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Abstract

Bacteria and archaea are locked in a near-constant battle with their vi-
ral pathogens. Despite previous mechanistic characterization of numerous
prokaryotic defense strategies, the underlying ecological and environmen-
tal drivers of different strategies remain largely unknown and predicting
which species will take which strategies remains a challenge. Here, we
focus on the CRISPR immune strategy and develop a phylogenetically-
corrected machine learning approach to build a predictive model of CRISPR
incidence using data on over 100 traits across over 2600 species. We dis-
cover a strong but hitherto-unknown negative interaction between CRISPR
and aerobicity, which we hypothesize may result from interference between
CRISPR associated proteins and DNA repair due to oxidative stress. Our
predictive model also quantitatively confirms previous observations of an
association between CRISPR and temperature. Finally, we contrast the
environmental associations of different CRISPR system types (I, II, III)
and restriction modification systems, all of which act as intracellular im-
mune systems.

In the world of prokaryotes, infection by viruses poses a constant threat to 1

continued existence (e.g., [1]). In order to evade viral predation, bacteria and 2

archaea employ a range of defense mechanisms that interfere with one or more 3

stages of the viral life-cycle. Modifications to the host’s cell surface can prevent 4

viral entry in the first place. Alternatively, if a virus is able to enter the host cell, 5

then intracellular immune systems, such as the clustered regularly inter-spaced 6

short palindromic repeat (CRISPR) adaptive immune system or restriction- 7

modification (RM) innate immune systems, may degrade viral genetic material 8
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and thus prevent replication [2, 3, 4, 5, 6, 7]. Despite our increasingly in- 9

depth understanding of the mechanisms behind each of these defenses, we lack 10

a comprehensive understanding of the factors that cause selection to favor one 11

defense strategy over another. 12

Here we focus on the CRISPR adaptive immune system, which is a particu- 13

larly interesting case study due to its uneven distribution across prokaryotic taxa 14

and environments. Previous analyses have shown that bacterial thermophiles 15

and archaea (both mesophilic and thermophilic) frequently have CRISPR sys- 16

tems (∼ 90%), whereas less than half of mesophilic bacteria have CRISPR 17

(∼ 40%; [8, 9, 10, 11, 12]). Environmental samples have revealed that many 18

uncultured bacterial lineages have few or no representatives with CRISPR sys- 19

tems, and that the apparent lack of CRISPR in these lineages may be linked 20

to an obligately symbiotic lifestyle and/or a highly reduced genome [13]. Nev- 21

ertheless, no systematic exploration of the ecological conditions that favor the 22

evolution and maintenance of CRISPR immunity has been made. Additionally, 23

though these previous results appear broadly true [14], no explicit accounting 24

has been made for the potentially confounding effects of phylogeny in linking 25

CRISPR incidence to particular traits. 26

What mechanisms might shape the distribution of CRISPR systems across 27

microbes? Some researchers have emphasized the role of the local viral com- 28

munity, suggesting that when viral diversity and abundance is high CRISPR 29

will fail, and thus be selected against [11, 12, 15]. Others have focused on the 30

tradeoff between constitutively expressed defenses like membrane modification 31

and inducible defenses such as CRISPR [15]. Yet others have noted that hot, 32

and possibly other extreme environments can constrain membrane evolution, 33

necessitating the evolution of intracellular defenses like CRISPR or RM sys- 34

tems [16, 17, 18]. Many have observed that since CRISPR prevents horizontal 35

gene transfer, it may be selected against when such transfers are beneficial (e.g. 36

[19, 20]). More recently it has been shown that at least one CRISPR-associated 37

(Cas) protein can suppress non-homologous end-joining (NHEJ) DNA repair, 38

which may lead to selection against having CRISPR in some taxa [21]. In or- 39

der to determine the relative importances of these different mechanisms, we 40

must first identify the habitats and microbial lifestyles associated with CRISPR 41

immunity. 42

Here we aim to expand on previous analyses of CRISPR incidence in three 43

ways: (1) by drastically expanding the number of environmental and lifestyle 44

traits considered as predictors using the combination of a large prokaryotic trait 45

database and machine learning approaches, (2) by incorporating appropriate 46

statistical corrections for non-independence among taxa due to shared evolu- 47

tionary history, and (3) by simultaneously looking for patterns in RM systems, 48

which will help us untangle the difference between environments that specifi- 49

cally favor CRISPR adaptive immunity versus intracellular immune systems in 50

general. 51
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PC1 Weight PC2 Weight PC3 Weight

ecosystemcategory human -0.16 temperaturerange mesophilic 0.19 growth in groups -0.24

specificecosystem sediment 0.16 temperaturerange thermophilic -0.19 gram stain positive -0.24

ecosystem environmental 0.16 oxygenreq strictanaero -0.19 cellarrangement singles 0.21

