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Abstract	

While	many	observations	of	species	are	being	collected	by	citizen	science	projects	

worldwide,	it	can	be	challenging	to	identify	projects	collecting	data	that	effectively	monitor	

biodiversity.	Over	the	past	several	years	the	allure	of	taking	a	“Big	Data”	approach	has	

provided	the	opportunity	to	gather	massive	quantities	of	observations	via	the	Internet,	too	

often	with	insufficient	information	to	describe	how	the	observations	were	made.	

Information	about	species	populations	—	where	and	when	they	occur	and	how	many	of	

them	are	there	—	(i.e.,	the	signal)	can	be	lost	because	insufficient	information	is	gathered	

to	account	for	the	inherent	biases	in	data	collection	(i.e.,	the	noise).	Here	we	suggest	that	

citizen	science	projects	that	have	succeeded	in	motivating	large	numbers	of	participants,	

must	consider	factors	that	influence	the	ecological	process	that	affect	species	populations	

as	well	as	the	observation	process	that	determines	how	observations	are	made.		Those	

citizen	science	projects	that	collect	sufficient	contextual	information	describing	the	

observation	process	can	be	used	to	generate	increasingly	accurate	information	about	the	

distribution	and	abundance	of	organisms.	We	illustrate	this	using	eBird	as	a	case	study,	

describing	how	this	citizen	science	platform	is	able	to	collect	vital	contextual	information	

on	the	observation	process	while	maintaining	a	broad	global	constituency	of	participants.	

We	highlight	how	eBird	provides	information	with	which	to	generate	biodiversity	

indicators	—	specifically	distribution,	abundance,	and	habitat	associations	—	across	the	

entire	annual	cycle,	even	for	populations	of	long	distance	migratory	birds,	a	highly	

challenging	taxon.		
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Introduction	

Monitoring	biodiversity	provides	essential	information	with	which	to	develop	strategies	

for	the	conservation	and	sustainable	use	of	resources.	In	most	cases	environmental	

monitoring	programs	rely	on	humans	to	collect	field	observations,	because	artificial	

intelligence	systems	are	not	yet	able	to	classify	organisms	to	species	consistently	(Kelling	

et	al.	2013).	Since	governments	and	scientific	agencies	often	lack	resources	to	support	

long-term	biodiversity	assessment	by	professional	scientists	(Balmford	and	Gaston	1999,	

Bland	et	al.	2015),	many	organizations	have	developed	citizen	science	projects	that	recruit	

the	public	to	provide	large	quantities	of	monitoring	data	across	large	spatial	and	temporal	

extents	(Amano	et	al.	2016,	Danielsen	et	al.	2014,	Pimm	et	al.	2014,	Sullivan	et	al.	2014).	

	

Thousands	of	projects	engage	the	public	in	citizen	science	(see	http://scistarter.com),	with	

hundreds	of	these	projects	collecting	observations	of	species	(Theobald	et	al.	2015).	Many	

projects	take	advantage	of	the	global	internet	and	the	web	to	develop	forms	and	mobile	

apps	to	gather	data.	Several	projects	achieve	global	participation,	such	as	iNaturalist	

(http://www.inaturalist.org),	which	allows	anyone	to	submit	observations	of	any	organism	

and	manages	a	network	of	naturalists	to	identify	the	observations;	REEF	

(http://www.REEF.org),	which	engages	the	diving	community	to	monitor	reef	fishes;	and	

eBird	(http://www.ebird.org	),	which	engages	birders	to	gather	bird	observations.	

Combined,	these	citizen	science	projects	are	gathering	millions	of	species	observations	

annually	(Chandler	et	al.	2016).	eBird	alone	gathered	more	than	100	million	records	of	

individual	species	of	birds	(i.e.,	species	observations)	from	252	countries	in	2017.		
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While	citizen	science	has	the	potential	to	dramatically	increase	our	biodiversity	knowledge	

(Pimm	et	al.	2014),	much	care	is	required	when	interpreting	citizen	science	observations	

for	use	in	informing	conservation	and	management	actions.	This	is	because	citizen	science	

can	be	motivated	by	varied	objectives	that	may	be	at	odds.	Often	a	main	objective	is	to	

inform	science	or	conservation	(Dickinson	et	al.	2010),	which	requires	that	a	project	be	

designed	to	collect	accurate	and	usable	data.	However,	frequently	a	second	objective	is	

outreach	or	education,	i.e.,	a	desire	for	a	wide	range	of	project	participants	to	improve	their	

scientific	literacy	and	take	an	active	role	in	conservation	issues	(Bonney	et	al.	2014,	Jordan	

et	al.	2012,	Price	and	Lee	2013).		There	can	be	a	tension	between	these	two	objectives	as	

they	could	result	in	diverging	strategies	for	improving	data	quality	and	increasing	

participant	recruitment	and	motivation.		

	

Biodiversity	data	collection	methodologies	occur	along	a	gradient.	At	one	end	are	

structured	surveys	that	emphasize	strict	protocols	designed	to	meet	specific	objectives,	

and	often	require	trained	participants	to	sample	at	defined	locations.	At	the	other	end	of	

the	gradient	are	unstructured	projects	that	recruit	participants	from	a	wide	range	of	

expertise,	have	few	requirements	for	data	collection,	and	often	do	not	collect	information	

that	can	be	used	to	control	for	data	collection	biases.	Simple	data	collection	protocols	

provide	lower	per-datum	information	content	(Kery	et	al.	2010),	but	proponents	contend	

that	the	sheer	volume	of	data	collected	by	a	large	number	of	citizen	science	projects	is	

sufficient	to	meet	scientific	research	objectives.	However,	if	the	data	are	gathered	

opportunistically	and	without	any	description	of	the	sampling	process,	then	even	with	

large	volumes	of	data,	meaningful	interpretations	are	limited	in	scope	and	the	data	are	
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difficult	to	analyze	and	interpret	(Conrad	and	Hilchey	2011,	Kamp	et	al.	2016,	Ottinger	

2010).	However,	along	this	gradient	there	are	projects	that	succeed	in	achieving	broad	

public	participation	while	gathering	sufficient	information	to	allow	post-data	collection	

analysis	that	controls	for	some	known	data	collection	biases.		

