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ABSTRACT 26 

Previous findings of Middle East Respiratory Syndrome coronavirus (MERS-CoV)-27 

related viruses in bats, and the ability of Tylonycteris-BatCoV HKU4 spike protein to utilize 28 

MERS-CoV receptor, human dipeptidyl peptidase 4 hDPP4, suggest a bat ancestral origin of 29 

MERS-CoV. We developed 12 primary bat cell lines from seven bat species, including 30 

Tylonycteris pachypus, Pipistrellus abramus and Rhinolophus sinicus (hosts of Tylonycteris-31 

BatCoV HKU4, Pipistrellus-BatCoV HKU5 and SARS-related-CoV respectively), and tested 32 

their susceptibilities to MERS-CoVs, SARS-CoV and human coronavirus 229E (HCoV-229E). 33 

Five cell lines, including P. abramus and R. sinicus but not T. pachypus cells, were susceptible 34 

to human MERS-CoV EMC/2012. However, three tested camel MERS-CoV strains showed 35 

different infectivities, with only two strains capable of infecting three and one cell lines 36 

respectively. SARS-CoV can only replicate in R. sinicus cells, while HCoV-229E cannot 37 

replicate in any bat cells. Bat dipeptidyl peptidase 4 (DPP4) sequences were closely related to 38 

those of human and non-human primates but distinct from dromedary DPP4 sequence. Critical 39 

residues for binding to MERS-CoV spike protein were mostly conserved in bat DPP4. DPP4 40 

was expressed in the five bat cells susceptible to MERS-CoV, with significantly higher mRNA 41 

expression levels than those in non-susceptible cells (P=0.0174), supporting that DPP4 42 

expression is critical for MERS-CoV infection in bats. However, overexpression of T. pachypus 43 

DPP4 failed to confer MERS-CoV susceptibility in T. pachypus cells, suggesting other cellular 44 

factors in determining viral replication. The broad cellular tropism of MERS-CoV should 45 

prompt further exploration of host diversity of related viruses to identify its ancestral origin. 46 
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IMPORTANCE 48 

Existing evidence suggests that MERS-CoV may be originated from bats. In particular, 49 

Tylonycteris-BatCoV HKU4 spike protein was shown to utilize MERS-CoV receptor, human 50 

dipeptidyl peptidase 4 (DPP4). To better understand the potential infectivities of MERS-CoV in 51 

bats, we developed 12 primary bat cell lines from seven bat species, including Tylonycteris 52 

pachypus and Rhinolophus sinicus (host of Tylonycteris-BatCoV HKU4 and SARS-related-53 

CoV respectively). MERS-CoV demonstrated much broader cellular tropism than SARS-CoV 54 

and HCoV-229E, being able to infect five cell lines, including R. sinicus but not T. pachypus 55 

cells. The close phylogenetic relationship between bat and human DPP4 genes supported the 56 

ability of MERS-CoV to infect bat cells, while DPP4 expression appeared critical for MERS-57 

CoV replication. However, overexpression of T. pachypus DPP4 failed to confer MERS-CoV 58 

susceptibility in T. pachypus cells. The broad cellular tropism of MERS-CoV may reflect the 59 

host diversity of MERS-CoV-related viruses and offers insights into its ancestral origin. 60 

61 
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INTRODUCTION 62 

Coronaviruses (CoVs) are important pathogens in animals and humans, responsible for a 63 

variety of respiratory, enteric, hepatic and neurological diseases. They are now classified into 64 

four genera, Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus, 65 

with Betacoronavirus further divided into lineages A to D (1-6). Humans are infected by six 66 

CoVs, including human CoV 229E (HCoV-229E) and human CoV NL63 (HCoV-NL63) 67 

belonging to Alphacoronavirus; human CoV OC43 (HCoV-OC43) and human CoV HKU1 68 

(HCoV HKU1) belonging to Betacoronavirus lineage A; Severe Acute Respiratory Syndrome-69 

related CoV (SARSr-CoV) belonging to Betacoronavirus lineage B; and Middle East 70 

Respiratory Syndrome CoV (MERS-CoV) belonging to Betacoronavirus lineage C (7-16). The 71 

emergence potential of CoVs is believed to be related to their tendency for mutation and 72 

recombination, allowing the generation of new viruses being able to adapt to new hosts (5, 17-73 

24).  74 

Bats are an important reservoir of alphacoronaviruses and betacoronaviruses which may 75 

jump to other animals or humans to cause new epidemics (4, 25). For example, SARS-CoV is 76 

likely a recombinant virus originated from horseshoe bats as the primary reservoir and palm 77 

civet as the intermediate host (22, 26-33). Since the SARS epidemic, numerous other novel 78 

