn from the distributions centred by the486

global mean parameter values fixed to each simulation run. Therefore, the actual composition487

of individual parameter values were different between individuals even within the same social488

group.489

3.3 Participants in the online experiment490

A total of 755 subjects (354 females, 377 males, 2 others and 22 unspecified; mean age (1 𝑠.𝑑.) =491

34.33 (10.9)) participated in our incetivised economic behavioural experiment (Figure S2). The492

experimental sessions were conducted in December 2015 and in January 2016. We excluded493

subjects who disconnected to the online task before completing at least the first 30 rounds from494

our learning model fitting analysis, resulted in 699 subjects (573 subjects entered the group (i.e.495

𝑛 ≥ 2) condition and 126 entered the solitary (i.e. 𝑛 = 1) condition). The task was advertised496

using Amazon’s Mechanical Turk (AMT; https://www.mturk.com; see Video S1; Video S2),497

so that the participants could enter anonymously through their own internet browser window.498

Upon connecting to the experimental game web page, the participants might be required to wait499

on other participants at the virtual ‘waiting room’ for up to 5 minutes or until the requisite number500

of participants arrived, whichever was sooner, before the task starts. The participants were payed501

25 cents for a show-up fee plus a waiting-bonus at a rate of 12 cents per minute (i.e. pro rata502
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to 7.2 USD per hour) and a game bonus (𝑚𝑒𝑎𝑛 ± 1𝑠.𝑑. = 1.7 ± 0.79 USD) depending on their503

performance in the task. The total time, including net time spent in the waiting room, tended to504

be less than 10 minutes.505

3.4 The online three-armed bandit task506

The participants performed a three-armed bandit task for 70 rounds. Each round started with the507

choice stage at which three slot machines appeared on the screen (Figure S1; Video 1). Partic-508

ipants chose a slot by clicking the mouse pointer (or tapping it if they used a tablet computer).509

Participants had a maximum of 8 seconds to make their choices. If no choice was made during510

the choice stage, a ‘TIME OUT’ message appeared in the centre of the screen without a monetary511

reward (average number of missed rounds per participant was 0.18 out of 70 rounds). Partici-512

pants were able to know the rest of the choice time by seeing a ‘count-down bar’ shown at the513

top of the experimental screen.514

Each option yielded monetary rewards randomly drawn from a normal probability distribu-515

tion unique to each slot, rounded up to the next integer, or truncated to zero if it would have been a516

negative value (Figure S3). The standard deviations of the probabilistic payoff distributions were517

identical for all slots and did not change during the task (the 𝑠.𝑑. = 0.55; although it actually was518

slightly smaller than 0.55 due to the zero-truncation). The mean values of the probabilistic pay-519

off were different between the options. ‘Poor’, ‘good’ and ‘excellent’ slots generated the lowest,520

intermediate and the highest rewards on average, respectively. In the first 40 rounds, there were521

two poor and one good options. After the round 40th, one of the poor option abruptly changed to522

an excellent option (i.e. environmental change), and from the 41st round there were poor, good523
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and excellent options.524

Once all the participants in the group made a choice (or had been time-outed), they proceeded525

to the feedback stage in which they could see their own payoff from the current choice for two526

seconds (‘0’ was shown if they had been time-outed), while they could not see others’ reward527

values. After this feedback stage, subjects proceeded to the next round’s choice stage. From the528

second round, a distribution of choices made by all participants in the group at the preceding529

round (i.e. the social frequency information) was shown below each slot.530

Before the task started, participants had read an illustrated instruction which told them that531

they would play 70 rounds of the task, that the payoff would be randomly generated per choice532

but associated with a probability distribution unique to each slot machine, i.e. the profitability533

of the slot might be different from each other, that the environment might change during the534

task so that the mean payoff from the slots might secretly change during the task, and that their535

total payout were decided based on the sum of all earnings they achieved in the task. We also536

explicitly informed subjects that all participants in the same group played the identical task so537

that they could infer that the social information was informative. However, we did not specify538