	

The	goal	of	this	paper	is	to	suggest	best	practices	for	improving	the	quality	of	species	

observation	data	gathered	by	citizen	science	projects.	We	emphasize	the	need	for	projects	

to	gather	data	grounded	within	a	scientific	framework	to	produce	accurate	measures	of	the	

occurrence,	abundance,	and	other	attributes	of	species’	populations.	We	begin	by	reviewing	

key	data-quality	issues	in	citizen	science	projects	that	gather	species	observations.	Next,	

we	recommend	several	core	fields	of	information	that	all	citizen	science	projects	should	

collect	to	address	data	quality	issues.	Our	fundamental	argument	is	that	if	citizen	science	

projects	collect	a	small	set	of	basic	information	in	addition	to	species	observations,	they	can	

dramatically	improve	the	scientific	value	of	the	information	for	the	purpose	of	monitoring	

biodiversity.	

	

Data	Quality	Issues	in	Citizen	Science	Projects	Focused	on	Species	Observations.	

Regardless	of	where	a	project	fits	along	the	data	collection	methodology	gradient,	the	

method	used	to	collect	and	record	data	must	be	considered	and	accommodated	when	

project	data	are	analyzed.		The	data	are	generated	from	a	combination	of	two	processes:	1)	

an	ecological	process	that	determines	which	species	exist	in	a	given	location;	2)	an	

observation	process	that	determines	which	of	the	species	that	are	present	have	been	

detected,	identified,	and	reported.	Structured	surveys	reduce	the	variation	in	the	
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observation	process	by	having	rigorous	protocols	(Figure	1).	Unstructured	surveys	can	

account	for	the	observation	process	if	they	collect	information	sufficient	to	characterize	

and	describe	the	process	(Figure	1).	When	the	two	processes	are	confounded	in	the	data,	

critical	interpretations	of	ecological	processes	may	be	limited	or	misleading	(Nichols	et	al.	

2012).	For	example,	an	observed	pattern	in	species	occurrence	may	be	related	more	to	

where	sampling	for	that	species	occurred	than	to	the	actual	occurrence	of	the	species	

(Figure	2a).	This	is	one	of	several	known	biases	generated	by	unstructured	surveys	that	

need	to	be	addressed,	regardless	of	whether	data	are	analyzed	in	a	way	that	formally	

separates	the	ecological	and	observation	processes	(e.g.,	MacKenzie	et	al.	2006),	or	not	

(e.g.,	Fink	et	al.	2010).		

	

The	key	step	in	accounting	for	variation	in	the	observation	process	is	to	describe	and	

control	for	known	sources	of	bias.	Biases	can	be	separated	into	three	major	categories:	1)	

uneven	sampling	effort	over	space	and	time	(Figure	3)	(e.g.,	(Geldmann	et	al.	2016);	2)	

uneven	detectability	and	identification	of	organisms	(Figure	4)	(e.g.,(Kery	and	Schmid	

2004);	and	3)	uneven	observation	skill	across	participants	(Figure	5)	(e.g.,	(Crall	et	al.	

2011,	Delaney	et	al.	2008).	Structured	projects	with	rigorous	data-collection	techniques	

address	these	biases	during	data	collection	or	through	protocols	that	facilitate	bias	removal	

during	analysis.	Many	unstructured	projects,	however,	do	not	deal	with	these	biases	at	all.		

For	example,	the	majority	of	citizen	science	projects	document	the	ecological	process,	but	

do	not	document	observation	process.	We	suggest	that	if	unstructured	citizen	science	

projects	collect	sufficient	information	about	the	observation	process,	then	controlling	for	

these	observation	biases	can	be	addressed	during	data	analysis	(Bird	et	al.	2014,	Fourcade	
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et	al.	2014,	Stolar	and	Nielsen	2015).	We	now	review	the	differences	between	structured	

and	unstructured	projects.	

	

Sampling	Effort.	Structured	data	collection	protocols	preselect	locations	and	clearly	

describe	how	and	when	data	are	to	be	collected.	Sampling	typically	occurs	during	a	

specified	time	of	the	year,	and	locations	are	often	selected	using	stratified	sampling	

techniques	(Albert	et	al.	2010).	Data	collection	effort	is	tightly	controlled	by	protocols	that	

determine	when,	for	what	amount	of	time,	and	in	what	ways	an	observer	collects	

observations.		These	approaches	minimize	bias	and	often	standardize	effort	and	sampling	

intensity.			Examples	include	numerous	bird	atlases	such	as	the	Breeding	and	Wintering	

Birds	of	Britain	and	Ireland	(Balmer	et	al.	2013)	and	the	Swiss	Biodiversity	Monitoring	

Program	(BDM_Coordination_Office	2014).		

	

Unstructured	data	collection	protocols	allow	flexibility	in	where	an	individual	participates	

and	do	not	have	specific	requirements	about	how	and	when	data	are	to	be	collected.	Data	

can	often	be	collected	any	time	of	year	and	day.	There	are	usually	no	data	collection	

protocols	and	observers	are	required	to	report	only	species	they	observed.		These	

unstructured	projects	have	had	only	marginal	success	in	using	their	data	to	monitor	

biodiversity,	without	significant	assumptions	being	made.	An	example	of	an	assumption	is	

post-processing	species	presence	data	into	a	comprehensive	species	“list,”	which	has	the	

potential	to	be	a	useful	surrogate	for	effort	expended	in	biodiversity	surveys	(van	Strien	et	

al.	2010).	There	is	a	class	of	unstructured	projects	that	do	collect	information	on	the	

observation	process.	These	projects	have	few	protocol	requirements,	but	they	do	collect	
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information	to	identify	the	date,	location	and	observer,	and	encourage	the	reporting	of	the	

start	time	and	duration	they	collected	observations,	and	the	distance	they	walked	collecting	

observations.	If	sufficient	information	on	the	observation	process	is	recorded,	then	biases	

in	the	observation	process	can	be	addressed	during	analysis.	

