
Sunbeam: an extensible pipeline for analyzing
metagenomic sequencing experiments

Erik L. Clarke (ecl@pennmedicine.upenn.edu)1*, Louis J. Taylor (louist@pennmedicine.upenn.edu)1*, Chunyu

Zhao (zhaoc1@email.chop.edu)2*, Andrew Connell (ancon@pennmedicine.upenn.edu)1, Frederic D. Bushman

(bushman@pennmedicine.upenn.edu)1, Kyle Bittinger (bittingerk@email.chop.edu)2+

1 Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

2 Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

19104

* These authors contributed equally to this work.

+
 Corresponding author (bittingerk@email.chop.edu)

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

2

Abstract

Background: Analysis of mixed microbial communities using metagenomic sequencing experiments requires

multiple preprocessing and analytical steps to interpret the microbial and genetic composition of samples.

Analytical steps include quality control, adapter trimming, host decontamination, metagenomic classification,

read assembly, and alignment to reference genomes.

Results: We present a modular and user-extensible pipeline called Sunbeam that performs these steps in a

consistent and reproducible fashion. It can be installed in a single step, does not require administrative access

to the host computer system, and can work with most cluster computing frameworks. We also introduce

Komplexity, a software tool to eliminate potentially problematic, low-complexity nucleotide sequences from

metagenomic data. A unique component of the Sunbeam pipeline is an easy-to-use extension framework that

enables users to add custom processing or analysis steps directly to the workflow. The pipeline and its

extension framework are well documented, in routine use, and regularly updated.

Conclusions: Sunbeam provides a foundation to build more in-depth analyses and to enable comparisons in

metagenomic sequencing experiments by removing problematic low complexity reads and standardizing

post-processing and analytical steps. Sunbeam is written in Python using the Snakemake workflow

management software and is freely available at github.com/sunbeam-labs/sunbeam under the GPLv3.

Keywords

Sunbeam; shotgun metagenomic sequencing; software; pipeline; quality control

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

3

Background

Metagenomic shotgun sequencing involves isolating DNA from a mixed microbial community of

interest, then sequencing deeply into DNAs drawn randomly from the mixture. This is in contrast to marker

gene sequencing (e.g., the 16S rRNA gene of bacteria), where a specific target gene region is amplified and

sequenced. Metagenomic sequencing has enabled critical insights in microbiology [1-9], especially in the

study of virus and bacteriophage communities [10-15], and is beginning to be used in clinical diagnosis [16-

19]. However, an ongoing challenge is analyzing and interpreting the resulting large datasets in a standard

and reliable fashion [20-27].

A common practice to investigate microbial metagenomes is to use Illumina sequencing technology to

obtain a large number of short (100-250 base pair) reads from fragmented DNA isolated from a sample of

interest. After sequence acquisition, several post-processing steps must be carried out before the sequences

can be used to gain insight into the underlying biology [25, 28]. Some steps are common to many sequencing

experiments, like quality control and sequencing adapter trimming, while others are unique to shotgun

metagenomic sequencing, such as attributing reads to gene ontologies.

Researchers have many tools at their disposal for accomplishing each post-processing step and will

frequently encounter multiple parameters in each tool that can change the resulting output and downstream

analysis, sometimes radically. Varying parameters or tools between analyses makes it challenging to compare

the results of different metagenomic sequencing experiments. Conversely, employing a consistent workflow

across studies ensures that experiments are comparable and that the downstream analysis is reproducible, as

emphasized in ref [25]. Documentation of software, databases and parameters used is an essential element

of this practice; otherwise, the benefits of consistent and reproducible workflows are lost to history.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

4

A metagenomic post-processing workflow should have the following qualities to maximize its utility

and flexibility: it should be deployable on a wide range of computers; it should allow simple configuration of

software parameters and reference databases; it should provide robust error handling and the ability to

resume after interruptions; it should be modular so that unnecessary steps can be skipped or ignored, and it

should allow new procedures to be added by the user. The ability to deploy the workflow on a wide range of

computer systems ensures that all processing steps can be repeated in different labs with different

computing setups and provides flexibility for researchers to choose between computing resources at the

institution or in the cloud. Similarly, the ability to record running parameters through the use of configuration

files allows for the use of experiment-specific software parameters and serves as documentation for future

reference.

Several features contribute to efficient data analysis. It is beneficial if errors or interruptions in the

workflow do not require restarting from the beginning—sequencing experiments produce large amounts of

data making repeating steps in data processing time-consuming and potentially expensive. In addition, not all

steps in a workflow will be necessary for all experiments, and some experiments may require custom

processing. To handle experiments appropriately, the workflow should provide an easy way to skip

unnecessary steps but run them later if necessary. To make the framework widely useful, users must be able

to straightforwardly add new steps into the workflow as needed and share them with others. Several

pipelines have been developed that achieve many of these goals [17, 29-31], but did not meet our needs for

greater flexibility in processing metagenomic datasets and long-term reproducibility of analyses.