CoVs from humans or animals have been discovered (4, 34-40), allowing a better 79 

understanding of the evolutionary origin of emerging CoVs.    80 

Although dromedary camels are now known to be the immediate animal source of the 81 

recent MERS epidemic, the evolutionary origin of MERS-CoV remains obscure (41-43) When 82 

the virus was first discovered, it was found to be closely related to Tylonycteris bat CoV HKU4 83 

(Ty-BatCoV HKU4) and Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) previously 84 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 20, 2018. ; https://doi.org/10.1101/326538doi: bioRxiv preprint 

https://doi.org/10.1101/326538


 6 

discovered in lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus 85 

abramus) respectively in Hong Kong (5, 14, 15, 44, 45). Five other lineage C betacoronaviruses 86 

closely related to MERS-CoV were subsequently detected in bats, including BtVs-87 

BetaCoV/SC2013, Hp-BatCoV HKU25 from China bats and Coronavirus Neoromicia/PML-88 

PHE1/RSA/2011 (NeoCoV), BtCoVNeo5038/KZN/RSA/2015 and BatCoV PREDICT/PDF-89 

2180 from African bats (46-50). Besides bats, a lineage C betacoronavirus, Erinaceus CoV 90 

VMC/DEU, subsequently defined as a novel species, Hedgehog coronavirus 1, has also been 91 

discovered in European hedgehogs, a group of animals being phylogenetically closely related to 92 

bats (51). While none of these animal viruses represents the immediate ancestor of MERS-CoV, 93 

the spike protein of Ty-BatCoV HKU4 was most closely related to that of MERS-CoV, and was 94 

shown to utilize the MERS-CoV receptor, human dipeptidyl peptidase 4 (hDPP4) or CD26, for 95 

cell entry (52, 53). Previous studies have also shown that MERS-CoV was able to infect bat cell 96 

lines and Jamaican fruit bats (54, 55). These findings suggest that bats may be the primary host 97 

of the ancestor of MERS-CoV.  98 

Although MERS-CoV has been shown to replicate in various animal cell lines including 99 

bat cells (54-59), the broad tissue tropism was mainly demonstrated using type strain 100 

EMC/2012, and no comparison was made between different MERS-CoV strains. Moreover, 101 

cells from the bat hosts of MERS-CoV-related viruses, such as T. pachypus and P. abramus 102 

which harbor Ty-BatCoV HKU4 and Pi-BatCoV HKU5 respectively, were not included in 103 

previous studies, which may be due to the geographical limitation of these bat species. To better 104 

understand the replicative ability of MERS-CoV in bat cells, which may provide clues on the 105 

origin of MERS-CoV, we developed diverse primary bat cell lines from different bat species, 106 

including Rhinolophus sinicus (the host of SARSr-BatCoV) and T. pachypus (the host of Ty-107 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 20, 2018. ; https://doi.org/10.1101/326538doi: bioRxiv preprint 

https://doi.org/10.1101/326538


 7 

BatCoV HKU4), and tested their susceptibilities to infection by different strains of MERS-CoV, 108 

SARS-CoV and HCoV-229E. The DPP4 mRNA sequences of six bat species and their 109 

expression in bat cells were determined to correlate with viral replication results. Our findings 110 

showed differential cell tropism between different strains of MERS-CoV, SARS-CoV and 111 

HCoV-229E, which offers insights to the origin of MERS-CoV.       112 

113 
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RESULTS 114 

Five of 12 tested bat cell lines are susceptible to MERS-CoV EMC/2012 infection. Since 115 

lineage C betacoronaviruses closely related to MERS-CoV were detected in bats, we developed 116 

12 diverse primary bat cell lines from seven different bat species, including Hipposideros 117 

pomona, Miniopterus pusillus, Myotis ricketti, Pipistrellus abramus (the host of Pi-BatCoV 118 

HKU5), Rhinolophus sinicus (the host of SARSr-BatCoV and Rs-BatCoV HKU2), Tylonycteris 119 

pachypus (the host of Ty-BatCoV HKU4), Rousettus leschenaultii (the host of many viruses 120 

including Ro-BatCoV HKU9), which were subject to infection with MERS-CoV at multiplicity 121 

of infection (MOI) of 1. Viral titers were determined by RT-qPCR on day 5 p.i.. Five of the 12 122 

cell lines (M. ricketti lung, P. abramus kidney, R. sinicus kidney and lung, and R. leschenaulti 123 

kidney cells) propagated MERS-CoV with at least one log10 increase in viral load. The highest 124 

increase in viral load was observed in R. sinicus kidney and lung cells, which was comparable 125 

to that observed in Vero cells (Fig. 1). Cytopathic effects (CPEs) were observed in infected M. 126 

ricketti lung and R. sinicus lung cells (Fig. 2). The infectivities of the viruses from culture 127 

supernatants were confirmed by passage in Vero cells with CPE. H. pomona kidney, M. pusillus 128 

kidney, M. ricketti kidney, P. abramus lung, R. leschenaulti lung and T. pachypus kidney and 129 

lung cells did not support MERS-CoV infection.  130 

Different MERS-CoV strains displayed different infectivities on bat cells. MERS-131 