	

Uneven	detectability	of	organisms.	All	biodiversity	data	collection	projects	suffer	from	the	

challenge	of	uneven	species	detectability		(Johnston	et	al.	2014).	This	issue	involves	

accounting	for	both	false	positives	—	misidentifications	of	observed	organisms,	and	false	

negatives—failures	to	report	species	that	were	present.	Some	false	positives	can	be	filtered	

out	as	anomalies	that	fall	outside	the	norm	of	occurrence	for	a	species	at	a	particular	time	

or	space.	However,	false	positives	can	also	be	misidentifications	of	expected	species.		An	

example	of	this	challenge	is	identification	of	Purple	Finch	and	House	Finch	(Figure	4),	

which	are	very	similar	in	appearance.	False-positive	rates	are	difficult	to	identify	and	

correct	for	in	statistical	analyses	without	additional	sources	of	information,	such	as	testing	

participants	about	species	identification	abilities	or	using	validation	approaches	that	

estimate	observer	skill	levels	(Kelling	et	al	2015b,	Ruiz-Gutierrez	et	al	2016).	In	contrast,	

false	negative	errors	can	be	corrected	for,	typically	through	the	direct	estimation	of	

detection	probabilities	(i.e.,	the	probability	of	detecting	a	species	when	present	(MacKenzie	

et	al	2003).			

	

Structured	surveys	that	employ	trained	participants	using	explicit	data	collection	protocols	

can	often	directly	control	for	species’	detectability.	For	example,	many	bird	surveys	require	

participants	to	make	repeat	observations	(e.g.,	replicates	used	to	estimate	detection	
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probability)	or	to	collect	observations	at	times	of	the	year	or	times	of	the	day	when	

organisms	are	most	active	to	maximize	the	opportunity	for	an	observer	to	detect	an	

organism.		

	

Unstructured	surveys	must	collect	more	than	basic	encounter	information	if	they	wish	to	

measure	variation	in	detection	rates	of	species.	Unstructured	projects	that	require	

observers	to	indicate	when	they	have	contributed	a	complete	list	of	all	the	species	they	

detected	allows	an	analyst	to	assume	that	any	species	not	reported	is	a	non-detection	for	

that	sampling	period	(Figure	2b).	Complete	information	on	the	detection	and	non-detection	

of	a	species	can	be	combined	with	sampling	effort	information	to	allow	for	the	analytical	

control	of	detection	rates	and	inference	of	variation	in	the	probabilities	of	true	absence	

(Fink	et	al.	2010).			

	

Uneven	observation	skills	across	participants.		While	various	modeling	techniques	can	

account	for	variation	in	detection	rates	of	a	species,	they	cannot	distinguish	differences	in	

detection	rates	among	observers	without	gathering	and	maintaining	information	about	

those	observers.	Structured	surveys	often	use	participants	who	are	paid	technicians	or	

experienced	volunteers.	Unstructured	projects	typically	have	few	barriers	to	participation	

resulting	in	more	substantial	variability	in	participant	skills	in	detecting	and	identifying	

species.	Regardless	of	whether	a	project	engages	skilled	participants	or	is	open	to	anyone,	a	

key	feature	of	data	collection	and	management	should	be	the	association	of	participant	

identifiers	with	the	observations	that	each	participant	collected,	which	allow	analysts	to	

monitor	the	relative	skills	of	participants	and	their	activity.		For	example,	eBird	indexes	
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observer	variability	through	species	accumulation	curves,	which	describe	how	the	total	

number	of	species	reported	increases	with	increasing	time	spent	in	collecting	observations	

and	how	this	rate	of	increase	varies	among	observers.	These	differences	in	species	

accumulation	curves	vary	among	observers	and	provide	a	measure	of	observer	skill	

(Kelling	et	al.	2015a).	They	can	be	used	as	a	post-hoc	data-derived	measurement	of	

observer	skill	levels	that	improves	ecological	inference	(Johnston	et	al.	2018).	

	

Improving	the	quality	of	species	occurrence	data	gathered	by	Citizen	Scientists.	

To	control	for	the	known	biases	outlined	in	the	previous	section,	we	argue	that	citizen	

science	projects	should	be	rooted	within	a	survey	design	framework	that	includes	several	

basic	data	collection	principles	that	provide	a	solid	foundation	for	data	analysis.	We	build	

upon	existing	recommendations	for	biological	monitoring	programs	that	collect	sufficient	

information	on	the	sampling	event	that	can	be	used	within	a	statistical	analyses	framework	

(Yoccoz	et	al.	2001).	The	goal	is	for	anyone	designing	a	citizen	science	project	to	not	only	

determine	what	is	to	be	observed,	but	to	describe	the	context	in	which	each	observation	

will	be	made.	The	answers	to	the	following	questions	define	the	associated	data-collection	

protocols	needed	for	data	analysis:	

1. Why	is	the	project	being	conducted?	Every	citizen	science	project	should	have	a	

clearly	articulated	purpose	based	on	either	a	research	question	or	specific	

monitoring	agenda	to	provide	guidelines	on	what	should	be	observed	and	how	data	

need	to	be	collected	(Bonney	et	al.	2009).	Any	disconnect	between	the	goals	of	the	

survey	and	how	the	data	are	collected	will	limit	project	success.	For	example,	if	the	

goal	of	a	project	is	to	relate	species	occurrences	with	land	cover	variables,	the	
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spatial	resolution	of	data	collected	must	be	clearly	defined.	Imprecise	information	

regarding	where	observations	were	made	will	lead	to	faulty	land	cover	and	

observation	relationships.		We	recommend	that	the	goals	of	a	citizen	science	project	

be	clearly	defined,	even	if	relatively	broad,	so	that	the	proper	data	collection	

methodology	can	be	developed.		

2. What	is	observed?	Most	biodiversity	monitoring	projects	identify	a	specific	

taxonomic	scope	(which	taxa	are	targeted),	because	developing	protocols	that	

effectively	gather	observations	of	one	taxon	(i.e.,	mammals)	would	be	different	from	

another	(i.e.,	stream	invertebrates).	Often	projects	require	an	observer	to	report	a	

checklist	of	all	the	species	they	identified	within	a	taxon,	sometimes	including	

counts.	Recording	all	detected	species	(within	a	predefined	list	of	species/taxa)	

creates	what	is	often	known	as	a	“complete	list,”	which	provides	information	on	

species	detected	and	species	not	detected.	Non-detections	can	be	used	to	estimate	

detectability	and	to	infer	species	absences.	We	recommend	that	the	taxon	scope	be	

clearly	defined	to	ensure	that	the	particular	framework	on	how	observations	are	

collected	can	be	developed.	We	also	recommend	the	use	of	“complete	lists”	(even	if	

on	a	subset	of	the	full	list	of	species	within	a	taxon)	so	that	non-detections	can	be	

used	in	subsequent	modelling	(Guillera-Arroita	et	al.	2015).	