either the true mean payoff values associated with each option, or when and how the mean payoff539

would actually change. After reading these instructions, participants proceeded to a ‘tutorial task’540

without any monetary reward and without the social frequency information, so as to become541

familiar with the task.542

After they completed the behavioural task or were excluded from the task due to a bad internet543

connection or due to opening another browser window during the task (see the ‘Reducing the risk544

of cheating’ section in the appendix), subjects proceeded to a brief questionnaire page asking545
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about demographic information, which were skippable. Finally, the result screen was shown,546

informing the total monetary reward she/he earned as well as a confirmation code unique for each547

participant. Participants could get monetary reward through AMT by inputting the confirmation548

code into the form at the AMT’s task page.549

3.5 Manipulating the group size and uncertainty550

To manipulate the size of each group, we varied the capacity of the waiting room from 10 to 30.551

Because the task was being advertised on the Worker website at AMT for approximately 2 hours,552

some participants occasionally arrived after the earlier groups had already started. In that case553

the participant entered the newly opened waiting room which was open for the next 5 minutes.554

The number of participants arriving declined with time because newly posted alternative tasks555

were advertised on the top of the task list, which decreased our task’s visibility. This meant that556

a later-starting session tended to begin before reaching maximum room capacity, resulting in the557

smaller group size. Therefore, the actual size differed between groups.558

To investigate the effect of the task uncertainty, we manipulated the closeness of each option’s559

mean payoff value, setting three different conditions in a between-group design. The three condi-560

tions were: Low-uncertainty condition (differences between mean payoffs were 1.264; 𝑁 = 113),561

Moderate-uncertainty condition (differences between mean payoffs were 0.742; 𝑁 = 132) and562

High-uncertainty condition (differences between mean payoffs were 0.3; 𝑁 = 454). The mean563

payoff associated with the ‘excellent’ slot in all three conditions was fixed to 3.1 cents (Figure564

S3). These conditions were randomly assigned for each experimental session. However, we re-565

cruited more participants in the High-uncertainty condition compared to the other two because566
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we expected that larger group sizes would be needed to generate the collective wisdom in noisier567

environments.568

3.6 Statistical analysis569

We used a hierarchical Bayesian method (HBM) to estimate the free parameters of our statis-570

tical models, including the computational learning-and-decision-making model. The HBM al-571

lows us to estimate individual differences, while ensures these individual variations are bounded572

by the group-level global parameters. The HBM was performed under Stan 2.16.2 (http:573

//mc-stan.org) in R 3.4.1 (https://www.r-project.org) software. The models contained574

at least 4 parallel chains and we confirmed convergence of the MCMC using both the Gelman-575

Rubin statistics and the effective sample sizes. Full details of the model fitting procedure and576

prior assumptions are shown in the appendix.577

3.6.1 Parameter recovery test578

To check the validity of our model-fitting method, we conducted a ‘parameter recovery test’579

so as to examine how well our model fitting procedure had been able to reveal true individual580

parameter values. To do this, we generated synthetic data by running a simulation with the581

empirically fitted global parameter values, and then re-fitted the model with this synthetic data582

using the same procedure. The parameter recovery test showed that the all true global parameter583

values were fallen into the 95% Bayesian credible interval (Figure S8), and at least 93% of the584

true individual parameter values were correctly recovered (i.e. 96% of 𝛼𝑖, 93% of 𝛽∗𝑖,0, 95% of585

𝜖𝑖, 97% of 𝜎∗
𝑖,0, 96% of 𝛿𝑖 and 97% of 𝜃𝑖 values were fallen into the 95% Bayesian CI. Figure586
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S9-S12).587

3.6.2 Categorisation of individual learning strategies588

Based on the 50% CI of the individual conformity exponent parameter values 𝜃𝑖, we divided589

the participants into the following three different social learning strategies. If her/his 50% CI590

of 𝜃𝑖 fell above zero (𝜃𝑙𝑜𝑤𝑒𝑟 > 0), below zero (𝜃𝑢𝑝𝑝𝑒𝑟 < 0) or including zero (𝜃𝑙𝑜𝑤𝑒𝑟 ≤ 0 ≤591