CoVs are currently classified into three major clades, clade A, B and C, which were further 132 

divided into subclades A1-A2, B1-B6, C1 and non-C1 (60-63). To test if different MERS-CoV 133 

strains may show similar infectivities on bat cells, the five bat cells (M. ricketti lung, P. 134 

abramus kidney, R. sinicus kidney and lung, and R. leschenaulti kidney cells), which were 135 

susceptible to MERS-CoV EMC/2012 (belonging to clade A1), were subject to infection by 136 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 20, 2018. ; https://doi.org/10.1101/326538doi: bioRxiv preprint 

https://doi.org/10.1101/326538


 9 

three other MERS-CoV strains isolated from camels in Dubai, D998/15 (belonging to clade A2), 137 

and D1189.1/15 and D1271.1/15 (both belonging to clade B3)(62). Among the five challenged 138 

bat cells, M. ricketti lung supported infection by both D1189.1/15 and D1271.1/15; while R. 139 

sinicus lung and R. leschenaulti kidney supported infection by D1189.1/15, with at least one 140 

log10 increase in viral load. None of the cells supported infection by D998/15 (Fig. 1). 141 

SARS-CoV can replicate in R. sinicus cells. Since Chinese horseshoe bats are the 142 

major reservoir of SARS-related-CoVs, we also tested the 12 bat cell lines, including R. sinicus 143 

cells, for susceptibility to a clinical strain of SARS-CoV. SARS-CoV strain HKU-39849 can 144 

replicate in R. sinicus kidney but not lung cells, with at least one log10 increase in viral load (Fig. 145 

3A). The other bat cells did not support SARS-CoV infection.  146 

HCoV-229E cannot replicate in bat cells. The 12 bat cells were also tested for 147 

susceptible to HCoV-229E infection. HCoV-229E strain ATCC VR-740, previously isolated 148 

from a man with upper respiratory illness, cannot replicate in any of the tested bat cells (Fig. 149 

3B). 150 

mRNA transcript sequence analysis and expression of DPP4 in bat cells. Partial 151 

DPP4 mRNA transcript sequences (corresponding to nt 688-1040 of hDPP4 which includes 152 

residue 229-346 where the critical residues for MERS-CoV spike protein binding are present) 153 

were determined for six of the seven bat species from which the 12 tested bat cells were 154 

developed. The sequence of M. pusillus was not determined, as RT-PCR for the DPP4 mRNA 155 

from bat cells was negative. Phylogenetic analysis showed that the bat DPP4 mRNA sequences 156 

formed a distinct cluster being closely related to sequences from human and non-human 157 

primates; while the dromedary camel DPP4 sequence was most closely related to that of wild 158 

boar (Fig. 4A). Previous studies have identified 14 critical residues in hDPP4 for binding of 159 
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MERS-CoV spike protein (64, 65). Upon multiple sequence alignment of the corresponding 160 

regions that contain these critical residues, most of the residues are conserved in the six bat 161 

DPP4 sequences in this study (Fig. 3B). Notably, T. pachypus DPP4 (Tp-DPP4) contains an 162 

I→K substitution at position 295 compared to hDPP4. On the other hand, residue R336 of 163 

hDPP4 was only conserved in T. pachypus and H. pomona, both not susceptible to MERS-CoV 164 

infection.  165 

RT-qPCR of bat DPP4 mRNA in the corresponding bat cells was performed to 166 

determine the mRNA expression levels. Results showed that DPP4 mRNA was expressed in all 167 

the five bat cells that were susceptible to MERS-CoV infection, while it was also expressed in 168 

H. pomona kidney and R. leschenaulti lung cells which were not susceptible to MERS-CoV 169 

infection. The mRNA expression level in P. abramus kidney (susceptible to MERS-CoV) was 170 

significantly higher than that in its lung (no-susceptible) cells (P=0.0185 by student’s t test). 171 

Similarly, the mRNA expression level in R. leschenaulti kidney (susceptible to MERS-CoV) 172 

was significantly higher than that in its lung (no-susceptible) cells (P=0.0009 by student’s t test). 173 

Compared to bat cells that are non-susceptible, bat cells that are susceptible to MERS-CoV 174 

showed a significantly higher mRNA expression level (P=0.0174 by student’s t test) (Fig. 5).  175 