3. Where	are	the	observations	collected?	Environmental	factors	not	only	constrain	

where	species	can	live,	but	the	habitat	or	weather	conditions	can	affect	the	

detectability	of	organisms.	The	detectability	can	be	altered	because	habitat	and	or	

weather	make	it	more	difficult	for	observers	to	see,	hear,	or	identify	species;	or	

because	habitat	and	weather	influence	behavior	of	animals.	Structured	biodiversity	
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monitoring	programs	gather	species	occurrence	information	only	at	preselected	

locations.		However,	many	citizen	science	projects	allow	the	observer	to	select	the	

location	rather	than	enforcing	pre-selected	locations.	The	advantage	of	user-

selected	areas	is	that	recruitment	of	participants	is	easier.		However,	observers	

typically	want	to	go	to	natural	areas	with	high	biodiversity	(Tulloch	et	al.	2012)	or	

to	locations	near	where	they	live	(Figure	4),	which	can	result	in	spatial	imbalance	of	

observation	locations.	This	problem	can	be	partially	mitigated	via	increased	rates	of	

participation	and	adjusting	weights	of	observations	made	from	high-density	

locations.	Regardless	of	how	a	location	is	selected,	knowledge	of	precise	locations	of	

observations	allows	for	connections	to	be	made	with	data	on	environmental	

conditions,	which	are	now	often	assembled	from	remote-sensed	datasets.	We	

recommend	that	the	locations	where	data	collection	events	occur	are	identified	at	

high	spatial	resolutions,	and	that	the	projects	recommend	locations	where	increased	

observer	effort	would	benefit	the	project.	

4. When	are	the	observations	collected?	Species	detectability	can	change	within	a	day	

or	seasonally	as	behavior	of	animals	change	or	plants	alter	their	appearance.	For	

example,	daily	flight	patterns	of	butterflies	are	determined	by	local	weather	

conditions.		Many	biodiversity	monitoring	programs	collect	observations	only	at	a	

particular	time	of	day,	or	during	specific	days	or	months	of	a	year.	Although	some	

unstructured	citizen	science	projects	also	have	adopted	this	approach,	others	

permit	year-round	participation.	There	are	advantages	to	both	approaches.		

Limiting	timing	of	collection	can	be	problematic,	especially	when	the	timing	of	

events	such	as	migration	or	nesting	change	from	year	to	year.		In	addition,	limiting	
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sampling	events	to	a	short	time	frame	in	a	given	year	may	limit	the	participation	of	

volunteers.	Recording	of	the	sampling	process	(e.g.,	date,	time,	and	duration	of	

observations)	allows	for	a	subset	of	data	to	be	extracted	for	specific	times	of	year	of	

interest	and	for	control	of	the	amount	of	effort	made	during	a	data	collection	event.	

We	recommend	that	the	timing	of	data	collection	be	matched	to	the	goals	of	the	

project,	and	that	the	date,	start	time,	and	duration	of	the	sampling	process	is	

recorded.	

5. Who	is	making	the	observations?	Structured	monitoring	programs	often	rely	on	

trained	technicians	for	data	collection,	or	have	dedicated,	long-standing	

participants,	while	most	unstructured	citizen	science	programs	do	not	restrict	

participation	and	have	a	range	of	participants	from	those	who	are	very	dedicated	to	

others	who	submit	data	only	occasionally.	While	participants	can	develop	enormous	

expertise	in	gathering	information	through	participation	in	citizen	science	projects	

(Kelling	et	al.	2015a),	volunteers	as	well	as	trained	technicians	can	exhibit	

tremendous	variation	in	their	detection	and	classification	skills.	Regardless	of	the	

monitoring	project,	it	is	important	to	know	who	collected	each	observation.	In	this	

way	bias	related	to	variability	in	observer	expertise	can	be	estimated.	We	

recommend	that	the	data	management	framework	retains	information	about	who	

collected	the	observations,	by	using	a	code	that	is	unique	to	an	individual	observer.	

6. How	are	the	observations	collected?	It	is	critical	to	report	information	about	the	

collection	process	needed	for	documenting	effort	and	completeness	of	a	survey	—

time	spent	observing,	estimates	of	area	surveyed,	and	any	other	variables	that	have	

a	strong	effect	on	the	detectability	of	species	in	the	survey	(Kery	et	al.	2010).	A	high	
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level	of	data	quality	can	be	maintained	in	the	absence	of	a	specific	sampling	design	

and	protocol	in	unstructured	projects	if	the	same	information	fields	are	reported	

clearly	during	each	observation	event	made	by	a	volunteer.		When	a	project	is	

gathering	species	observations,	volunteers	should	accurately	provide	the	location	

where	observations	were	made	and	any	distance	traveled	when	making	

observations;	the	date;	the	time;	and	the	duration	of	time	over	which	they	made	

observations.	This	information	can	be	used	to	filter	the	data	to	produce	a	high-

quality	dataset	that	is	more	similar	to	data	collected	by	structured	monitoring	

programs.	For	example,	data	can	be	filtered	to	only	those	records	that	resemble	a	

standard	“protocol,”	such	as	single-point	observations	made	between	5-10	minutes	

for	a	given	region	and	time	of	year.	We	recommend	that	sufficient	information	is	

gathered	to	clearly	record	the	observation	process	regardless	of	how	flexible	they	

observation	process	might	be.	

	

Biodiversity	analysis	with	unstructured	data	from	eBird.	

Overview:		eBird	engages	more	than	400,000	volunteers	to	report	bird	observations	based	

on	how	bird	watchers	typically	observe	birds,	i.e.,	units	of	data	collection	are	“checklists”	of	

zero	or	more	species	including	a	count	of	individuals	of	each	observed	species	(Kelling	et	

al.	2015b).		As	of	April	2018,	28	million	“complete	checklists”	containing	461	million	

observations	of	bird	species	had	been	submitted	to	eBird	since	the	project	began	in	2002.			

	

In	order	for	the	eBird	observation	process	to	be	clearly	articulated,	the	six	questions	that	

describe	how	observations	are	made	must	be	clearly	described.		
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1. Why	is	eBird	being	conducted?	eBird	collects	data	that	will	be	used	to	estimate	the	

distribution,	abundance,	and	trends	of	bird	populations	by	taking	advantage	of	the	

global	network	of	bird	enthusiasts	who	submit	their	observations	to	a	central	data	

repository	(Sullivan	et	al.	2014).	

