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2	
	

ABSTRACT 19	

Leishmaniasis is an important vector-borne neglected tropical disease caused by 20	

Leishmania parasites.  Current anti-Leishmania chemotherapy is unsatisfactory, 21	

justifying the continued search for alternative treatment options. Herein, we propose the 22	

use of a minimally invasive bioluminescence-based murine model for preliminary in 23	

vivo screening of compounds against visceral infection by Leishmania infantum. We 24	

demonstrate that luciferase-expressing axenic amastigotes, unlike promastigotes, are 25	

highly infectious to BALB/c mice and generate a robust bioluminescent signal in the 26	

main target organs, such as the liver and spleen. Finally, we validate the use of this 27	

technique to evaluate in vivo treatment efficacy using reference drugs amphotericin B 28	

and miltefosine.  29	
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MAIN TEXT 30	

Leishmaniasis is a vector-borne parasitic disease caused by over 20 Leishmania species 31	

(1). It affects approximately 12 million people worldwide, with up to 1 million new 32	

cases every year (1). Visceral leishmaniasis (VL), the most severe form of the disease, 33	

is fatal if left untreated. VL is mainly associated with Leishmania infantum or 34	

Leishmania donovani infections, as these parasites are capable to disseminate to the host 35	

internal organs, particularly, the liver, spleen and bone marrow (1, 2). As there is still no 36	

vaccine available for humans, disease control relies mostly on chemotherapy and vector 37	

control. However, the limited and unsatisfactory chemotherapeutic options dictate the 38	

need of new drugs (3, 4). Indeed, every year up to 30 000 individuals suffering from VL 39	

die, some of them due to treatment failure (1, 5). Fortunately, neglected tropical 40	

diseases such as leishmaniasis have become a relevant part of the global health agenda, 41	

with a consequent increase in investment on control strategies (6). New leads against 42	

leishmaniasis are currently being optimized, while other compounds are already in pre-43	

clinical and clinical stages (7, 8). Moreover, the recent development of in vitro high-44	

throughput screening programs will undoubtedly feed the anti-Leishmania drug 45	

discovery pipeline with new compounds (8-10), whose efficacy remains to be addressed 46	

in vivo. Direct parasite observation remains the gold standard readout of anti-47	

Leishmania drug in vivo efficacy (11). However, the traditional parasitological methods 48	

used to this end (microscopic observation of organ biopsies or limiting dilution assays) 49	

exhibit some limitations. Besides being labor-intensive and time-consuming, these 50	

methods only allow a static evaluation of infection since target organ collection entails 51	

euthanasia of the animal (8, 11). This is neither compatible with large scale-screening 52	

approaches nor ethically adequate, considering the requirement of a large number of 53	

animals (8). Thus, in vivo imaging techniques, namely those using bioluminescence-54	
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based models, have been developed to overcome such limitations. Nonetheless, these 55	

have either been mainly focused on cutaneous disease (8, 12) or require more than a 56	

month post-infection to warrant a readout (12-15). Here we show and validate a fast, 57	

non-invasive, bioluminescence-based mouse model of visceral infection by L. infantum 58	

suitable for an initial compound screening approach. 59	

In a previous study, we demonstrated that luciferase-expressing L. infantum axenic 60	

amastigotes (16) injected intravenously generate a robust bioluminescent signal in mice 61	

(17). To assess if this signal could still be detected at later time points post-infection, 62	

thus allowing the assessment of treatment efficacy in vivo, we infected 6- to 7-week-old 63	

BALB/c mice with 108 L. infantum axenic amastigotes by the intravenous (IV) route 64	

(Fig. 1A; C-D). Mice were then imaged 14 days post-infection (Fig. 1A) using an IVIS 65	