Over-expression of Tp-DPP4 does not confer MERS-CoV EMC/2012 susceptibility 176 

to T. pachypus cells. Since DPP4 was not expressed in T. pachypus cells while this bat species 177 

hosts Ty-BatCoV HKU4, a close relative of MERS-CoV which can utilize hDPP4 for cell entry 178 

(52, 53), we overexpressed Tp-DPP4 in T. pachypus lung and kidney cells for infection by 179 

MERS-CoV. While a slight increase (less than one log10) in viral replication was noted in both 180 

mock and Tp-DPP4-overexpressed cells on day 5 p.i., no significant difference was noted 181 
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between mock and Tp-DPP4-overexpressed cells (Fig. 6) , suggesting that over-expression of 182 

Tp-DPP4 does not confer MERS-CoV susceptibility to T. pachypus cells.   183 

184 
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DISCUSSION 185 

The present study provides further support to the bat origin of MERS-CoV. Previous 186 

studies have shown that MERS-CoV can infect cell lines from different animals including cells 187 

from various bat species (54-58). However, bat cells from host species of MERS-Co-V-related 188 

viruses, such as T. pachypus and P. abramus which harbor Ty-BatCoV HKU4 and Pi-BatCoV 189 

HKU5 respectively, were not included in these studies. In this study, MERS-CoV EMC/2012 190 

was able to replicate in cells from four different bat genera/species belonging to three different 191 

bat families including Pteropodidae, Rhinolophidae and Vespertilionidae. None of these bat 192 

cells were previously reported to support MERS-CoV replication. While lineage C 193 

betacoronaviruses have not been detected in bats outside the Vespertionionidae family, such 194 

diverse cellular tropism should prompt further studies to explore the host diversity of this group 195 

of CoVs and hence the possible evolutionary origin of MERS-CoV. In particular, the ability of 196 

MERS-CoV to replicate in cells from P. abramus, the host of Pi-BatCoV HKU5, may suggest 197 

that the ancestor of MERS-CoV could have originated from Pipistrellus-related bats. 198 

Interestingly, MERS-CoV showed the highest replicative ability in cells from R. sinicus. This 199 

suggests that MERS-CoV may potentially infect this bat species which is also the natural 200 

reservoir of SARSr-CoVs and animal origin of SARS-CoV (27, 29). Nevertheless, three other 201 

MERS-CoV strains belonging to either clade A2 or B3 showed differential replicative abilities 202 

in the five bat cell lines that were susceptible to EMC/2012 strain (clade A1), with strain 203 

D998/15 (clade A2) unable to replicate in all five tested cell lines. This may suggest that 204 

different MERS-CoV strains could possess different cellular tropism and host range.  205 

The broader cellular tropism of MERS-CoV than SARS-CoV and HCoV-229E in bat 206 

cells may reflect the host diversity of lineage C betacoronaviruses in bats. Bats are now known 207 
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to be the recent origin of at least two human CoVs including SARS-CoV and HCoV-229E. 208 

SARS-CoV is likely a recombinant virus arising from horseshoe bats before it jumped to civet 209 

as the intermediate host and then human (22, 31, 32, 66). SARSr-CoVs in bats were shown to 210 

utilize the SARS-CoV receptor, human angiotensin-converting enzyme 2 (hACE2), for cell 211 

entry (67). Similar to SARS-CoV, HCoV-229E is likely to have originated from bats. CoVs 212 

closely related to HCoV-229E have been detected in bats of the genus Hipposideros in Africa 213 

(68). More recently, CoVs even closer to HCoV-229E were identified in dromedary camels in 214 

the Middle East, which were able to utilize the receptor of HCoV-229E, human aminopeptidase 215 

N (hAPN) for cell entry (69). This suggests that dromedary camels may have served as 216 

intermediate hosts for bat-to-human transmission of HCoV-229E, which may be analogous to 217 

the evolution of MERS-CoV. Recently, a CoV, closely related to HCoV-NL63 in most genome 218 

regions except the spike protein, was detected from a bat of the genus Triaenops in Kenya (70). 219 

However, further studies are required to identify even closer relatives of HCoV-NL63 to 220 

ascertain its possible bat origin. In contrast to SARSr-CoVs and HCoV-229E which were 221 

mainly found in horseshoe and roundleaf bats respectively, a more diverse host range was 222 

observed in lineage C betacoronaviruses. Yet, the different bat species harboring lineage C 223 

betacoronaviruses all belonged to the family Vespertilionidae. Specifically, Ty-BatCoV HKU4, 224 

Pi-BatCoV HKU5, Hp-BatCoV HKU25 and BtVs-BetaCoV/SC2013 were detected in bats 225 

belonging to the genera, Tylonycteris, Pipistrellus, Hypsugo and Verspetilio, respectively in 226 

China, whereas NeoCoV and BatCoV PREDICT/PDF-2180 were detected in bats belonging to 227 