2. What	is	observed?	eBird	gathers	a	complete	list	of	all	bird	species	observed	along	

with	counts	of	individuals	of	each	species	during	a	data	collection	event.		

3. Where	are	the	observations	collected?	eBird	participants	can	select	where	they	

make	their	observations.	All	locations	are	georeferenced	either	through	mapping	

tools	provided	on	the	eBird	website,	or,	more	accurately,	through	the	GPS	system	

available	on	mobile	phones	and	used	by	the	freely	available	eBird	App.	

4. When	are	the	observations	collected?	eBird	allows	observers	to	record	observations	

at	any	time	of	day	or	year.	

5. Who	is	making	the	observations?	Anyone	can	participate	in	eBird.	However,	

individuals	must	register	and	login	to	eBird	whenever	they	submit	a	list	of	birds.	

The	eBird	database	links	all	observations	to	the	registered	individual.		

6. How	are	the	observations	collected?	The	location,	date,	and	start	time	are	recorded	

for	all	collection	events.	Prior	to	submission	of	species	observations,	participants	

must	also	record	whether	they	are	submitting	a	list	of	all	the	birds	they	detected	and	

identified,	which	allows	analysts	to	infer	the	absence	of	species	not	reported.	

Additionally,	participants	are	encouraged	to	record	search	effort	information	-	the	

duration	and	the	distance	traveled	during	the	data	collection	event.	Together,	all	of	

this	information	comprises	a	“complete	checklist,”	which	is	the	foundation	for	much	

of	the	analysis	of	eBird	data.		
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Translating	eBird	checklists	into	useful	biodiversity	information	describing	patterns	of	

species	occurrence	and	abundance	in	space	and	time	are	done	through	Species	Distribution	

or	Niche	models	(SDMs).	These	statistical	models	estimate	the	distribution	or	abundance	of	

a	species	by	estimating	relationships	between	the	observed	patterns	of	species	occurrence	

and	data	describing	the	processes	that	give	rise	to	these	observations	(Franklin	2009).	The	

data	describing	this	process	includes	environmental	data,	often	collected	via	remote	

sensing,	which	describe	important	ecological	processes,	e.g.,	habitat	selection,	which	

determine	the	environments	most	likely	to	be	occupied	by	a	species,	and	data	that	describe	

important	aspects	of	the	observational	process,	like	the	information	contained	in	eBird	

complete	checklists.	When	the	goal	is	ecological	inference,	the	effects	of	the	observation	

process	are	sources	of	bias.	If	these	sources	of	bias	cannot	be	controlled	during	data	

collection,	then	data	describing	these	biases	are	essential	to	account	for	them	during	

analysis	(Figure	1).	SDMs	provide	the	analytical	framework	where	ecological	signal	can	be	

separated	from	observational	noise.		

	

Data	from	eBird	complete	checklists	in	combination	with	remote	sensing	data	are	used	to	

create	a	series	of	biodiversity	indicator	data	products	for	a	species.	These	include	range-

wide,	seasonal	relative	abundance	estimates	(Figure	6),	weekly	relative	abundance	

estimates	(Figure	7),	and	weekly	estimates	of	the	relative	importance	of	land	and	water	

cover	classes	to	species	occurrence	(Figure	8).	The	range-wide,	seasonal	relative	

abundance	estimates	are	meant	to	show	the	population	of	each	species	across	its	entire	

distribution.	The	inclusion	of	relative	abundance	identifies	the	core	range	of	the	species.	

The	weekly	relative	abundance	estimates	show	where	the	species	occurs	and	its	relative	
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abundance	for	every	week	of	the	year.	The	estimates	also	show	regions	where	the	species	

does	not	occur	and	locations	where	eBird	does	not	have	sufficient	data.	The	habitat	plots	

show	the	seasonally	and	geographically	varying	habitat	associations	across	the	entire	life	

cycle	of	a	species.	These	indicators	can	be	used	to	contrast	regions,	seasons,	and	species,	or	

to	compare	the	expected	costs	of	management	decisions.	For	example,	modeling	how	bird	

populations	change	throughout	the	year	has	uncovered	seasonally	complex	species–

environment	relationships	(Zuckerberg	et	al.	2016),	identified	novel	aspects	of	habitat	

associations	that	can	impact	bird	populations	during	migration	(La	Sorte	et	al.	2017),	and	

identified	seasonal	resources	needed	for	supporting	bird	populations	during	critical	stages	

of	their	life	history	(Johnston	et	al.	2015,	Reynolds	et	al.	2017).		

	

Overall,	the	data	contained	within	eBird	complete	checklists	allow	analysts	to	account	for	a	

large	proportion	of	the	variation	in	the	observation	process.	The	information	on	protocol,	

distance	traveled,	start	time,	duration,	location,	observer	expertise,	and	total	number	of	

observers	all	help	us	improve	our	ability	to	correct	for	these	known	sources	of	variation	in	

detectability.	Furthermore,	the	availability	of	complete	checklists	provides	a	critical	source	

of	information	on	species	not	detected.	Accounting	for	variation	in	the	observation	process	

gives	us	greater	ability	to	produce	more	accurate	estimates	of	the	ecological	process	

(Figure	1).	This	provides	greater	confidence	in	trends,	maps,	and	other	ecological	metrics	

that	are	produced	using	eBird	data.		
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Ensuring	Citizen	Science	Projects	Effectively	Monitor	Biodiversity	

While	the	fundamental	tenets	of	using	citizen	science	—	providing	data	that	meet	scientific	

objectives	while	ensuring	broad	participation	and	improving	scientific	literacy	—	are	

admirable,	balancing	both	objectives	can	be	difficult,	and	a	good	balance	is	not	frequently	

accomplished.	We	believe	that	it	is	possible	to	engage	volunteers	in	citizen	science	

monitoring	via	Internet-based	means	and	gather	sufficiently	robust	data	to	estimate	the	

distributional	patterns	and	trends	in	species	occurrences.	While	our	recommendations	

include	more	rigor	and	standardization	in	data	collection,	flexibility	in	the	requirements	for	

individuals	to	participate	in	the	project	can	allow	for	increased	participation	over	time.	