Here, we introduce Sunbeam, an easily-deployable and configurable pipeline that produces a

consistent set of post-processed files from metagenomic sequencing experiments. Sunbeam is self-contained

and installable on any modern Linux computer without any pre-existing dependencies or administrator

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

5

privileges. It features robust error-handling, task resumption, and parallel computing capabilities resulting

from its implementation in the Snakemake workflow language [32]. Nearly all steps are configurable, with

reasonable pre-specified defaults, allowing rapid deployment without extensive parameter tuning. Sunbeam

is extensible using a simple mechanism that allows new steps to be added at any point in the workflow.

 In addition, Sunbeam features custom software that allows it to robustly process data from

challenging sample types, including samples with abundant low-quality or host-derived sequences. These

include custom-tuned host-derived read removal steps for any number of host or contaminant genomes, and

Komplexity, a novel sequence complexity analysis program that rapidly and accurately removes problematic

low-complexity reads before downstream analysis. Reads with low sequence complexity are common in

vertebrate-derived samples with low microbial biomass. Microsatellite DNA sequences make up a significant

proportion of the human genome and are highly variable between individuals [33-35], compounding the

difficulty of removing them by alignment against a single reference genome. We developed Komplexity

because existing tools for analyzing nucleotide sequence complexity [36-38] did not meet our needs in terms

of speed, removal of spurious hits, and natively processing fastq files.

Sunbeam is mostly implemented in Python and Rust and is licensed under the GPLv3. It is freely

available at https://github.com/sunbeam-labs/sunbeam. Documentation is available at

http://sunbeam.readthedocs.io.

Implementation

Installation

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://github.com/sunbeam-labs/sunbeam
https://github.com/sunbeam-labs/sunbeam
http://sunbeam.readthedocs.io/
http://sunbeam.readthedocs.io/
http://sunbeam.readthedocs.io/
https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

6

Sunbeam manages and installs all of its own software dependencies and only requires Linux to run.

Installation is performed by downloading the software from its repository and running “install.sh”.

Installation does not require administrator privileges. Software dependencies are automatically installed in an

isolated environment to avoid conflicts with existing software outside the pipeline.

Sunbeam architecture

Sunbeam is comprised of a set of discrete steps that take specific files as inputs and produce other

files as outputs. Because Sunbeam is implemented using the Snakemake workflow framework, the

dependencies between steps are determined at runtime. This allows steps that do not rely on each other to

operate independently on separate processors or compute nodes. It also enables robust error handling,

because steps that fail or are interrupted do not cause independent steps to fail. In addition, interrupted

steps can be resumed without starting from scratch as long as the required input files exist.

Sunbeam is structured in such a way that the output files are grouped conceptually in different

folders, providing a logical output folder structure. Users can request specific outputs separately or as a

group, and the pipeline will run only the steps required to produce the desired files. This allows the user to

skip or re-run any part of the pipeline in a modular fashion.

By default, Sunbeam performs the following preliminary operations on raw, demultiplexed Illumina

sequencing reads in the following order:

1. Quality control: Adapter sequences are removed and bases are quality filtered using the

Trimmomatic [39] and Cutadapt [40] software. Read pairs surviving quality filtering are kept. Read

quality is assessed using FastQC [41] and summarized in separate reports.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

7

2. Low-complexity masking: Sequence complexity in each read is assessed using Komplexity, a

kmer-based complexity algorithm newly described below. Reads that fall below a user-customizable

threshold are removed. Logs of the number of reads removed are written for later inspection.

3. Host read decontamination: Reads are mapped against a user-specified set of host or

contaminant sequences using bwa [42]. Reads that map to any of these sequences within certain

identity and length thresholds are removed. The numbers of reads removed are logged for later

inspection.

After this initial quality-control process, multiple optional downstream steps can be performed

independently. In the classify step, the decontaminated and quality-controlled reads are classified

taxonomically using Kraken [43]. In the assembly step, reads from each sample are assembled into contigs

using MEGAHit [44]. Contigs above a pre-specified length are annotated for circularity. Open reading frames

(ORFs) are extracted using Prodigal [45]. The contigs [and associated ORFs] are then searched against any

number of user-specified nucleotide or protein BLAST [46] databases, using both the entire contig and the

putative ORFs. The results are summarized into reports for each sample. Finally, in the independent mapping

step, quality-controlled reads are mapped using bwa to any number of user-specified reference genomes or

gene sets, and the resulting BAM files are sorted and indexed using samtools [47].

Standard outputs from Sunbeam include reads from each step of the quality-control process,

taxonomic assignments for each read, contigs built from each sample, gene predictions, and alignment files

of all reads to any number of reference genomes. Most rules produce logs of their operation for later

inspection and summary.

Installation and versioning

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

8

We designed Sunbeam to be as simple as possible to install. To this end, installation requires only

copying the software repository and running the installation script. The installation script handles all

dependencies and creates the Conda environment, including installing Conda if necessary. At no point are

administrative rights required on the host computer. The only requirements are internet connectivity, Linux,

and the Bash shell.

We have also incorporated a robust upgrade and semantic versioning system into Sunbeam.