knownhabitats host -0.15 temperaturerange hyperthermophilic -0.18 cellarrangement filaments -0.20

ecosystemsubtype intertidalzone 0.15 knownhabitats hotspring -0.17 sporulation -0.20

ecosystem hostassociated -0.15 exosystemtype rhizoplane 0.17 energysource chemoorganotroph -0.19

habitat hostassociated -0.15 habitat specialized -0.16 cellarrangement clusters -0.18

habitat freeliving 0.15 metabolism methanogen -0.16 shape tailed -0.18

ecosystemtype digestivesystem -0.14 ecosystemcategory plants 0.15 habitat terrestrial -0.18

specificecosystem fecal 0.14 ecosystemtype thermalsprings -0.15 motility 0.17

Table 1: Top 10 variable loadings on the first three principal components of the
microbial traits dataset. These three components explain 17%, 10%, and 7% of
the total variance, respectively.

Results 52

Visualizing CRISPR Incidence in Trait Space 53

We visualized CRISPR incidence in microbial trait space using two unsuper- 54

vised machine learning algorithms to collapse high-dimensional data (174 bi- 55

nary traits assessed in 2679 species; see methods) into fewer dimensions. Both 56

methods revealed clear differences between the placement of CRISPR-encoding 57

and CRISPR-lacking organisms in trait space, despite the fact that no explicit 58

information about CRISPR was included when performing the decompositions. 59

First, principal components analysis (PCA) of the trait data reveals sev- 60

eral well accepted patterns of microbial lifestyle choice and CRISPR incidence. 61

The first principal component (19% variance explained) corresponds broadly 62

to an axis running from host-associated to free-living microbes (Table 1), as 63

observed by others [22, 23]. CRISPR-encoding and CRISPR-lacking microbes 64

are not differentiated along this axis (S1 Fig). We see CRISPR-encoding and 65

CRISPR-lacking organisms beginning to separate along the second (11% vari- 66

ance explained) and third (6% variance explained) principal components (Fig 67

1). The second component roughly represents a split between extremophilic, 68

energy-stressed species and mesophilic, plant-associated species (Table 1). Op- 69

timal growth temperature appears to be an important predictor of CRISPR 70

incidence, as previously noted by others [11, 12]. The third component is not as 71

easy to interpret, but appears to indicate a spectrum from group living microbes 72

(e.g. biofilms) to microbes that tend to live as lone, motile cells (Table 1). That 73

CRISPR is possibly favored in group-living microbes is not entirely surprising, 74

considering the increased risk of viral outbreak at high population density, and 75

that some species up-regulate CRISPR during biofilm formation [24]. 76

Second, we visualized the trait data using t-distributed stochastic neighbor 77

embedding (t-SNE), which is a nonlinear method that can often pick up on more 78
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Figure 1: Organisms with CRISPR separate from those without in trait space.
The second and third components from a PCA of the microbial traits dataset
are shown. CRISPR incidence is indicated by color (green with, orange with-
out), but was not included when constructing the PCA. Notice the separation
of organisms with and without CRISPR along both components. Marginal den-
sities along each component are shown to facilitate interpretation. See S1 Fig
for the first component.
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Figure 2: Organisms with CRISPR partially cluster in trait space away from
those without. Two dimensional output of t-SNE dimension reduction on
dataset. CRISPR incidence is indicated by color (green with, orange without),
but was not included when performing dimension reduction. The axes of t-SNE
plots have no clear interpretation due to the non-linearity of the transformation.

subtle relationships in a dataset (Fig 2; [25]). This method reveals a clustering 79

of CRISPR-encoding microbes in trait space, further emphasizing that microbial 80

immune strategy is influenced by ecological conditions. Because the axes of t- 81

SNE plots are not easily interpretable, we mapped the top weighted traits from 82

the PCA above (Table 1) onto the t-SNE reduced data (S2 Fig). Surprisingly, 83

the most clearly aligned trait with CRISPR-incidence is having an obligately 84

anaerobic metabolism (S3 Fig). 85

Predicting CRISPR Incidence 86

The unsupervised approaches (i.e. uninformed about the outcome variable, 87

CRISPR) we employed above revealed clear patterns linking CRISPR incidence 88

to microbial lifestyle. In order to further explore these patterns, and exploit 89

them for their predictive ability, we applied several supervised prediction (i.e. 90

trained with information about CRISPR incidence) methods to the data. 91

We tested each of our trained models of CRISPR incidence, using the Pro- 92

teobacteria as our test set (left out during model training) to determine model 93

accuracy. We emphasize here the choice of Proteobacteria, as they represent 94

a phylogenetically-independent test set from our training set (see Methods). 95

All models showed improved predictive ability over a null model only account- 96

ing for the relative frequency of each class in the dataset (κ > 0; Table 2), 97

indicating that there is some ecological signal in CRISPR incidence. Unsurpris- 98
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Phylogenetic Correction Performance

Model Type Non-Parametric Parametric Model Size Accuracy κ TPR

Log. Reg. No No 18 66.1% 0.152 0.233

Log. Reg. Yes No 9 67.5% 0.168 0.209

Log. Reg. No Yes 10 67.7% 0.188 0.246

Log. Reg. Yes Yes 6 67.4% 0.160 0.294

sPLS-DA No No
[7, 159, 4, 169, 50]

68.4% 0.190 0.219
(5 comp.)