𝜃𝑢𝑝𝑝𝑒𝑟), she/he was categorised as a ‘positive frequency-dependent copier’, a ‘negative frequency-592

dependent copier’, or a ‘random choice individual’, respectively. We used the 50% Bayesian CI593

to conduct this categorisation instead of using the more conservative 95% CI because the latter594

would cause much higher rates of ‘false negatives’, by which an individual who applied either a595

positive frequency-dependent copying or a negative-frequency dependent copying strategy was596

falsely labelled as an asocial random choice individual (Figure S10d). Four hundred agents out597

of 572 (≈ 70%) were falsely categorised as a random choice learner in the recovery test when we598

used the 95% criterion (Figure S10d). On the other hand, the 50% CI criterion seemed to be much599

better in terms of the false negative rate which was only 18.5% (i.e. 106 agents), although it might600

be slightly worse in terms of ‘false positives’: Thirty-seven agents (6.5%) were falsely labelled601

as either a positive frequency-dependent copier or a negative-frequency dependent copier by the602

50% CI, whereas the false positive rate of the 95% CI was only 0.2% (Figure S10e). To balance603

the risk of false positives and false negatives, we decided to use the 50% CI which seemed to604

have more strategy detecting power.605
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3.6.3 Generalised linear mixed models606

To examine whether increasing group size and increasing task uncertainty affected individual607

use of the positive frequency-dependent copying strategy, we used a hierarchical Bayesian logis-608

tic regression model with a random effect of groups. The dependent valuable was whether the609

participant used the positive frequency-dependent copying (1) or not (0). The model includes610

fixed effects of group size (standardised), task uncertainty (0: Low, 0.5: Moderate, 1: High), age611

(standardised), gender (0: male, 1: female, NA: others or unspecified), and possible two-way612

interactions between these fixed effects.613

We also investigated the effects of both group size and the task’s uncertainty on the fitted614

values of the learning parameters. We used a hierarchical Bayesian gaussian regression model615

predicting the individual fitted parameter values. The model includes effects of group size (stan-616

dardised), task uncertainty (0: Low, 0.5: Moderate, 1: High), age (standardised), gender (0:617

male, 1: female, NA: others or unspecified), and two-way interactions between these fixed ef-618

fects. We assumed that the variance of the individual parameter values might be contingent upon619

task uncertainty because we had found in the computational model-fitting result that the fitted620

global variance parameters (i.e. 𝜈𝜎∗0 , 𝜈𝛿 and 𝜈𝜃) were larger in more uncertain conditions (Table621

S1).622

3.6.4 Post-hoc model simulation for Figure 4d-f623

So as to evaluate how accurately our model can generate observed decision pattern in our task624

setting, we ran a series of individual-based model simulation using the fitted individual param-625

eter values (i.e. means of the individual posterior distributions) for each group size for each626
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uncertainty condition. At the first step of the simulation, we assigned a set of fitted parameters627

of a randomly-chosen experimental subject from the same group size and the same uncertain628

condition to an simulated agent, until the number of agents reaches the simulated group size. We629

allowed duplicate choice of experimental subject in this parameter assignment. At the second630

step, we let this synthetic group of agents play the bandit task. We repeated these steps 5,000631

times for each group size, task uncertainty.632

3.7 Code and data availability633

The browser based online task was built by Node.js (https://nodejs.org/en/) and socket.io634

(https://socket.io), and the code are available on a GitHub repository (https://github.635

com/WataruToyokawa/MultiPlayerThreeArmedBanditGame). Analyses were conducted in636

R (https://www.r-project.org) and simulations of individual based models were conducted637

in Mathematica (https://www.wolfram.com), both of which including data are available on an638

online repository (https://github.com/WataruToyokawa/ToyokawaWhalenLaland2018).639
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