When	the	basic	components	needed	to	motivate	participants	are	in	place,	volunteers	can	be	

further	incentivized	to	increase	participation	in	ways	that	are	aligned	with	their	

motivation.	For	example,	the	birding	community	has	responded	well	to	gaming	techniques	

such	as	leader	boards,	tools	that	allow	individuals	to	manage	their	personal	records,	and	

features	that	allow	an	individual	to	explore	the	patterns	of	bird	occurrences.			

	

Over	the	next	several	years,	technical	advances	will	improve	the	potential	for	an	increase	in	

the	quantity	and	quality	of	citizen	science	data	collected	around	the	world.	Already	more	

than	60%	of	all	eBird	data	are	being	submitted	via	mobile	apps,	which	dramatically	

improve	the	accuracy	of	the	location	and	distance	an	observer	walks	while	observing	birds.	

Developments	in	the	fields	of	Artificial	Intelligence	and	Augmented	Reality,	combined	with	

increasingly	efficient	and	powerful	mobile	technologies,	will	vastly	improve	the	ability	of	

citizen	scientists	to	detect	and	identify	organisms	in	the	field.		For	example,	projects	such	as	

the	Cornell	Lab	of	Ornithology’s	Merlin	Bird	ID	App,	and	iNaturalist	already	use	powerful	
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Deep	Learning	algorithms	and	computer	vision	techniques	to	identify	images	of	thousands	

of	organisms	to	species,	helping	observers	get	to	the	right	species-level	identification	in	the	

field.	Such	emerging	tools,	while	powerful,	will	not	be	able	to	fully	replace	individual	

expertise,	and	measured	proxies	for	expertise	will	remain	needed.	

	

Equally	important	are	continuing	advances	in	analytical	methodology,	which	are	beginning	

to	provide	a	means	to	jointly	analyze	data	collected	by	both	structured	and	unstructured	

projects	(Fithian	et	al.	2015,	Giraud	et	al.	2016,	Tenan	et	al.	2016).	These	models	leverage	

the	strengths	of	both	information-rich	structured	data	along	with	the	broad	spatial	

coverage	provided	by	incidental	or	opportunistic	data	to	improve	inferences.			These	new	

models	can	include	data	collected	from	different	points	along	the	spectrum	from	

unstructured	to	fully	structured.			

In	summary,	the	enormous	growth	of	digital	networks,	rapidly	advancing	artificial	

intelligence	techniques,	the	appearance	of	powerful	computing	devices	that	can	fit	in	a	

pocket,	and	new	statistical	analyses	will	not	only	improve	the	quality	of	citizen	science	

project	data,	but	also	improve	the	inference	obtainable	from	these	data.		We	envision	a	

global	network	of	motivated	observers	rapidly	collecting	species	lists	and	observing	

process	information	usable	for	near	real-time	trend	assessment	of	species	and	community	

health,	enhanced	by	real-time	information	and	supported	via	mobile	computing.	Whatever	

the	taxon,	minimal	but	critical	observation	process	reporting,	as	recommended	here,	will	

assure	improved	accuracy	in	the	estimation	of	the	ecological	signal.	These	observations	and	

the	process	behind	them,	linked	to	increasingly	improving	Earth	imagery,	promise	to	
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support	well-designed	biodiversity	monitoring	programs	across	broad	spatial	and	

temporal	extents.	

	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326314doi: bioRxiv preprint 

https://doi.org/10.1101/326314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

References.	

Albert	CH,	Yoccoz	NG,	Edwards	TC,	Graham	CH,	Zimmermann	NE,	Thuiller	W.	2010.	

Sampling	in	ecology	and	evolution	-	bridging	the	gap	between	theory	and	practice.	

Ecography	33:1028-1037.	

Amano	T,	Lamming	JD,	Sutherland	WJ.	2016.	Spatial	gaps	in	global	biodiversity	information	

and	the	role	of	citizen	science.	BioScience:biw022.	

Balmer	D,	Gillings	S,	Caffrey	B,	Swann	B,	Downie	I,	Fuller	R.	2013.	2007-2011:	The	breeding	

and	wintering	birds	of	Britain	and	Ireland:	BTO	Books.	

Balmford	A,	Gaston	KJ.	1999.	Why	biodiversity	surveys	are	good	value.	Nature	398:204-

205.	

BDM_Coordination_Office.	2014.	Swiss	Biodiversity	Monitoring	BDM.	Description	of	

Methods	and	Indicators.	Federal	Office	for	the	

Environment,	Bern.	1410.	

Bird	TJ,	Bates	AE,	Lefcheck	JS,	Hill	NA,	Thomson	RJ,	Edgar	GJ,	Stuart-Smith	RD,	

Wotherspoon	S,	Krkosek	M,	Stuart-Smith	JF,	Pecl	GT,	Barrett,	N,	Frusher	S.	2014.	Statistical	

solutions	for	error	and	bias	in	global	citizen	science	datasets.	Biological	Conservation	

173:144-154.	

Bland	LM,	Collen	B,	Orme	CDL,	Bielby	J.	2015.	Predicting	the	conservation	status	of	data-

deficient	species.	Conservation	Biology	29:250-259.	

Bonney	R,	Cooper	CB,	Dickinson	J,	Kelling	S,	Phillips	T,	Rosenberg	KV,	Shirk	J.	2009.	Citizen	

science:	A	developing	tool	for	expanding	science	knowledge	and	scientific	literacy.	

BioScience	59:977-984.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326314doi: bioRxiv preprint 

https://doi.org/10.1101/326314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Bonney	R,	Shirk	J,	Phillips	T,	Wiggins	A,	Ballard	H,	Miller-Rushing	A,	Parrish	J.	2014.	Next	

Steps	for	Citizen	Science.	Science	343:1436-1437.	

Chandler	M,	See	L,	Copas	K,	Bonde	AM,	López	BC,	Danielsen	F,	Legind	JK,	Masinde	S,	Miller-

Rushing	AJ,	Newman	G.	2016.	Contribution	of	citizen	science	towards	international	

biodiversity	monitoring.	Biological	Conservation.	

Conrad	CC,	Hilchey	KG.	2011.	A	review	of	citizen	science	and	community-based	

environmental	monitoring:	issues	and	opportunities.	Environmental	Monitoring	and	

Assessment	176:273-291.	