MINT sPLS-DA Yes No 32 (1 comp.) 60.5% 0.173 0.538

RF No No - 68.8% 0.241 0.327

RF Ensemble Yes No - 68.6% 0.240 0.332

Table 2: Predictive ability of models of CRISPR incidence on the Proteobac-
teria test set. Model size refers to number of variables chosen overall, or per-
component in the case of the partial least squares models. Accuracy is measured
as the total number of correct predictions over the total attempted and κ is Co-
hen’s κ, which corrects for uneven class counts that can inflate accuracy even if
discriminative ability is low. Roughly, κ expresses how much better the model
predicts the data than one that simply knows the frequency of different classes
(κ = 0 being no better, κ > 0 indicating improved predictive ability). The
true positive rate (TPR) is the number of correctly identified genomes having
CRISPR divided by the total number of genomes having CRISPR in the test
set. The non-parametric correction for phylogeny refers to our phylogenetically
blocked folds, whereas the parametric correction refers to our use of phyloge-
netic logistic regression [26]. Observe that the RF model appears to perform
best at prediction in general.

ingly, given the difficulty of this task and the noise in the dataset, no model 99

showed overwhelming predictive ability, though the RF model did reasonably 100

well (κ = 0.241). The percent incidences of CRISPR in the training (56%) 101

and test sets (36%) are considerably different, which may have been difficult for 102

these models to overcome. It is also possible that the Proteobacteria vary sys- 103

tematically from other phyla in terms of ecology and immune strategy, making 104

them a particularly difficult (and thus conservative) test set. 105

For the logistic regression models, taking phylogeny into consideration, both 106

via blocked cross validation (κ = 0.168) and an explicit evolutionary model of 107

trait evolution (κ = 0.188), improved predictive ability relative to the phylogenetically-108

uninformed logistic regression approach, though when combined these two cor- 109

rections appeared to conflict with one another (κ = 0.160). Our cluster-based 110

approach to phylogenetic correction (MINT) in the partial least squares model 111

framework (sPLS-DA, see Methods) reduced overall predictive ability, but dra- 112

matically improved the true positive rate of the prediction (TPR = 0.538), 113

at the cost of an increased false positive rate. The random forest (RF) and 114

phylogenetically-informed RF ensemble models had nearly identical performance. 115
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Figure 3: Importance of top ten predictors in the RF model, as measured by
the mean decrease in the Gini impurity index or accuracy when that variable is
excluded from the model. See S7 Fig for all predictor importances.

We note though, that the ensemble approach gave a much more reliable estimate 116

of predictive ability on the training set (mean κ = 0.258 predicting on excluded 117

clusters) than the internal estimate automatically generated by the global RF 118

model (out-of-bag estimate, κ = 0.441). In general, with phylogenetically struc- 119

tured data the error estimates generated by an RF model will be misleading, 120

and the blocked cross-validation approach we employ is one way to correct these 121

estimates. 122

While each modeling framework revealed a distinct set of top predictors of 123

CRISPR incidence, there was broad agreement overall (S1 Table, Fig 3, S4 Fig, 124

and S5 Fig). Keywords indicating a thermophilic lifestyle (e.g. thermophilic, 125

hot springs, hyperthermophilic, thermal springs) appeared across all models as 126

either the most important or second most important predictor of CRISPR inci- 127

dence. Keywords relating to oxygen requirement (e.g. anaerobic, aerobic) also 128

appeared across nearly all models as top predictors, excluding only the two lo- 129

gistic regression models that were not parametrically corrected for phylogeny 130

and performed relatively poorly (S1 Table). In the case of the RF and sPLS- 131

DA models, oxygen requirement was always one of the top three predictors, and 132

often the top predictor of CRISPR incidence (Fig 3, S4 Fig, S5 Fig, and S6 133

Fig). Other predictors that frequently appeared across model types included 134

termite hosts (host insectstermites), the degradation of polycyclic aromatic hy- 135

drocarbons (PAH; metabolism pahdegrading), freshwater habitat (knownhabi- 136

tats freshwater), and growth as filaments (shape filamentous). In general, the 137