Neoromicia and Pipistrellus in Africa (47, 48). In this study, SARS-CoV could only replicate in 228 

R. sinicus kidney cells but not other bat cells, which reflects its evolutionary origin from 229 

horseshoe bats. On the other hand, HCoV-229E was unable to replicate in any tested bat cells 230 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 20, 2018. ; https://doi.org/10.1101/326538doi: bioRxiv preprint 

https://doi.org/10.1101/326538


 14 

including cells from Hipposideros. This may suggest a relatively narrow host range of SARS-231 

CoV and HCoV-229E in bats compared to lineage C betacoronaviruses including MERS-CoV.  232 

The close phylogenetic relationship between bat and primate DPP4 sequences may 233 

reflect the replicative ability of MERS-CoV in bat cells. Moreover, cells that supported MERS-234 

CoV replication showed significantly higher DPP4 mRNA expression than those that were non-235 

susceptible to MERS-CoV, suggesting that cellular DPP4 expression is critical for viral 236 

infection. Since Ty-BatCoV HKU4 from T. pachypus was previously shown to be able to utilize 237 

hDPP4 for cell entry (52, 53), we expected MERS-CoV to be able to utilize Tp-DPP4 for 238 

receptor binding and infect T. pachypus cells. While the inability of MERS-CoV to replicate in 239 

T. pachypus cells may be partly explained by the lack of DPP4 expression, over-expression of 240 

Tp-DPP4 was unable to confer viral susceptibility. Further studies are required to study the 241 

receptor-binding interphase between MERS-CoV and Tp-DPP4 and whether other cellular 242 

factors may play a role in determining viral replicative abilities in T. pachypus cells, which may 243 

offer further insights into the evolutionary origin and mechanisms of interspecies transmission 244 

of MERS-CoV. Interestingly, one of the critical residues for binding to MERS-CoV spike 245 

protein, R336, was only conserved in T. pachypus and H. pomona DPP4 (cells from these two 246 

species did not support MERS-CoV replication), but not in the other four sequenced bat DPP4 247 

(cells from these four species supported MERS-CoV replication). This suggests that this residue 248 

may be less important for receptor binding. Binding and mutagenesis studies may help better 249 

understand the role of receptor-binding-interphase during viral evolution and interspecies 250 

jumping. 251 

252 
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MATERIALS AND METHODS 253 

Ethics statement. The collection of bat samples for developing bat cell lines was 254 

approved by the Committee on the Use of Live Animals for Teaching and Research, the 255 

University of Hong Kong, Hong Kong, China.  256 

 Cell lines. The bat cells, Vero (African green monkey kidney) cells and HFL (human 257 

embryonic lung fibroblast) cells used in this study are described in Table 1. For development of 258 

primary bat cell lines, bats were captured in Hong Kong and euthanized before dissection for 259 

recovery of cells from organs aseptically. Briefly, kidney and lung tissue were rinsed with cold 260 

PBS and cut into small pieces. Cold 0.25% trypsin-EDTA was added to the tissues and 261 

incubated at 4ºC overnight. Tissues were then incubated at 37ºC on shaking platform for 30 min. 262 

Supernatants were filtered through cell strainers to remove large pieces of tissues (71) Bat cells 263 

were harvested by spinning down the supernatant at 1200 rpm for 8 min and were grown in 264 

DMEM/F12 supplemented with 15% FBS. Vero and HFL cells were grown in MEM 265 

supplemented with 10% FBS. All cells were incubated at 37ºC with 5% CO2. 266 

 Virus isolates. MERS-CoV strain EMC/2012 was provided by Fouchier and Zaki et al 267 

(14). MERS-CoV strains D998/15, D1189.1/15 and D1271.1/15 were isolated from dromedary 268 

camels in Dubai(62). SARS-CoV strain HKU-39849 was isolated from the brother-in-law of 269 

the index patient in Hong Kong during the SARS epidemic (10). The HCoV-229E strain ATCC 270 

VR-740 was used. MERS-CoV isolates and SARS-CoV were propagated in Vero cells at MOI 271 

of 0.01 in MEM supplemented with 1% FBS. HCoV-229E was propagated in HFL. 272 

Infection of bat cell lines. Viral titers were determined as median tissue culture 273 

infective dose (TCID50) per ml in confluent cells in 96-well microtiter plates. Cells were seeded 274 

onto 24-well tissue culture plates, at 2×10
5
 cells per well with the respective medium and 275 
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incubated at 37°C and 5% CO2 for 24 h prior to experiment. Cells were washed once with PBS 276 

and inoculated with 1 MOI of MERS-CoV or SARS-CoV, or 0.01 MOI of 229E for 1 h. After 1 277 

h of viral adsorption, the supernatant was removed and cells were washed twice with PBS. The 278 

cells were maintained in MEM supplemented with 1% FBS for Vero and HFL cells and 279 