Crall	AW,	Newman	GJ,	Stohlgren	TJ,	Holfelder	KA,	Graham	J,	Waller	DM.	2011.	Assessing	

citizen	science	data	quality:	an	invasive	species	case	study.	Conservation	Letters	4:433-442.	

Danielsen	F,	Pirhofer-Walzl	K,	Adrian	TP,	Kapijimpanga	DR,	Burgess	ND,	Jensen	PM,	

Bonney	R,	Funder	M,	Landa	A,	Levermann	N.	2014.	Linking	public	participation	in	scientific	

research	to	the	indicators	and	needs	of	international	environmental	agreements.	

Conservation	Letters	7:12-24.	

Delaney	DG,	Sperling	CD,	Adams	CS,	Leung	B.	2008.	Marine	invasive	species:	validation	of	

citizen	science	and	implications	for	national	monitoring	networks.	Biological	Invasions	

10:117-128.	

Dickinson	JL,	Zuckerberg	B,	Bonter	DN.	2010.	Citizen	science	as	an	ecological	research	tool:	

challenges	and	benefits.	Annual	Review	of	Ecology,	Evolution,	and	Systematics	41:149-172.	

Fink	D,	Hochachka	WM,	Winkler	D,	Shaby	B,	Hooker	G,	Zuckerberg	B,	Munson	MA,	Sheldon	

D,	Riedewald	M,	Kelling	S.	2010.	Spatiotemporal	Exploratory	models	for	Large-scale	Survey	

Data.	Ecological	Applications	20:2131-2147.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326314doi: bioRxiv preprint 

https://doi.org/10.1101/326314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

Fithian	W,	Elith	J,	Hastie	T,	Keith	DA.	2015.	Bias	correction	in	species	distribution	models:	

pooling	survey	and	collection	data	for	multiple	species.	Methods	In	Ecology	and	Evolution	

6:424-438.	

Fourcade	Y,	Engler	JO,	Rodder	D,	Secondi	J.	2014.	Mapping	Species	Distributions	with	

MAXENT	Using	a	Geographically	Biased	Sample	of	Presence	Data:	A	Performance	

Assessment	of	Methods	for	Correcting	Sampling	Bias.	PLoS	ONE	9	(art.	e97122).	

Franklin	J.	2009.	Mapping	species	distributions:	spatial	inference	and	prediction.	

Cambridge	University	Press.	

Geldmann	J,	Heilmann-Clausen	J,	Holm	TE,	Levinsky	I,	Markussen	B,	Olsen	K,	Rahbek	C,	

Tøttrup	AP.	2016.	What	determines	spatial	bias	in	citizen	science?-Exploring	four	

recording	schemes	with	different	proficiency	requirements.	Diversity	and	Distributions:	a	

Journal	of	Biological	Invasions	and	Biodiversity.	

Giraud	C,	Calenge	C,	Coron	C,	Julliard	R.	2016.	Capitalizing	on	opportunistic	data	for	

monitoring	relative	abundances	of	species.	Biometrics	72:649-658.	

Guillera-Arroita	G,	Lahoz-Monfort	JJ,	Elith	J,	Gordon	A,	Kujala	H,	Lentini	PE,	McCarthy	MA,	

Tingley	R,	Wintle	BA.	2015.	Is	my	species	distribution	model	fit	for	purpose?	Matching	data	

and	models	to	applications.	Global	Ecology	and	Biogeography	24:276-292.	

Johnston	A,	Fink	D,	Hochachka	WM,	Keling	S.	2018.	Estimates	of	observer	expertise	

improve	ecological	inference	from	citizen	science	data.	Methods	In	Ecology	and	Evolution.	

Johnston	A,	Fink	D,	Reynolds	MD,	Hochachka	WM,	Sullivan	BL,	Bruns	NE,	Hallstein	E,	

Merrifield	MS,	Matsumoto	S,	Kelling	S.	2015.	Abundance	models	improve	spatial	and	

temporal	prioritization	of	conservation	resources.	Ecological	Applications	25:1749-1756.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326314doi: bioRxiv preprint 

https://doi.org/10.1101/326314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Johnston	A,	Newson	S,	Risley	K,	Musgrove	A,	Massimino	D,	Baillie	S,	Pearce-Higgins	J.	2014.	

Species	traits	explain	variation	in	detectability	of	UK	birds.	Bird	Study	61:340-350.	

Jordan	RC,	Ballard	HL,	Phillips	TB.	2012.	Key	issues	and	new	approaches	for	evaluating	

citizen-science	learning	outcomes.	Frontiers	in	Ecology	and	the	Environment	10:307-309.	

Kamp	J,	Oppel	S,	Heldbjerg	H,	Nyegaard	T,	Donald	PF.	2016.	Unstructured	citizen	science	

data	fail	to	detect	long-term	population	declines	of	common	birds	in	Denmark.	Diversity	

and	Distributions	22:1024-1035.	

Kelling	S,	Johnston	A,	Hochachka	WM,	Iliff	M,	Fink	D,	Gerbracht	J,	Lagoze,	C,	La	Sorte	FA,	

Moore	T,	Wiggins	A,	Wong	WK,	Wood	C,	Yu	J.		2015a.	Can	observation	skills	of	citizen	

scientists	be	estimated	using	species	accumulation	curves?	PLoS	ONE	10	(art.	e0139600).	

Kelling	S,	Fink	D,	La	Sorte	FA,	Johnston	A,	Bruns	NE,	Hochachka	WM.	2015b.	Taking	a	‘Big	

Data’approach	to	data	quality	in	a	citizen	science	project.	Ambio	44:601-611.	

Kelling	S,	Lagoze	C,	Wong	W-K,	Yu	J,	Damoulas	T,	Gerbracht	J,	Fink	D,	Gomes	C.	2013.	eBird:	

A	Human/Computer	Learning	Network	to	Improve	Biodiversity	Conservation	and	

Research.	AI	Magazine	34:10-20.	

Kery	M,	Royle	JA,	Schmid	H,	Schaub	M,	Volet	B,	Haefliger	G,	Zbinden	N.	2010.	Site-

Occupancy	Distribution	Modeling	to	Correct	Population-Trend	Estimates	Derived	from	

Opportunistic	Observations.	Conservation	Biology	24:1388-1397.	

Kery	M,	Schmid	H.	2004.	Monitoring	programs	need	to	take	into	account	imperfect	species	

detectability.	Basic	and	Applied	Ecology	5:65-73.	