sPLS-DA, MINT sPLS-DA, RF, and RF ensemble models were largely in agree- 138

ment with each other. Finally, we built an RF model using only traits related to 139

temperature range, oxygen requirement, and thermophilic lifestyle (hot springs, 140

thermal springs, hydrothermal vents). This temperature- and oxygen-only RF 141

model outperformed all non-RF models (κ = 0.191). 142

Using meta-data available from NCBI, we were able to reproduce the result 143

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326330doi: bioRxiv preprint 

https://doi.org/10.1101/326330
http://creativecommons.org/licenses/by-nc-nd/4.0/


that thermophiles strongly prefer CRISPR (92% with CRISPR as opposed to 144

49% in mesophiles, Fig 4a; [11, 12]). Though we have too few genomes cat- 145

egorized as psychrotrophic or psychrophilic to make any strong claims, these 146

genomes seem to lack CRISPR most of the time, suggesting that CRISPR inci- 147

dence decreases continuously as environmental temperatures decrease [10]. We 148

were also able to confirm the that, in agreement with our visualizations and 149

predictive modeling, aerobes disfavor CRISPR immunity (34% with CRISPR) 150

while anaerobes favor CRISPR immunity (67% with CRISPR, Fig 4b). This is 151

true independent of growth temperature, with mesophiles showing a similarly 152

strong oxygen-CRISPR link (Fig 4c). 153

Following previous suggestions that CRISPR incidence might be negatively 154

associated with host population density and growth rate [11, 12, 15], and that 155

this could be driving the link between CRISPR incidence and optimal temper- 156

ature range, we sought to determine if growth rate was a major determinant of 157

CRISPR incidence. The number of 16s rRNA genes in a genome is an oft used, 158

if imperfect, proxy for microbial growth rates and an indicator of copiotrophic 159

lifestyle in general [27, 28, 29]. While CRISPR-encoding genomes had slightly 160

more 16s genes than CRISPR-lacking ones (3.1 and 2.9 on average, respec- 161

tively), the 16s rRNA gene count in a genome was not a significant predictor of 162

CRISPR incidence (logistic regression, p = 0.05248), although when correcting 163

for phylogeny 16s gene count does seem to be significantly positively associ- 164

ated with CRISPR incidence (phylogenetic logistic regression, m = 0.06277, 165

p = 6.651 × 10−5), the opposite of our expectation. 166

Predicting Without Genomic Data 167

The ProTraits database, from which we take our trait data, combines various 168

“sources” of text-based and genomic information to make trait predictions [30]. 169

While the inclusion of genomic sources of information considerably improves 170

the trait confidence scores, some of these sources explicitly consider gene pres- 171

ence/absence, and we worried it may lead to circularity in our arguments (e.g. 172

if cas gene presence were used to predict a trait, which was then used to predict 173

CRISPR incidence). Therefore we repeated our predictive analyses excluding 174

the “phyletic profile” and “gene neighborhood” sources in ProTraits. We took 175

the maximum confidence scores for having and lacking a trait respectively across 176

all other sources in the database to produce a negative and positive trait score. 177

We integrated these into a single score as described in Methods. We then built 178

an RF model of CRISPR incidence, as this was the highest performing model on 179

the complete dataset. This model had comparable predictive ability (κ = 0.243). 180

We also found similar predictors to when the full dataset was used (S8 Fig). A 181

notable change is that termite host and PAH degradation no longer appear as 182

important predictors in the model. 183
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Figure 4: Temperature range and oxygen requirement are strong predictors of
CRISPR incidence. Trait data taken from NCBI. (a) Thermophiles strongly
favor CRISPR immunity, while mesophiles appear ambivalent. (b) Anaerobes
favor CRISPR immunity, while aerobes tend to lack CRISPR and facultative
species fall somewhere in between. (c) The link between oxygen requirement
and CRISPR incidence is apparent even when sub-setting to only mesophiles.
Error bars are 95% binomial confidence intervals. Total number of genomes in
each trait category shown at the bottom of each bar. Categories represented by
fewer than 10 genomes were omitted.
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Predicting CRISPR Type 184

Each CRISPR system type is associated with a signature cas targeting gene 185

unique to that type (cas3, cas9, and cas10 for type I, II, and III systems respec- 186

tively). There are many species in the dataset with cas3 (605), but relatively 187

few with cas9 (160) and cas10 (222), suggesting that the ecological correlates 188

of CRISPR incidence that we identify above probably correspond primarily to 189

type I systems. We mapped the incidence of each of these genes onto the PCA 190

we constructed earlier (see S1 Fig and Table 1), and found that cas9 separates 191

from cas3 and cas10 along the first component (Fig 5a). Broadly, this indi- 192

cates that type II systems are more commonly found in host-associated than 193

free-living microbes, the opposite of the other two system types. 194

We built an RF model of cas9 incidence, with the Proteobacteria as the 195

test set. Because our training set had so few cases of cas9 incidence (10% 196

of set), we performed stratified sampling during the RF construction process to 197

ensure representative samples of organisms with and without cas9. Surprisingly, 198

despite the extremely small number of organisms with cas9 in the training and 199

test sets (160 and 58 respectively), this model was accurately able to predict 200

type II CRISPR incidence and had some discriminative ability (Accuracy = 201

93.0%, κ = 0.164), though it missed many of the positive cases (TPR = 0.172). 202