DMEM/F12 supplemented with 1% FBS for bat cells, before further incubation for 5 days.  280 

Viral replication studies. To study viral replication efficiency, progeny viruses from 281 

cell culture supernatants collected at 5 days post-infection (p.i.) were subject to reverse 282 

transcription-quantitative PCR (RT-qPCR) according to our previous protocols (72). Briefly, 283 

total RNA extracted from cell culture supernatants with QIAsymphony DSP Virus/Pathogen 284 

Mini Kit (Qiagen, Hilden, Germany) was reverse transcribed and amplified with MERS-CoV 285 

primers (forward primer 5’ -CAAAACCTTCCCTAAGAAGGAAAAG -3'; reverse primer 5'- 286 

GCTCCTTTGGAGGTTCAGACAT -3'), SARS-CoV primers (forward 5’- 287 

ACCAGAATGGAGGACGCAATG-3’; reverse 5’-GCTGTGAACCAAGACGCAGTATTAT-288 

3′) and HCoV-229E primers (forward 5’-CAGTCAAATGGGCTGATGCA-3’; reverse 5’-289 

AAAGGGCTATAAAGAGAATAAGGTATTCT-3’) using real-time one-step quantitative RT-290 

PCR assay as described previously with modifications (56, 72). Probes for MERS-CoV [5’-291 

(FAM)ACAAAAGGCACCAAAAGAAGAATCAACAGACC(BHQ1)-3'], SARS-CoV [5’-292 

(FAM)ACCCCAAGGTTTACCC(NFQ)-3’]  and HCoV-229E [5’-293 

(FAM)CCCTGACGACCACGTTGTGGTTCA(BHQ1)-3’] were used (Table 2). Reactions 294 

were first incubated at 50
o
C for 30 min, followed by 95

o
C for 2 min, and were then thermal 295 

cycled for 50 cycles (95
o
C for 15 s, 55

o
C for 30 s). A series of 10 log10 dilutions equivalent to 1 296 

× 10
1
 to 1 × 10

10
 copies per reaction mixture were prepared to generate calibration curves and 297 

were run in parallel with the test samples. All experiments were performed in triplicate. 298 
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Amplification and sequencing of partial bat DPP4 mRNA transcripts. Total RNA 299 

was extracted from bat cell lysates using RNeasy Mini Spin Column (QIAgen). cDNA was 300 

PCR amplified with primers, 5’- GTCACCAGAGGGTCATAAA-3’ and 5’- 301 

CCACTTCCTCTGCCATCAAA-3’. The PCR mixture (25 l) contained cDNA, PCR buffer, 302 

200 M (each) dNTPs, and 1.0 U Iproof Polymerase (Bio-Rad, Hercules, USA). The mixtures 303 

were amplified for 40 cycles of 98°C for 10 sec, 55°C for 30 sec and 72°C for 72 sec and a final 304 

extension at 72°C for 10 min in an automated thermal cycler (Applied Biosystems, Foster City, 305 

USA). RT-PCR products were gel purified using QIAquick gel extraction kit (Qiagen), and 306 

sequenced with an ABI Prism 3700 DNA Analyzer (Applied Biosystems). The sequences 307 

obtained were compared with sequences of DPP4 genes in GenBank database. Phylogenetic 308 

tree construction was performed based on an amino acid alignment of partial DPP4 sequences 309 

(corresponding to residue 229-346 of hDPP4) using Neighbor-Joining method with JTT model 310 

by MEGA 6.0, with bootstrap values calculated from 1000 trees. 311 

DPP4 expression analysis. To study DPP4 expression profiles in different bat cell lines, 312 

cell lysates were collected for total RNA extraction using RNeasy Mini Spin Column (QIAgen). 313 

RNA was eluted in 50 l of RNase-free water and was used as template for one step RT-qPCR 314 

with SuperScript III platinum One-step qRT-PCR system (Invitrogen, Carlsbad, USA). RT-315 

qPCR assays were performed using conserved primers designed by multiple alignment of 316 

available bat DPP4 gene sequences (Table 2), using β-actin for normalization. cDNA was 317 

amplified in a LightCycler 480 (Roche, Basel, Switzerland) with 25 l reaction mixtures 318 

containing 2× reaction mix, 5 l RNA, 25 μM ROX reference dye, 50 μM primers and 10 μM 319 

probe at 50°C for 30 min, then 95°C for 2 min followed by 50 cycles of denaturation, annealing 320 

and extension. Experiments were performed in triplicates, and results were expressed as the 321 
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mean expression level of DPP4/β-actin. The relative expression between different bat cells was 322 

then calculated by ΔΔCt method.  323 

tpDPP4 overexpression in T. pachypus cells. T. pachypus DPP4 (tpDPP4) sequence 324 

was cloned into pLenti7.3/V5-TOPO vector (Invitrogen). The construct was transfected into 325 