Lumina LT (PerkinElmer), 10 minutes after the subcutaneous administration of 2.4 mg 66	

of luciferin. The ventral fur was shaved to enable the maximization of detectable 67	

photons and the mice placed in dorsal position were angled to increase the detection of 68	

the signal coming from the spleen. Expectedly, the distribution of the bioluminescent 69	

signal indicates parasite establishment in the anatomical regions encompassing target 70	

organs such as the liver, spleen, lymph nodes and bone marrow (Fig. 1A). Interestingly, 71	

mice infected IV with the same inoculum of L. infantum promastigotes exhibited almost 72	

no detectable bioluminescent signal (Fig. 1B). Using the Living Image software, which 73	

can superimpose the bioluminescent signal of parasites and the grey-scale photograph of 74	

mice, elliptical regions (ROIs) were drawn to quantify bioluminescent signal in the 75	

anatomical regions of the liver, spleen, lymph nodes and bone marrow (the last two 76	

inferred from the signal of the left leg; Fig. 1A-B). At day 14 post-infection, the 77	

bioluminescent signal evaluated by the average radiance (photons/second/cm2/steradian) 78	

of the above ROIs was significantly higher in the animals infected with axenic 79	
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amastigotes than in animals infected with promastigotes (Fig 1C). Indeed, the signal in 80	

the spleen and leg of the animals infected with promastigotes was below the detection 81	

limit (Fig. 1C). To evaluate whether the differences in the bioluminescent signal 82	

detected in amastigote- and promastigote-infected mice were due to distinct infective 83	

capacities, parasite burden in the liver, spleen and bone marrow was evaluated using the 84	

gold standard limiting dilution assay (18). In fact, promastigote infection originated 85	

significantly lower parasite burdens in the liver, spleen and bone marrow when 86	

compared to axenic amastigote infection (Fig. 1D). This indicates that the difference in 87	

the signal intensity was most likely due to a reduced number of parasites in these 88	

organs. Since animals infected with axenic amastigotes yielded an early and sustained 89	

detectable bioluminescent signal in the main target organs, we used this model in a 90	

proof of concept experiment to validate it as a whole-animal imaging system to study 91	

the effectiveness of in vivo treatments against L. infantum. Consequently, infected 92	

animals were treated with miltefosine at 20 mg/kg/day (per os) or amphotericin B at 1 93	

mg/kg/day (IV) for 4 days starting from day 15 post-infection (Fig. 2A). Imaging was 94	

performed right before treatment (day 15 post-infection), and one (day 19 post-95	

infection) and three days (day 21 post-infection) after the last day of treatment (Fig. 96	

2B).  On day 21 post-infection mice were sacrificed and the liver, spleen and bone 97	

marrow were harvested for parasite burden assessment by limiting dilution. As 98	

anticipated, the short miltefosine treatment was sufficient to significantly decrease the 99	

bioluminescent signal in the ROIs defined for the liver and spleen (Fig. 2C). 100	

Amphotericin B was not as effective, although a statistically significant difference was 101	

still obtained in the spleen when compared to the untreated animals. Similar results 102	

were observed when the parasite burden was determined by the limiting dilution method 103	

(Fig. 2D). However, parasites were still detected in animals whose bioluminescent 104	
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signal was bellow background levels (Fig. 2D). Therefore, despite lower sensitiveness, 105	

whole-animal bioluminescence imaging enabled the determination of the effectiveness 106	

of different treatments in reducing spleen and liver parasite burdens. 107	

We further evaluated the correlation between the two techniques used to determine 108	

parasite burdens in the liver and the spleen (Fig. 3).  Average radiance values superior 109	

to the 99% confidence interval of the mean (Graphpad Prism 6.0 version) of the signal 110	

emitted by uninfected animals were plotted against the respective number of parasites 111	

per gram of liver (Fig. 3C) or spleen (Fig. 3D). Statistical significance, which translates 112	

into a positive correlation (Graphpad Prism 6.0 version), was found for both the liver 113	

and spleen determinations, evidencing the validity of our in vivo model. 114	

Using this model, spleen and liver parasite burdens remain stable during the first 4 115	

weeks of infection (data not shown), leaving open the possibility of testing longer 116	

treatment regimens. Conversely, liver burdens predictably decrease to background 117	

bioluminescent levels at 8 weeks post-infection, suggesting the host could be 118	

controlling the infection due to granuloma formation in this organ [data not shown; 119	

(19)]. In contrast, spleen parasite burdens remain constant up to at least week 14, as 120	

evaluated by either bioluminescence imaging or limiting dilution assay (data not 121	

shown). 122	

In conclusion, we propose the use of this rapid bioluminescence model for a preliminary 123	

in vivo screening of compounds against L. infantum. This minimally invasive method 124	

not only allows the accurate assessment of treatment efficacy, but also enables the 125	

adjustment of treatment regimens in an initial simple approach without the need to 126	

sacrifice large numbers of animals or to wait several days for a reliable readout. We 127	

expect this method to be a useful addition to the tools available to assist in the search for 128	

novel drugs to treat VL.   129	
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FIGURES AND LEGENDS 214	