This model also suggested that a host-associated lifestyle seems to be a major 203

factor influencing the incidence of type II systems, with many of the top-ranking 204

variables in terms of importance corresponding to keywords having to do with 205

the split between host associated and free-living organisms (Fig 5b). 206

NHEJ, CRISPR, and Oxygen 207

The Ku protein is essential to the NHEJ pathway some microbes possess [31, 32]. 208

We searched for the gene encoding this protein and attempted to associate its 209

presence with both microbial lifestyle and CRISPR incidence. Mapping Ku inci- 210

dence onto our principal components found above we observed a pattern roughly 211

the opposite of that of CRISPR incidence (S9 Fig). That is, Ku was favored 212

in positive values on the second and negative values on the third component, 213

roughly indicating a mesophilic, plant-associated, group-living lifestyle. Addi- 214

tionally, Ku was found in positive regions along the first component, indicating 215

a free-living lifestyle, the opposite of type II CRISPR systems. We built an 216

RF model of Ku incidence, in the same manner as we built one of CRISPR 217

incidence above, and our top predictors appeared to show that the NHEJ path- 218

way is favored in soil-dwelling, spore-forming, aerobic microbes, consistent with 219

expectations of where NHEJ will be most important [33, 34] (S10 Fig). This 220

model predicted Ku incidence well (κ = 0.578), indicating a clear association 221

between microbial traits and the incidence of NHEJ. 222

Using our full set of RefSeq genomes, we found a weak negative association 223

between CRISPR and Ku incidence overall (Pearson’s correlation, ρ = −0.012; 224

χ2 = 15.015, p = 1.067 × 10−4). Using metadata from NCBI, and restricting 225

only to aerobes this negative association was much stronger (ρ = −0.250, p = 226
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Figure 5: Type II CRISPR systems appear to be more prevalent in host-
associated microbes. (a) The cas targeting genes associated with type I, type
II, and type III systems (cas3, cas9, and cas10 respectively) mapped onto the
PCA in S1 Fig. Organisms without any targeting genes were omitted from the
plot for readability. Recall from Table 1 that PC1 roughly corresponds to a
spectrum running from host-associated to free-living microbes. (2) A variable
importance plot from an RF model of cas9 incidence. Observe that keywords
related to a host-associated lifestyle appear many times.
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9.109 × 10−16), while in anaerobes it was nonexistent (ρ = −0.023, p = 0.704). 227

We found a similar pattern between cas3 and Ku (aerobes, p < 2 × 10−16; 228

anaerobes, p = 0.377), cas9 and Ku (aerobes, p = 2.416 × 10−3; anaerobes, 229

p = 0.160), and cas10 and Ku (aerobes, p < 3.16×10−12; anaerobes, p = 0.590), 230

suggesting that CRISPR and NHEJ are generally in conflict when oxygen is 231

present. Nevertheless, anaerobes may have a higher incidence of CRISPR than 232

aerobes overall, in addition to and independent of the effects of Ku incidence 233

(S11 Fig). 234

Predicting RM Incidence 235

The majority of genomes in our dataset had at least one RM gene, with 97% of 236

genomes encoding at least one RM-associated restriction enzyme. This agrees 237

with previous results showing that the large majority of prokaryotes have RM 238

systems [35]. We also confirmed the previously observed CRISPR-RM asso- 239

ciation, with CRISPR incidence being positively associated with the number 240

of restriction enzymes on a genome (6.23 with versus 4.36 without CRISPR, 241

t = −9.038, p < 2.2 × 10−16; m = 0.0676, p = 7.212 × 10−13, phylogenetic 242

logistic regression; [35]) as well as whether or not a genome has any restriction 243

enzymes (χ2 = 35.065, p = 3.189 × 10−9; m = 1.96127, p = 1.853 × 10−14, 244

phylogenetic logistic regression). 245

We mapped the incidence of restriction enzymes onto the PCA decompo- 246

sition of the trait data (Fig S12 Fig). Because very few genomes lacked a 247

restriction enzyme (97), we hesitate to make any strong claims, but the re- 248

striction enzyme-lacking organisms seem to tend to be host associated (low 249

values on PC1), thermophilic or anaerobic (low values on PC2), and solitary 250

and motile (high values on PC3). With the exception of PC3, this is the op- 251

posite of the patterns we observed in CRISPR incidence. We also found that 252

the number of restriction enzymes was negatively associated with an anaerobic 253

lifestyle (m = −4.53877, p = 2× 10−16, phylogenetic linear regression), and not 254

significantly associated with a thermophilic lifestyle after considering the effects 255

of multiple testing (m = 1.51063, p = 0.03779, phylogenetic linear regression). 256