293FT cells together with ViraPower Packaging Mix (Invitrogen) using Lipofectamine 2000 326 

(Life Technologies, Carlsbad, USA). Lentivirus was harvested from the supernatant and 327 

concentrated using PEG-it (System Biosciences, Palo Alto, USA). T. pachypus cells resistant to 328 

MERS-CoV were transduced using the concentrated lentivirus for tpDPP4 overexpression and 329 

were subsequently subjected to inoculation with 1 MOI of MERS-CoV. 330 

Nucleotide sequence accession numbers. The nucleotide sequences of bat DPP4 331 

obtained from this study have been deposited in the GenBank sequence database under 332 

accession numbers MH345671-MH345676.  333 

334 
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LEGENDS TO FIGURES 632 

FIG 1 The 12 bat cell lines (PAK: Pipistrellus abramus kidney, PAL Pipistrellus abramus lung, 633 

RSK: Rhinolophus sinicus kidney, RSL: Rhinolophus sinicus lung, MRK: Myotis ricketti kidney, 634 

MRL: Myotis ricketti lung, TPK: Tylonycteris pachypus kidney, TPL: Tylonycteris pachypus 635 

lung, HPK: Hipposideros pomona kidney, RLK: Rousettus leschenaultii kidney, RLL: Rousettus 636 

leschenaultii lung, MPK: Miniopterus pusillus kidney) and Vero cells were subject to infection 637 

by MERS-CoV EMC/2012 (belonging to clade A1) with MOI of 1 (A). Culture supernatants 638 

were harvested at day 0 and 5 post infection. Viral titers were determined by real-time 639 

quantitative RT-PCR. Viral load was expressed as log10 copies/mL. Error bars indicate the 640 

standard deviation of triplicate samples. The five bat cell lines susceptible to MERS-CoV 641 

EMC/2012 infection with ≥1 log10 increase in viral load at day 5 were marked with red triangles. 642 

They were subject to infection by three other MERS-CoV strains isolated from camels in Dubai, 643 

D998/15 (belonging to clade A2) (B), D1189.1/15 (C) and D1271.1/15 (D) (belonging to clade 644 

B3) (B). Different MERS-CoV strains displayed different infectivities in these five bat cells. 645 

(*P < 0.05; **P < 0.01; ***P < 0.001) 646 

FIG 2 Cytopathic effects (CPE) were observed in infected M. ricketti lung, R. sinicus lung and 647 

Vero cells on 5 days post infection. CPE was compared between Myotis ricketti lung 648 

(immortalized) cells that were uninfected (control) (A), and infected with Dubai camel MERS 649 

strains D998/15 (B), D1189.1/15 (C) & D1271.1/15. CPE was compared between Rhinolophus 650 

sinicus lung (immortalized) cells that were uninfected (control) (E), and infected with Dubai 651 

camel MERS strains D998/15 (F), D1189.1/15 (G) & D1271.1/15 (H). CPE was compared 652 
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between Vero cells that were uninfected (control) (I), and infected with Dubai camel MERS 653 

strains D998/15 (G), D1189.1/15 (K) & D1271.1/15 (L).  654 

FIG 3 The 12 bat cell lines (PAK: Pipistrellus abramus kidney, PAL Pipistrellus abramus lung, 655 

RSK: Rhinolophus sinicus kidney, RSL: Rhinolophus sinicus lung, MRK: Myotis ricketti kidney, 656 

MRL: Myotis ricketti lung, TPK: Tylonycteris pachypus kidney, TPL: Tylonycteris pachypus 657 

lung, HPK: Hipposideros pomona kidney, RLK: Rousettus leschenaultii kidney, RLL: Rousettus 658 

leschenaultii lung, MPK: Miniopterus pusillus kidney) and Vero/HFL cells were subject to 659 

infection by SARS-CoV with MOI of 1 (A) and HCoV-229E with MOI of 0.01(B). Culture 660 

supernatants were harvested at day 0 and 5 post infection. Viral titers were determined by real-661 

time quantitative RT-PCR. Viral load was expressed as log10 copies/mL. Error bars indicate the 662 

standard deviation of triplicate samples. Only RSK cells can support SARS-CoV infection with 663 

≥1 log10 increase in viral load at day 5 (blue triangle) and none of the 12 bat cell lines support 664 

HCoV-229E infection. (*P < 0.05; **P < 0.01; ***P < 0.001) 665 

FIG 4 Phylogenetic analyses of partial dpp4 mRNA sequences of human, camels, bats and other 666 

animals (A). The trees were constructed by Neighbor-Joining method using JTT substitution 667 

models and bootstrap values calculated from 1000 trees. Only bootstrap values >70% are shown. 668 