 215	

FIG 1 Infectivity of luciferase-expressing L. infantum axenic amastigotes and 216	

promastigotes via intravenous injection. (A, B) Images of BALB/c mice infected with 217	

either luciferase-expressing L. infantum axenic amastigotes (A) or promastigotes (B) 218	

resulting from the superimposition of the bioluminescence signal map and a grey-scale 219	

photograph of the mice. The regions of interest (ROIs) shown were used to quantify the 220	

bioluminescence signal originating from the liver, spleen, and right hind leg of the 221	

mouse. (C) Bioluminescence measurements expressed as average radiance 222	

(photons/s/cm2/steradian) corresponding to the previously defined liver (left), spleen 223	

(center), and right hind leg (right) ROIs. Means ± standard deviations are represented in 224	

bars. The dotted line represents the background signal calculated by applying the ROIs 225	

on images of uninfected animals. (D) Parasite burden in the liver, spleen, and femur 226	
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bone marrow determined by limiting dilution 14 days post-infection. Means ± standard 227	

deviations are represented in bars. The dotted lines represent the upper and lower 228	

detection limit of the technique for each organ. (C, D) AMA: animals infected with 108 229	

axenic amastigotes. PRO: animals infected with 108 promastigotes. Statistical 230	

significance calculated by Mann Whitney test using Graphpad Prism 6.0 version: p < 231	

0.05 (*). Data representative of two independent experiments. 232	
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 233	

FIG 2 Treatment of L. infantum axenic amastigote-infected mice with reference drugs 234	

miltefosine and amphotericin B. (A) Schematic representation of the experimental 235	

design. BALB/c mice were infected with 108 luciferase-expressing L. infantum axenic 236	

amastigotes (AMA) IV and 4-day treatments with either 20 mg/kg/day of miltefosine 237	

per os (PO) or 1 mg/kg/day of Amphotericin B IV were initiated 15 days post-infection 238	
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(DPI). All animals (n = 4 per group) were imaged right before (day 15 post-infection), 239	

one day after (day 19 post-infection) and 3 days (day 21 post-infection) after the end of 240	

treatment using the IVIS Lumina LT system. At the last time point animals were 241	

sacrificed and parasite burden in the liver, spleen, and femur bone marrow were 242	

determined by limiting dilution. (B) Images of infected mice resulting from the 243	

superimposition of the bioluminescence signal map and a grey-scale photograph of the 244	

mice. The ROIs shown were used to quantify the bioluminescence signal originating 245	

from the liver and spleen anatomical regions. (C) Bioluminescence measurements 246	

expressed as average radiance (photons/s/cm2/steradian) corresponding to the previously 247	

defined liver (graph on the left) and spleen (graph on the right) ROIs. Means ± standard 248	

deviations are represented in bars. The dotted line represents the background signal 249	

calculated by applying the ROIs on images of uninfected animals. Statistical 250	

significance calculated by two-way ANOVA using Graphpad Prism 6.0 version: p < 251	

0.05 (*), p < 0.005 (**), p < 0.0001 (****). (D) Parasite burdens in the liver (graph on 252	

the left) and spleen (graph on the right) determined by limiting dilution 21 days post-253	

infection. The dotted lines represent the upper and lower detection limit of the technique 254	

for each organ. Means ± standard deviations are represented in bars. Statistical 255	

significance calculated by ordinary one-way ANOVA using Graphpad Prism 6.0 256	

version: p < 0.05 (*), p < 0.0005 (***). Data representative of two independent 257	

experiments. 258	
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 259	

FIG 3 Relation between bioluminescence signal and parasite burdens measured by 260	

limiting dilution. Average radiance (photons/s/cm2/steradian) from liver (A) or spleen 261	

(B) ROIs plotted against the matching parasite burden in the corresponding organ. 262	

Pooled data of individual mice and from two independent experiments is shown. The 263	

dashed line represents the upper limit of the 99% confidence interval of the mean 264	

average radiance values obtained for each ROI when applied on images of uninfected 265	

BALB/c mice (n = 6). Only animals displaying average radiance levels above the 266	

dashed line were considered for the calculation of the Pearson’s correlation coefficients 267	

using Graphpad Prism 6.0 version. 268	
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