We built an RF model of restriction enzyme incidence using the same strat- 257

ified sampling approach that we used for CRISPR system type. This model 258

showed decent predictive ability (κ = 0.317), and was able to accurately pre- 259

dict 77% of the enzyme-lacking genomes in the Proteobacteria without requiring 260

a low true positive rate for enzyme incidence (0.898). The only variable that 261

ranked highly in terms of importance that overlapped with our RF model of 262

CRISPR incidence was association with a freshwater habitat (S13 Fig). Over- 263

all, the correlation between variable importance scores for the CRISPR and 264

restriction enzyme RF models was low (ρ = 0.169 for mean decrease in Gini 265

Impurity Index, ρ = −0.0487 for mean decrease in accuracy). 266
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Discussion 267

We detected a clear association between ecological niche and CRISPR incidence 268

among microbes. In line with previous analyses, temperature range appears to 269

be a strong driver of CRISPR incidence [8, 9, 10]. We lend further support to 270

these previous results by formally controlling for phylogeny using both para- 271

metric and non-parametric approaches. We also demonstrate that not only is 272

temperature a predictor of CRISPR incidence, it is one of the most important 273

predictors. 274

Surprisingly, we find that oxygen requirement appears to be just as impor- 275

tant of a predictor as temperature, and that this pattern is independent of any 276

effect of temperature. Possibly, this association can be explained by inhibitory 277

effects of CRISPR on DNA repair. We found a clear link between the NHEJ 278

DNA repair pathway and CRISPR incidence. Reactive oxygen species are pro- 279

duced during aerobic metabolism and can cause DNA damage [33], making 280

NHEJ potentially particularly important in aerobes. Type II-A CRISPR sys- 281

tems have been shown to directly interfere with the action of the NHEJ DNA 282

repair pathway in prokaryotes [21]. Thus, if CRISPR interferes with DNA re- 283

pair, and such repair is more important in aerobes, we would expect CRISPR 284

incidence to be inversely related to the presence of oxygen. While this negative 285

epistatic interaction has only been experimentally observed between NHEJ and 286

the Csn2 protein in type II-A systems, our results suggest that other Cas pro- 287

teins may also suppress repair, since the interaction was found across system 288

types and was oxygen-dependent in all cases. Alternatively, it is known that the 289

process of CRISPR spacer acquisition prefers free DNA ends [36, 37], so that the 290

cost of CRISPR due to autoimmunity may be heightened in situations where 291

NHEJ is also necessary. This could cause a similar pattern between CRISPR 292

and oxygen requirement, though it is unclear if this preference for breaks gener- 293

ally holds for all CRISPR systems nor if its effects on the rate of autoimmunity 294

would be large. Additionally, if this autoimmunity-based hypothesis were true, 295

we would expect aerobes to uniformly disfavor CRISPR regardless of Ku inci- 296

dence. While oxygen requirement does have a weak effect on CRISPR incidence 297

independent of Ku, the strong Ku-CRISPR interaction we observe in aerobes 298

but not anaerobes cannot be explained by autoimmunity. 299

We found no strong link between the incidence or number of RM systems on 300

a genome and a thermophilic or anaerobic lifestyle. In general, the ecological 301

predictors of an RM immune strategy did not correspond to those of a CRISPR 302

immune strategy. This suggests that the factors driving CRISPR incidence are 303

CRISPR-specific, and not shared among intracellular immune strategies in gen- 304

eral. This, in turn, partially supports previous work that shows in a theoretical 305

context that CRISPR will be selected against in environments with dense and 306

diverse viral communities, since such hypotheses are CRISPR-specific [11, 12]. 307