Specifically, the set of output files and configuration file options are treated as fixed between major versions

of the pipeline to maintain compatibility. Any changes that would change the format or structure of the

output folder, or would break compatibility with previous configuration files, only occur during a major

version increase (i.e. from version 1.0.0 to version 2.0.0). Minor changes, optimizations, or bugfixes that do

not alter the output structure or configuration file may increase the minor or patch version number (i.e. from

v1.0.0 to v1.1.0). To prevent unexpected errors, the software checks the version of the configuration file

before running to ensure compatibility and will stop if it is from a previous major version. To facilitate

upgrading between versions of Sunbeam, the same installation script can also install new versions of the

pipeline in-place. We provide a utility to upgrade configuration files between major version changes.

To ensure the stability of the output files and expected behavior of the pipeline, we built a robust

integration testing procedure into Sunbeam’s development workflow. This integration test checks that

Sunbeam is installable on a system, produces the expected set of output files, and correctly handles various

configurations and inputs. The test is run through a continuous integration system that is triggered upon any

commit to the Sunbeam software repository, and only changes that pass the integration tests are merged

into the ‘stable’ branch used by end-users.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

9

Extensions

The Sunbeam pipeline can be extended by users. Extensions take the form of supplementary rules

written in the Snakemake format and define the additional steps to be executed. Optionally, two other files

may be provided: one listing additional software requirements, and another giving additional configuration

options. Extensions can optionally run in a separate software environment, which enables the use of tools

with requirements that conflict with Sunbeam’s. To integrate these extensions, the user copies the files into

Sunbeam’s extensions directory, where they are automatically integrated into the workflow during runtime.

The extension platform is tested as part of our integration test suite.

User extensions can be as simple or complex as desired and have minimal boilerplate: an extension

with no additional dependencies can be as short as six lines of code. Because they are integrated directly into

the main Sunbeam environment, they have access to the same environmental variables and resources as the

primary pipeline, and gain the same error-handling benefits. To make it easy for users to create their own

extensions, we provide an extension template on our GitHub page (https://github.com/sunbeam-

labs/sbx_template) as well as a number of useful prebuilt extensions available at

https://github.com/sunbeam-labs. We created extensions that allow users to run alternate metagenomic

read classifiers like Kaiju [48] or MetaPhlAn2 [49], visualize read mappings to reference genomes with IGV

[50], and even format Sunbeam outputs for use with downstream analysis pipelines like Anvi’o [51].

Komplexity

We regularly encounter low-complexity sequences comprised of short nucleotide repeats that pose

problems for downstream taxonomic assignment and assembly [12, 52], for example by generating spurious

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://github.com/sunbeam-labs/sbx_template
https://github.com/sunbeam-labs/sbx_template
https://github.com/sunbeam-labs
https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

10

alignments to unrelated repeated sequences in database genomes. To avoid these potential artifacts, we

created a novel, fast read filter called Komplexity. Komplexity is a stand-alone program implemented in the

Rust programming language that is designed to mask or remove problematic low-complexity nucleotide

sequences. It scores sequence complexity by calculating the number of unique k-mers divided by the

sequence length. Komplexity can either return this complexity score for the entire sequence or mask regions

that fall below a score threshold. The k-mer length, window length, and complexity score cutoff are

modifiable by the user, though default values are provided. Komplexity accepts FASTA and FASTQ files as

input and outputs either complexity scores or masked sequences in the input format. As integrated in the

Sunbeam workflow, Komplexity assesses the total read complexity and removes reads that fall below the

default threshold. Komplexity is also available as a separate open-source program at

https://github.com/eclarke/komplexity.

Results and Discussion

Sunbeam implements a core set of commonly-required tasks supplemented by user-built extensions.

Even so, the capabilities of Sunbeam compare favorably with existing pipelines such as SURPI (Sequence-

based Ultra-Rapid Pathogen Identification) [17], EDGE (Empowering the Development of Genomics Expertise)

[29], ATLAS (Automatic Tool for Local Assembly Structures) [30], and KneadData [31], (Table S1). Where

Sunbeam’s primary advancements lie are in its ease of deployment, extension framework, and novel

algorithmic solutions to the issues of low-complexity or host-derived sequence filtering.

To demonstrate the use of Sunbeam on real-world data, we used it on a subset of a previously

published dataset of healthy humans or individuals with Crohn's disease [53]. We replaced potentially

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://github.com/eclarke/komplexity
https://github.com/eclarke/komplexity
https://github.com/eclarke/komplexity
https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

11

identifiable human reads with pIRS-simulated human genomic reads [54]. This dataset is available for

download at https://zenodo.org/record/1287807. The output of Sunbeam primarily consists of sequence and

text files for downstream use, so to demonstrate the potential of the extension system, we created a

“report” extension that collects the outputs and visualizes them in a series of plots. These plots, shown in

Figure 2, describe metrics such as the average sequence quality at each point in the read (Figure 2A), the total

number of contaminant and low-complexity sequences removed for each sample (Figure 2B), and a high-level

overview of the taxa found in each sample (Figure 2C). The report extension (https://github.com/sunbeam-

labs/sbx_report) demonstrates the ease of building downstream analysis steps into Sunbeam: the report is

generated from an R Markdown document. Excluding the R document, the extension is only 12 lines of code

long.