112 aa positions were included in the analyses. The scale bars represent 20 substitutions per site. 669 

Bat DPP4s that are sequenced in this study are labelled with black circles. Comparison of critical 670 

amino acid residues in DPP4 from different animal host for receptor binding in the region of 671 

residues 229-346 with respect to human DPP4 (B). 672 

FIG 5  DPP4 expression analysis of bat cell lines (A). mRNA levels of DPP4 were measured in 673 

various bat cells extracts by RT-qPCR and plotted relative to Vero cells, normalized by β-actin 674 
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mRNA levels. The mRNA levels of DPP4 were compared between susceptible and non-675 

susceptible bat cell lines (B). Statistical significance was assessed by Student’s t test P < 0.05. 676 

FIG 6 Infection assay of T. pachypus lung and kidney cells with tpDPP4 overexpression. Cells 677 

were infected with MERS-CoV at a multiplicity of infection (MOI) of 1 for 5 days. 678 

Determination of MERS-CoV viral load in supernatant (n = 3) by RT-qPCR with normalisation 679 

to beta-actin (represented by bar). Determination of tpDPP4 expression in cell lysates (n = 3) by 680 

RT-qPCR with normalisation to beta-actin (represented by dot). (*P<0.05, **P<0.01, 681 

***P<0.001) 682 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 20, 2018. ; https://doi.org/10.1101/326538doi: bioRxiv preprint 

https://doi.org/10.1101/326538


 37 

Table 1. Cell lines used in the present study 683 

 684 

Organism Site of origin Source 

Bat Hipposideros pomona (Pomona roundleaf bat) Kidney In-house development 

 Miniopterus pusillus (Lesser bent-winged bat) Kidney In-house development 

 Myotis ricketti (Rickett’s big-footed bat) Kidney In-house development 

 Myotis ricketti (Rickett’s big-footed bat) Lung In-house development 

 Pipistrellus abramus (Japanese pipistrelle) Kidney In-house development 

 Pipistrellus abramus (Japanese pipistrelle) Lung In-house development 

 Rhinolophus sinicus (Chinese horseshoe bat) Kidney In-house development 

 Rhinolophus sinicus (Chinese horseshoe bat) Lung In-house development 

 Tylonycteris pachypus (Lesser bamboo bat) Kidney In-house development 

 Tylonycteris pachypus (Lesser bamboo bat) Lung In-house development 

 Rousettus leschenaultii (Leschenault’s rousette) Kidney In-house development 

 Rousettus leschenaultii (Leschenault’s rousette) Lung In-house development 

Human Homo sapiens Embryonic 

Lung 

HFL  

(In-house development) 

Monkey Cercopithecus aethiops (African green monkey) Kidney Vero (ATCC CCL-81)  

 685 

686 
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Table 2. Primers used for RT-qPCR in this study 687 

 688 

Target Primers 

 Forward Reverse Probe 

MERS-CoV N gene 5’ -

CAAAACCTTCCCTAAGAAGGAAAAG 

-3' 

5'- GCTCCTTTGGAGGTTCAGACAT -

3' 

(5’-

(FAM)ACAAAAGGCACCAAAAGAAGAA

TCAACAGACC(BHQ1)-3' 

SARS-CoV N gene 5’- ACCAGAATGGAGGACGCAATG-3’ 5’-

GCTGTGAACCAAGACGCAGTATTA

T-3′ 

5’-(FAM)ACCCCAAGGTTTACCC(NFQ)-

3’ 

HCoV-229E N gene 5’-CAGTCAAATGGGCTGATGCA-3’ 5’-

AAAGGGCTATAAAGAGAATAAGGT

ATTCT-3’ 

5’-

(FAM)CCCTGACGACCACGTTGTGGTTC

A(BHQ1)-3 

DPP4 5'-

TGATCTTGCCTCCTCATTTTGATAA-3' 

5'-GTAACCACTTCCTCTGCCATCAA-

3' or 5'-

GTAACCACTTCCTCTGCCGTCAA-3' 

(for Rousettus cell lines) 

5' - 

(FAM)CCACMTTCAMACTCARYTGGGC

TACTTACC(BHQ1) -3' 

β-actin 5'- CTCTTCCAGCCCTCCTTCCT -3' 5'- TTCATCGTGCTGGGAGCC-3' or 

5'- TTCATTGTGCTGGGAGCC-3' 

(for Rousettus cell lines) or 5'- 

TTCATGGTGCTGGGGGCC-3' (for 

Rhinolophus cell lines) 

5'- 

(FAM)CATGAAGTGYGACGTBGACATC

CG(BHQ1)-3' 

 689 
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