In contrast to this conclusion, our results also suggest that host growth rate 308

is not a strong predictor of CRISPR incidence, and that group-living microbes 309

seem to favor CRISPR immunity, calling these prior viral diversity and den- 310

sity based explanations under question. Additionally, our analysis suggests that 311
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psychrophilic and psychrotolerant species disfavor CRISPR more strongly than 312

mesophiles, which is not clearly explained or predicted by hypotheses based 313

on the local viral community. The disagreement between CRISPR and RM 314

distribution could potentially be due to the high prevalence of RM systems 315

overall, and the fact that these systems may serve other biological functions 316

than immunity [38]. At this point we do not have sufficient empirical evidence 317

to tease apart the mechanisms leading to the observed environmental associ- 318

ations, though others have suggested that thermophilic environments are not 319

distinguished by especially high or low viral diversity [10]. 320

We were also able to show that CRISPR types vary in in terms of the en- 321

vironmental niches they are found in, with type II systems appearing primarily 322

in host-associated microbes. This phenomenon could be due in part to phy- 323

logenetic biases in the dataset, but our use of a phylogenetically independent 324

test set lends credence to the overall trend. We have no clear mechanistic un- 325

derstanding of why cas9 containing microbes tend to favor a host-associated 326

lifestyle. Nevertheless this result may have practical implications for CRISPR 327

genome editing, since it has recently been found that humans frequently have 328

a preexisting adaptive immune response to variants of the Cas9 protein [39]. 329

We note that type I and III systems do not appear to have a strong link to 330

host-associated lifestyles. 331

Here we provide a broad view of how environmental factors shape the evo- 332

lution of immune strategy. Using only publicly available data, we identified 333

previously unobserved factors influencing the distribution of CRISPR immunity 334

in microbes. More targeted approaches that examine shifts in immune strat- 335

egy and viral communities along environmental gradients are sure to provide 336

a more fine-grained understanding of how microbial populations adapt to their 337

local pathogenic and abiotic environments. Finally, an increasing number of 338

prokaryotic defense strategies are still being discovered (e.g. [40, 41]), each 339

potentially filling a unique niche in strategy space. 340

Methods 341

Data 342

Trait Data 343

We downloaded the ProTraits microbial traits database [30] which describes 344

424 traits in 3046 microbial species. These traits include metabolic phenotypes, 345

preferred habitats, and specific behaviors like motility, among many others. 346

ProTraits was built using a semi-supervised text-mining approach, drawing from 347

several online databases and the literature. All traits are binary, with categorical 348

traits split up into dummy variables (e.g. oxygen requirement listed as“aerobic”, 349

“anaerobic”, and “facultative”). For each trait in each species, two “confidence 350

scores” in the range [0, 1], are given, corresponding to the confidence of the text 351

mining approach that a particular species does (c+) or does not (c−) have a 352

particular trait. We transformed these confidence scores into a single score (p) 353
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approximating the probability that a particular microbe has a particular trait 354

so that a score of one would indicate complete confidence that a microbe has 355

a particular trait, and a score of zero would indicate complete confidence that 356

that microbe lacks that trait 357

p =
1

2
+

(
c+

c+ + c−
− 1

2

)
× max(c+, c−). (1)

Many of the scores are missing for particular species-trait combinations 358

(18%), indicating situations in which the text mining approach was unable to 359

make a trait prediction. Our downstream analyses do not tolerate missing data, 360

and so we imputed missing values using a random forest approach (R pack- 361

age missForest; [42]). There are a number of summary traits in the ProTraits 362

dataset that were created de-novo using a machine learning approach, as well 363

as a number of traits describing the growth substrates a particular species can 364

use. In both cases, we removed these traits from the dataset for increased in- 365

terpretability (post-imputation). 366

Genomic Data and Immune Systems 367

For each species listed in the ProTraits dataset we downloaded a single genome 368

from NCBI’s RefSeq database, with a preference for completely assembled ref- 369

erence or representative genomes. A number of species (333) had no genomes 370

available in RefSeq, or only had genomes that had been suppressed since sub- 371

mission, and we discarded these species from the ProTraits dataset. 372

CRISPR incidence in each genome was determined using CRISPRDetect 373

[43]. Additionally, data on the number of CRISPR arrays found among all 374

available RefSeq genomes from a species were taken from Weissman et al. ([44]). 375

We downloaded the REBASE Gold database of experimentally verified RM 376

proteins and performed blastx searches of our genomes against this database 377

[45, 46]. The distribution of E-values we observed was bimodal, providing a 378

natural cutoff (E < 10−19). 379

To assess the ability of a microbe to perform non-homologous end-joining 380

(NHEJ) DNA repair we used hmmsearch to search the HMM profile of the 381

Ku protein implicated in NHEJ against all RefSeq genomes (E-value cutoff of 382

10−2/number of genomes; Pfam PF02735; [47, 31, 32]). We also used the anno- 383

tated number of 16s rRNA genes in each downloaded RefSeq genome as a proxy 384

for growth rate and the annotated cas3, cas9, and cas10 genes as indicators of 385

system type [48]. Where available as meta-data from NCBI, we also downloaded 386

the oxygen (1949 records) and temperature requirements (1094 records) for the 387

biosample record associated with each RefSeq genome. 388

Phylogeny 389

We used Phylosift to locate and align a large set of marker genes (738) found 390

broadly across microbes, generally as a single copy [49, 50]. Of these marker 391