Sunbeam’s extension framework promotes reproducible analyses and greatly simplifies performing

the same type of analysis on multiple datasets. Extension templates, as well as a number of pre-built

extensions for metagenomic analysis and visualization software like Anvi’o [51], MetaPhlAn [49], and Pavian

[55], are available on our GitHub page (https://github.com/sunbeam-labs).

Comparing low-complexity filtering program filtering and performance

Low complexity reads often cross-align between genomes, and commonly elude standard filters, so

Sunbeam implements a new filter. A number of tools currently exist for filtering low-complexity nucleotide

sequences. The gold standard, RepeatMasker [36], uses multiple approaches to identify and mask repeat or

low complexity DNA sequences, including querying a database of repetitive DNA elements (either Repbase

[56] or Dfam [57]). DUST [37] employs an algorithm which scores and masks nucleotide sequence windows

that exceed a particular complexity score threshold (with lower-complexity sequences assigned higher

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://zenodo.org/record/1287807
https://github.com/sunbeam-labs/sbx_report
https://github.com/sunbeam-labs/sbx_report
https://github.com/sunbeam-labs
https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

12

scores) such that no subsequence within the masked region has a higher complexity score than the entire

masked region. BBMask, developed by the Joint Genome Institute, masks sequences that fall below a

threshold of k-mer Shannon diversity [38].

Many of these tools were not optimal for our use with shotgun metagenomic datasets. RepeatMasker

uses databases of known repeat sequences to mask repetitive nucleotide sequences, but runs too slowly to

be feasible for processing large datasets. Neither DUST nor RepeatMasker accept files in FASTQ format as

input, requiring conversion to FASTA before processing. An option to filter reads falling below a certain

complexity threshold is not available in DUST, RepeatMasker or BBMask (although filtering is available in the

BBMask companion tool BBDuk). Finally, the memory footprint of BBMask scales with dataset size, requiring

considerable resources to process large shotgun sequencing studies. Therefore, we designed Komplexity to

mask or filter metagenomic reads as a rapid, scalable addition to the Sunbeam workflow that can also be

installed and run separately. It accepts FASTA/Q files as input, can mask or remove reads below a specified

threshold, and operates with a constant memory footprint.

To compare the performance of all the low-complexity-filtering tools discussed above, we used pIRS [54] to

simulate Illumina reads from the human conserved coding sequence dataset [58] as well as human

microsatellite records from the NCBI nucleotide database [59] with the following parameters: average insert

length of 170 nucleotides with a 5% standard deviation, read length of 100 nucleotides, and 5x coverage. To

ensure compatibility with all programs, we converted the resulting files to FASTA format, then selected equal

numbers of reads from both datasets for a total of approximately 1.1 million bases in the simulated dataset

(both available at https://zenodo.org/record/1287807). We processed the reads using Komplexity,

RepeatMasker, DUST and BBMask and used GNU Time [60] to measure peak memory usage and execution

time for six replicates (Table 1). Komplexity and RepeatMasker mask a similar proportion of microsatellite

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://www.google.com/url?q=https://zenodo.org/record/1287807%23.Wx_Mrhwh3CI&sa=D&source=hangouts&ust=1528897159715000&usg=AFQjCNHb0Md1rdvIpG8lVTak9dzqu6JPYQ
https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

13

nucleotides, while none of the four tools masks a large proportion of coding nucleotides. Komplexity runs

faster and has a smaller memory footprint than other low-complexity filtering programs. The memory

footprint of Komplexity and DUST are also relatively constant across datasets of different sizes (data not

shown).

Table 1 - Memory usage, speed, and nucleotides masked for each program.

Tool Microsatellite

nucleotides

masked (%)

Conserved coding

sequence

nucleotides

masked (%)

Speed

(kilobase/sec)

Peak memory

usage

(megabytes)

Komplexity 54.6 0.68 11,500±1,510 4.1±1.6

RepeatMasker 57 0.75 0.65±0.03 607±8.4

BBMask 43 0.029 456±79.3 450±11.7

DUST 44.9 0.74 802±12.5 17.3±0.14

Columns show the percentage of nucleotides (microsatellite or conserved coding sequence) from reads masked by each tool, as

well as the normalized time taken and peak memory usage of each tool while processing the dataset (1.1 megabases). The top-

performing tool in each category is shown in bold.

To understand the extent to which different tools might synergize to mask a larger proportion of

overall nucleotides, we visualized nucleotides from the microsatellite dataset masked by each tool or

combinations of multiple tools using UpSetR [61] (Figure 3). Komplexity masks 78% of the nucleotides masked

by any tool, and 96% excluding nucleotides masked by only RepeatMasker. This suggests that there would

only be a marginal benefit to running other tools in series with Komplexity. Komplexity in combination with

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

14

Sunbeam’s standard host removal system resulted in the removal of over 99% of the total simulated

microsatellite reads.