genes, 67 were found in at least 500 of our genomes, and we limited our analysis 392
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to just this set. Additionally, eight genomes had few (< 20) representatives of 393

any marker genes and were excluded from further analysis. We concatenated the 394

alignments for these 67 marker genes and used FastTree (general-time reversible 395

and CAT options; [51]) to build a phylogeny (S14 Fig). 396

Visualizing CRISPR/RM Incidence 397

The size of the ProTraits dataset, both in terms of number of species and num- 398

ber of traits, and the probable complicated interactions between variables ne- 399

cessitate techniques that can handle complex, large scale data. To visualize 400

the structure of microbial trait space and the distribution of immune strategies 401

within that space we made use of two unsupervised machine learning techniques, 402

principal component analysis (PCA) and t-distributed stochastic neighbor em- 403

bedding (t-SNE, perplexity = 50, 5000 iterations; [25]). 404

CRISPR/RM Prediction from ProTraits 405

In order to predict the distribution of CRISPR and RM systems, we applied 406

a number of supervised machine learning approaches to our dataset. Because 407

of the underlying evolutionary relationships in the data, we chose a test set 408

that is phylogenetically independent of our training set. Alternatively, if we 409

were to draw a test set at random from the microbial species we would risk 410

underestimating our prediction errors due to non-independence of the training 411

and test sets [52]. We chose the Proteobacteria as a test set because they are 412

well-represented in the dataset (1139 species), ecologically diverse, and highly 413

heterogeneous in terms of CRISPR incidence (S15 Fig). The remaining phyla 414

were used to train our models. 415

We built both linear and nonlinear predictive models. First we performed 416

logistic regression to predict CRISPR incidence among species, using forward 417

subset selection to choose traits to include in the model. We used the minimum 418

mean squared error of prediction under 5-fold cross-validation as our criterion for 419

forward selection, and the minimum BIC as the criterion for choosing model size. 420

Similar to choosing a test set, it is important to take care when dividing the data 421

for cross validation. We performed cross validation both with randomly drawn 422

folds and with blocked folds, where the data were divided into phylogenetically- 423

cohesive chunks [52]. We clustered the data into blocked folds using the pairwise 424

distances between tips on our tree (partitioning around mediods, pam() func- 425

tion in R package cluster); [53, 54]). We note that this method of blocked 426

cross-validation is a non-parametric form of phylogenetic correction, since by 427

testing fit on largely independent sections of the tree we prevent fitting to the 428

underlying phylogenetic structure of the training set. We repeated this analy- 429

sis using phylogenetic logistic regression to more formally correct for phylogeny 430

(R package phylolm; [26, 55]). While the non-parametric blocking approach is 431

less powerful than the parametric approach used in phylogenetic regression, it 432

has a clear advantage in that it does not require us to specify an underlying 433

evolutionary model. 434
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The trait data exhibit strong multicolinearity (R package mctest; [56, 57]), 435

and so we sought out methods that deal well with this type of data, specifically 436

partial least squares (PLS) regression. We used sparse partial least squared 437

regression discriminant analysis (sPLS-DA) to simultaneously perform feature 438

selection and classification (tune.splsda() and splsda() functions in R package 439

mixOmics; [58, 59]). An extension of sPLS-DA, multivariate integrative (MINT) 440

sPLS-DA, takes into account clustering in the data, where clusters may vary sys- 441

tematically from one another (tune() and mint.splsda() functions in R package 442

mixOmics; [59, 60]). We used MINT sPLS-DA alongside the phylogenetically 443

blocked folds we defined earlier to control for phylogeny. A key assumption 444

we make here is that our folds can be taken as independent from one another 445

(i.e. no effect of shared evolutionary history). Since these clusters correspond 446

roughly to Phylum-level splits, and since CRISPR and other prokaryotic im- 447

mune systems are rapidly gained and lost over evolutionary time [61], we are 448

comfortable making this assumption. 449

While regression has the clear advantages of interpretability and computa- 450

tional efficiency, in order to capture higher-order relationships between microbial 451

traits we needed more powerful methods. Random forests (RF) are an attractive 452

choice for our aims since they produce a readily-interpretable output and can 453

incorporate nonlinear relationships between predictor variables [62]. We built 454

an RF classifier on our training data from 5000 trees (otherwise default settings 455

in R package randomForest; [63]). To prevent fitting to phylogeny, we also took 456

an ensemble approach. Using the phylogenetically blocked folds defined above 457

we fit five forests, each leaving out one of the five folds. We then weighted these 458

forests by their relative predictive ability on the respective fold excluded dur- 459

ing the fitting process (measured as Cohen’s κ; [64]). We predicted using our 460

ensemble of forests by choosing the predicted outcome with the greatest total 461

weight. 462
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