Conclusions

Here we introduce Sunbeam, a Snakemake-based pipeline for analyzing shotgun metagenomic data

with a focus on reproducible analysis, ease of deployment and use. We compare Sunbeam with other

pipelines for metagenomic analysis and note several favorable features. We also present Komplexity, a tool

for rapidly filtering and masking low-complexity sequences from metagenomic sequence data, and show its

superior performance in comparison with other tools for masking human microsatellite repeat sequences.

Sunbeam’s scalability, customizability, and ease of deployment and use simplify the processing of shotgun

metagenomic sequence data, while its extension framework and thorough quality control enable robust and

reproducible analyses. We have already used Sunbeam in multiple published [23, 52, 62, 86] and ongoing

studies. As a case study for Sunbeam’s ease-of-use and robust deployability, we featured Sunbeam at a

metagenomics workshop at the University of Pennsylvania in the summer of 2017. All participants

successfully installed and ran the full pipeline on sample datasets, which emphasizes the ease of deploying

and using Sunbeam.

Availability and requirements

Project name: Sunbeam

Project home page: https://github.com/sunbeam-labs/sunbeam

Operating system: Linux

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://github.com/sunbeam-labs/sunbeam
https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

15

Programming languages: Python, Rust and Snakemake

License: GPLv3

Restrictions to use by non-academics: No

List of abbreviations

ATLAS: Automatic Tool for Local Assembly Structures; BAM: binary alignment map; BLAST: Basic Local

Alignment Search Tool; EDGE: Empowering the Development of Genomics Expertise; GPL: (GNU) General

Public License; ORF(s): open reading frame(s); SDUST: Symmetric DUST; SURPI: Sequence-based Ultra-Rapid

Pathogen Identification

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Sunbeam is available at https://github.com/sunbeam-labs/sunbeam. Komplexity is available at

https://github.com/eclarke/komplexity. Pre-built extensions referenced can be found at

https://github.com/sunbeam-labs/. The dataset of simulated microsatellite and conserved coding sequence

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://github.com/sunbeam-labs/sunbeam
https://github.com/eclarke/komplexity
https://github.com/sunbeam-labs/
https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

16

reads, as well as the example dataset analyzed in Figure 2, are archived in Zenodo at

https://zenodo.org/record/1287807.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the NIH grants U01HL112712 (Site-Specific Genomic Research in Alpha-1

Antitrypsin Deficiency and Sarcoidosis (GRADS) Study), R01HL113252, and R61HL137063, and received

assistance from the Penn Center for AIDS Research (P30AI045008), T32 Training Grant (T32AI007324, LJT),

and the PennCHOP Microbiome Program (Tobacco Formula grant under the Commonwealth Universal

Research Enhancement (C.U.R.E) program with the grant number SAP # 4100068710).

Authors' contributions

ELC, CZ, FDB, and KB conceived and designed Sunbeam. ELC, CZ, AC, and KB developed Sunbeam. ELC and LJT

conceived and developed Komplexity. LJT performed the low-complexity sequence masking analysis. ELC, LJT,

and KB wrote the manuscript. All authors read, improved, and approved the final manuscript.

Acknowledgements

Thanks to members of the Bushman lab, Penn-CHOP Microbiome Center, and Penn Bioinformatics Code

Review communities for helpful suggestions, discussions, and beta testing.

Figure Legends

Figure 1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://zenodo.org/record/1287807
https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

17

Flowchart of inputs, processes and outputs for standard steps in the Sunbeam metagenomics pipeline.

Figure 2

Output of example extension sbx_report, which produces plots of (A) average read quality per position across

all reads, (B) percentage of reads per sample removed during quality control steps, and (C) relative

abundances at the phylum level or above from KRAKEN classification.

Figure 3

Comparison between Komplexity and similar software (BBMask, DUST, and RepeatMasker). The small bar

plot in the lower left shows the total nucleotides masked by each tool. The central bar plot shows the number

of unique nucleotides masked by every tool combination; each combination is shown by the connected dots

below. Bars displaying nucleotides masked by tool combinations that include Komplexity are colored red.

Supplementary table legends

Table S1 (Additional File 1):

Feature comparison for metagenomic pipelines. Tools used by each pipeline: trimmomatic [39]; cutadapt

[40]; tadpole [63]; fastqc [41]; FaQCs [64]; BBDuk2 [65]; DUST [37]; TRF [66]; bwa [42]; bowtie2 [67]; BBMap

[68]; KRAKEN [43]; SNAP [69]; MUMmer [70]; JBrowse [71]; GOTTCHA [72]; MetaPhlAn [49]; DIAMOND [73];

FastTree [74]; MEGAHit ; SPAdes [75]; Minimo [76]; Prodigal [45]; BLASTp [46]; Prokka [77]; BLASTn [46];

eggNOG [78]; ENZYME [79]; dbCAN [80]; Primer3 [81]; RAPSearch [82]; RAxML [83]; PhaME [84]; conda [85];

Snakemake [32]; samtools [47].

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

18

References

1. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI: The Human Microbiome
Project. Nature 2007, 449(7164):804-810.

2. Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, Henrissat B, Knight R, Gordon
JI: Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within
Humans. Science 2011, 332(6032):970-974.

3. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An obesity-associated gut
microbiome with increased capacity for energy harvest. Nature 2006, 444(7122):1027-1131.

4. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper
SB et al: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment.
Genome Biology 2012, 13(9).

5. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G,
Baldassano RN, Anokhin AP et al: Human gut microbiome viewed across age and geography. Nature
2012, 486(7402):222-227.

6. Eisen JA, Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker
J, Thiagarajan M et al: Metabolic Reconstruction for Metagenomic Data and Its Application to the
Human Microbiome. PLoS Computational Biology 2012, 8(6).

7. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso
JG: Cross-biome metagenomic analyses of soil microbial communities and their functional
attributes. Proceedings of the National Academy of Sciences 2012, 109(52):21390-21395.

8. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li L
et al: Functional metagenomic profiling of nine biomes. Nature 2008, 452(7187):629-632.

9. Lee STM, Kahn SA, Delmont TO, Shaiber A, Esen ÖC, Hubert NA, Morrison HG, Antonopoulos DA,
Rubin DT, Eren AM: Tracking microbial colonization in fecal microbiota transplantation experiments
via genome-resolved metagenomics. Microbiome 2017, 5(1).

10. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F: Metagenomic Analyses of
an Uncultured Viral Community from Human Feces. Journal of Bacteriology 2003, 185(20):6220-
6223.

11. Edwards RA, Rohwer F: Opinion: Viral metagenomics. Nature Reviews Microbiology 2005, 3(6):504-
510.

12. Abbas AA, Diamond JM, Chehoud C, Chang B, Kotzin JJ, Young JC, Imai I, Haas AR, Cantu E, Lederer DJ
et al: The Perioperative Lung Transplant Virome: Torque Teno Viruses Are Elevated in Donor Lungs
and Show Divergent Dynamics in Primary Graft Dysfunction. Am J Transplant 2017, 17(5):1313-1324.

13. Emerson JB, Thomas BC, Andrade K, Allen EE, Heidelberg KB, Banfield JF: Dynamic Viral Populations in
Hypersaline Systems as Revealed by Metagenomic Assembly. Applied and Environmental
Microbiology 2012, 78(17):6309-6320.

14. Ma Y, Madupu R, Karaoz U, Nossa CW, Yang L, Yooseph S, Yachimski PS, Brodie EL, Nelson KE, Pei Z:
Human Papillomavirus Community in Healthy Persons, Defined by Metagenomics Analysis of
Human Microbiome Project Shotgun Sequencing Data Sets. Journal of Virology 2014, 88(9):4786-
4797.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

19

15. Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD: Rapid evolution of the human gut
virome. Proc Natl Acad Sci U S A 2013, 110(30):12450-12455.

16. Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, Stryke D, Bouquet J, Somasekar S,
Linnen JM et al: Rapid metagenomic identification of viral pathogens in clinical samples by real-time
nanopore sequencing analysis. Genome Medicine 2015, 7(1).

17. Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E, Bouquet J, Greninger AL,
Luk KC, Enge B et al: A cloud-compatible bioinformatics pipeline for ultrarapid pathogen
identification from next-generation sequencing of clinical samples. Genome Research 2014,
24(7):1180-1192.

18. Virgin Herbert W, Todd John A: Metagenomics and Personalized Medicine. Cell 2011, 147(1):44-56.
19. Houldcroft CJ, Beale MA, Breuer J: Clinical and biological insights from viral genome sequencing.

Nature Reviews Microbiology 2017, 15(3):183-192.
20. Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, Grice EA: Skin

Microbiome Surveys Are Strongly Influenced by Experimental Design. Journal of Investigative
Dermatology 2016, 136(5):947-956.

21. Weiss S, Amir A, Hyde ER, Metcalf JL, Song SJ, Knight R: Tracking down the sources of experimental
contamination in microbiome studies. Genome Biology 2014, 15(12).

22. Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E, Lauder A, Sherrill-Mix S, Chehoud C, Kelsen
J et al: Optimizing methods and dodging pitfalls in microbiome research. Microbiome 2017, 5(1).

23. Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, Leite R, Elovitz MA, Parry S,
Bushman FD: Comparison of placenta samples with contamination controls does not provide
evidence for a distinct placenta microbiota. Microbiome 2016, 4(1):29.

24. Nayfach S, Pollard KS: Toward Accurate and Quantitative Comparative Metagenomics. Cell 2016,
166(5):1103-1116.

25. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall LI,
McDonald D et al: Best practices for analysing microbiomes. Nat Rev Microbiol 2018.

26. Delmont TO, Eren AM: Identifying contamination with advanced visualization and analysis practices:
metagenomic approaches for eukaryotic genome assemblies. PeerJ 2016, 4:e1839.

27. Kjartansdóttir KR, Friis-Nielsen J, Asplund M, Mollerup S, Mourier T, Jensen RH, Hansen TA, Rey-Iglesia
A, Richter SR, Alquezar-Planas DE et al: Traces of ATCV-1 associated with laboratory component
contamination. Proceedings of the National Academy of Sciences 2015, 112(9):E925-E926.

28. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N: Shotgun metagenomics, from sampling to
analysis. Nat Biotechnol 2017, 35(9):833-844.

29. Li P-E, Lo C-C, Anderson JJ, Davenport KW, Bishop-Lilly KA, Xu Y, Ahmed S, Feng S, Mokashi VP, Chain
PSG: Enabling the democratization of the genomics revolution with a fully integrated web-based
bioinformatics platform. Nucleic Acids Research 2017, 45(1):67-80.

30. White Iii RA, Brown J, Colby S, Overall CC, Lee J-Y, Zucker J, Glaesemann KR, Jansson C, Jansson JK:
ATLAS (Automatic Tool for Local Assembly Structures) - a comprehensive infrastructure for
assembly, annotation, and genomic binning of metagenomic and metatranscriptomic data. PeerJ
Preprints 2017.

31. KneadData. BioBakery 2017, https://bitbucket.org/biobakery/kneaddata.
32. Koster J, Rahmann S: Snakemake--a scalable bioinformatics workflow engine. Bioinformatics 2012,

28(19):2520-2522.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

20

33. Subramanian S, Mishra RK, Singh L: Genome-wide analysis of microsatellite repeats in humans: their
abundance and density in specific genomic regions. Genome Biology 2003, 4(2).

34. Banchs I, Bosch A, Guimerà J, Lázaro C, Puig A, Estivill X: New alleles at microsatellite loci in CEPH
families mainly arise from somatic mutations in the lymphoblastoid cell lines. Human Mutation
1994, 3(4):365-372.

35. Payseur BA, Nachman MW: Microsatellite variation and recombination rate in the human genome.
Genetics 2000, 156(3):1285-1298.

36. Smit A, Hubley R, Green P: RepeatMasker Open-4.0. 2013-2015, http://www.repeatmasker.org.
37. Morgulis A, Gertz EM, Schaffer AA, Agarwala R: A fast and symmetric DUST implementation to mask

low-complexity DNA sequences. J Comput Biol 2006, 13(5):1028-1040.
38. JGI: BBMask. https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmask-guide/.
39. Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for Illumina sequence data.

Bioinformatics 2014, 30(15):2114-2120.
40. Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads.

EMBnetjournal 2011, 17(1).
41. BabrahamBioinformatics: FastQC. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
42. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform.

Bioinformatics 2009, 25(14):1754-1760.
43. Wood DE, Salzberg SL: Kraken: ultrafast metagenomic sequence classification using exact

alignments. Genome Biology 2014, 15(3).
44. Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, Yamashita H, Lam T-W: MEGAHIT v1.0: A fast

and scalable metagenome assembler driven by advanced methodologies and community practices.
Methods 2016, 102:3-11.

45. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene
recognition and translation initiation site identification. BMC Bioinformatics 2010, 11(1).

46. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol
1990, 215(3):403-410.

47. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The
Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.

48. Menzel P, Ng KL, Krogh A: Fast and sensitive taxonomic classification for metagenomics with Kaiju.
Nature Communications 2016, 7.

49. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N:
MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 2015, 12(10):902-903.

50. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative
genomics viewer. Nature Biotechnology 2011, 29(1):24-26.

51. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO: Anvi’o: an advanced
analysis and visualization platform for ‘omics data. PeerJ 2015, 3.

52. Clarke EL, Lauder AP, Hofstaedter CE, Hwang Y, Fitzgerald AS, Imai I, Biernat W, Rekawiecki B,
Majewska H, Dubaniewicz A et al: Microbial Lineages in Sarcoidosis. A Metagenomic Analysis
Tailored for Low-Microbial Content Samples. Am J Respir Crit Care Med 2018, 197(2):225-234.

53. Lewis James D, Chen Eric Z, Baldassano Robert N, Otley Anthony R, Griffiths Anne M, Lee D, Bittinger
K, Bailey A, Friedman Elliot S, Hoffmann C et al: Inflammation, Antibiotics, and Diet as Environmental
Stressors of the Gut Microbiome in Pediatric Crohn’s Disease. Cell Host & Microbe 2015, 18(4):489-
500.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

21

54. Hu X, Yuan J, Shi Y, Lu J, Liu B, Li Z, Chen Y, Mu D, Zhang H, Li N et al: pIRS: Profile-based Illumina pair-
end reads simulator. Bioinformatics 2012, 28(11):1533-1535.

55. Breitwieser FP, Salzberg SL: Pavian: Interactive analysis of metagenomics data for microbiomics and
pathogen identification. bioRxiv 2016.

56. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database
of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110(1-4):462-467.

57. Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao W, Smit AFA, Wheeler TJ: The Dfam database
of repetitive DNA families. Nucleic Acids Research 2016, 44(D1):D81-D89.

58. Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, Searle S, Farrell CM, Loveland JE,
Ruef BJ et al: The consensus coding sequence (CCDS) project: Identifying a common protein-coding
gene set for the human and mouse genomes. Genome Research 2009, 19(7):1316-1323.

59. Coordinators NR: Database Resources of the National Center for Biotechnology Information. Nucleic
Acids Research 2017, 45(D1):D12-D17.

60. GNU Time. https://www.gnu.org/software/time/.
61. Conway JR, Lex A, Gehlenborg N: UpSetR: an R package for the visualization of intersecting sets and

their properties. Bioinformatics 2017, 33(18):2938-2940.
62. Taylor JM, Clarke EL, Baker K, Lauder A, Kim D, Bailey A, Wu GD, Collman RG, Doyle-Meyers L, Russell-

Lodrigue K et al: Evaluation of a therapy for Idiopathic Chronic Enterocolitis in rhesus macaques
(Macaca mulatta) and linked microbial community correlates. PeerJ 2018, 6.

63. JGI: Tadpole. https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/tadpole-guide/.
64. Lo C-C, Chain PSG: Rapid evaluation and quality control of next generation sequencing data with

FaQCs. BMC Bioinformatics 2014, 15(1).
65. JGI: BBDuk. https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/.
66. Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999,

27(2):573-580.
67. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nature Methods 2012,

9(4):357-359.
68. JGI: BBMap. https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/.
69. Zaharia M, Bolosky WJ, Curtis K, Fox A, Patterson D, Shenker S, Stoica I, M. Karp R, Sittler T: Faster and

More Accurate Sequence Alignment with SNAP. arXiv 2011.
70. Delcher AL, Phillippy A, Carlton J, Salzberg SL: Fast algorithms for large-scale genome alignment and

comparison. Nucleic Acids Res 2002, 30(11):2478-2483.
71. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH: JBrowse: a next-generation genome browser.

Genome Res 2009, 19(9):1630-1638.
72. Freitas Tracey Allen K, Li P-E, Scholz MB, Chain Patrick SG: Accurate read-based metagenome

characterization using a hierarchical suite of unique signatures. Nucleic Acids Research 2015,
43(10):e69-e69.

73. Buchfink B, Xie C, Huson DH: Fast and sensitive protein alignment using DIAMOND. Nature Methods
2014, 12(1):59-60.

74. Price MN, Dehal PS, Arkin AP: FastTree 2--approximately maximum-likelihood trees for large
alignments. PLoS One 2010, 5(3):e9490.

75. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S,
Prjibelski AD et al: SPAdes: a new genome assembly algorithm and its applications to single-cell
sequencing. J Comput Biol 2012, 19(5):455-477.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

22

76. Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M: Next generation sequence assembly with AMOS.
Curr Protoc Bioinformatics 2011, Chapter 11:Unit 11 18.

77. Seemann T: Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014, 30(14):2068-2069.
78. Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P: eggNOG: automated

construction and annotation of orthologous groups of genes. Nucleic Acids Res 2008, 36(Database
issue):D250-254.

79. Bairoch A: The ENZYME database in 2000. Nucleic Acids Res 2000, 28(1):304-305.
80. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y: dbCAN: a web resource for automated carbohydrate-

active enzyme annotation. Nucleic Acids Res 2012, 40(Web Server issue):W445-451.
81. Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers.

Methods Mol Biol 2000, 132:365-386.
82. Ye Y, Choi JH, Tang H: RAPSearch: a fast protein similarity search tool for short reads. BMC

Bioinformatics 2011, 12:159.
83. Stamatakis A, Ludwig T, Meier H: RAxML-III: a fast program for maximum likelihood-based inference

of large phylogenetic trees. Bioinformatics 2005, 21(4):456-463.
84. Ahmed SA, Lo C-C, Li P-E, Davenport KW, Chain PSG: From raw reads to trees: Whole genome SNP

phylogenetics across the tree of life. bioRxiv 2015.
85. Anaconda INC: conda. https://anaconda.org/.
86. Leiby JS, Mccormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, Hofstaedter CE, Roche AM,

Mattei LM, Bittinger K, Elovitz MA, Leite R, Parry S, Bushman FD. Lack of detection of a human
placenta microbiome in samples from preterm and term deliveries. Microbiome 2018. 6(1).

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

Low-quality filtering

Host read filtering

Low-complexity
filtering (Komplexity)

Taxonomic
annotation

Sample aggregation
and reformatting

.biom file

Contig assembly

Circularity checks

Contig
annotation

reports

ORF finding

Read mapping

Nucleotide
databases

Protein
databases

.bam filesContig .fasta
files

QC’d .fastq
sequences

Raw .fastq.gz
files

Quality Control

Read Classification

Contig Assembly

Contig Annotation

Read Mapping

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

A

B

C

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

182540

72102

36374 34380

19710

8976 8828
5493 3475 2965 2460 601 78 13 0

0

50000

100000

150000

200000

U
ni

qu
e

nu
cl

eo
tid

es
 m

as
ke

d

repeatmasker

komplexity

dust

bbmask

0e+001e+052e+053e+05

Total nt masked

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/326363doi: bioRxiv preprint

https://doi.org/10.1101/326363
http://creativecommons.org/licenses/by-nc/4.0/