La	Sorte	FA,	Fink	D,	Buler	JJ,	Farnsworth	A,	Cabrera-Cruz	SA.	2017.	Seasonal	associations	

with	urban	light	pollution	for	nocturnally	migrating	bird	populations.	Global	Change	

Biology	23:4609-4619.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326314doi: bioRxiv preprint 

https://doi.org/10.1101/326314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

MacKenzie	D,	Nichols	J,	Royle	A,	Pollock	K,	Bailey	L,	HInes	J.	2006.	Occupancy	Estimation	

and	Modeling-	Inferring	Patterns	and	Dynamics	of	Species	Occurrence.	Elsevier.	

Nichols	JD,	Cooch	EG,	Nichols	JM,	Sauer	JR.	2012.	Studying	Biodiversity:	Is	a	New	Paradigm	

Really	Needed?	BioScience	62:497-502.	

Ottinger	G.	2010.	Buckets	of	resistance:	Standards	and	the	effectiveness	of	citizen	science.	

Science,	technology	&	human	values	35:244-270.	

Pimm	SL,	Jenkins	CN,	Abell	R,	Brooks	TM,	Gittleman	JL,	Joppa	LN,	Raven	PH,	Roberts	CM,	

Sexton	JO.	2014.	The	biodiversity	of	species	and	their	rates	of	extinction,	distribution,	and	

protection.	Science	344.	

Price	C,	Lee	H.	2013.	Changes	in	participants'	scientific	attitudes	and	epistemological	beliefs	

during	an	astronomical	citizen	science	project.	Journal	of	Research	in	Science	Teaching	

50:773-801.	

Reynolds	MD,	et	al.	2017.	Dynamic	conservation	for	migratory	species.	Science	Advances	3.	

Stolar	J,	Nielsen	SE.	2015.	Accounting	for	spatially	biased	sampling	effort	in	presence-only	

species	distribution	modelling.	Diversity	and	Distributions	21:595-608.	

Sullivan	BL,	Aycrigg	JL,	Barry	JH,	Bonney	R,	Bruns	NE,	Cooper	CB,	Damoulas	T,	Dhondt	AA,	

Dietterich	TG,	Farnsworth	A,	Fink	D,	Fitzpatrick	JW,	Fredericks	T,	Gerbracht	J,	Gomes	C,	

HochachkaWM,	Iliff	MJ,	Lagoze	C,	La	Sorte	FA,	Merrifield	M,	Morris	W,	Phillips	TB,	Reynolds	

M,	Rodewald	AD,	Rosenberg	KV,	Trautmann	NM,	Wiggins	A,	Winkler	DW,	Wong	WK,	Wood	

CL,	Yu	J,	Kelling	S.	2014.	The	eBird	enterprise:	An	integrated	approach	to	development	and	

application	of	citizen	science.	Biological	Conservation	169:31-40.	

Tenan	S,	Pedrini	P,	Bragalanti	N,	Groff	C,	Sutherland	C.	2016.	Investigating	the	potential	of	

opportunistic	sighting	data	to	inform	wildlife	conservation	strategies.	bioRxiv:075945.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326314doi: bioRxiv preprint 

https://doi.org/10.1101/326314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

Theobald	EJ,	et	al.	2015.	Global	change	and	local	solutions:	Tapping	the	unrealized	

potential	of	citizen	science	for	biodiversity	research.	Biological	Conservation	181:236-244.	

Tulloch	A,	Mustin	K,	Possingham	H,	Szabo	J,	Wilson	K.	2012.	To	boldly	go	where	no	

volunteer	has	gone	before:	predicting	volunteer	activity	to	prioritize	surveys	at	the	

landscape	scale.	Diversity	and	Distributions	19:465-480.	

van	Strien	AJ,	Termaat	T,	Groenendijk	D,	Mensing	V,	Kery	M.	2010.	Site-occupancy	models	

may	offer	new	opportunities	for	dragonfly	monitoring	based	on	daily	species	lists.	Basic	

and	Applied	Ecology	11:495-503.	

Zuckerberg	B,	Fink	D,	La	Sorte	FA,	Hochachka	WM,	Kelling	S.	2016.	Novel	seasonal	land	

cover	associations	for	eastern	North	American	forest	birds	identified	through	dynamic	

species	distribution	modelling.	Diversity	and	Distributions	22:717-730.	

	

	 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326314doi: bioRxiv preprint 

https://doi.org/10.1101/326314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

	

Figure	1.	Schematic	diagram	of	the	ecological	and	observation	processes.	True	processes	

are	in	grey,	whilst	estimated	processes	are	in	black	and	red.	The	ecological	process	(first	

row)	shows	the	changing	density	of	a	species	through	a	landscape	(e.g.,	along	a	gradient	

from	urban	to	rural	environments).	The	second	row	shows	the	observation	process.	This	is	

constant	for	a	structured	survey,	which	has	consistent	survey	effort.	The	unstructured	

protocols	have	variable	observations.	In	this	example,	consider	more	surveys	nearer	urban	
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areas.	The	third	row	shows	the	estimated	observation	process.	In	unstructured	surveys	

with	no	extra	information	(middle	column)	the	observation	process	is	assumed	constant,	

so	the	observations	are	the	product	of	the	species	density	and	survey	density.	In	

unstructured	surveys	with	extra	information	(right	column)	it	is	possible	to	estimate	the	

observation	effort	and	this	is	indicated	with	the	red	line.	The	bottom	row	shows	the	density	

of	species	observations	and	the	real	ecological	process	(grey	line).	Both	the	structured	

survey	and	the	unstructured	surveys	with	effort	information	are	able	to	recover	something	

close	to	the	true	ecological	process.	The	more	closely	the	red	line	comes	to	the	true	

observation	process,	the	more	accurately	the	ecological	process	will	be	uncovered.	The	

unstructured	survey	without	effort	or	bias	information	is	not	able	to	recover	the	true	

ecological	process,	because	the	ecological	process	is	confounded	with	the	observation	

process.		
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Figure	2	left.	Presence-only	locations	where	Wrentit	(Chamaea	fasciata)	was	observed	in	

eBird.	The	darker	the	20	km	purple	grid	cells’	color,	the	higher	the	frequency	of	reports.	

Note	in	central	California	and	Nevada	Wrentits	were	not	reported.	Because	these	are	

presence-only	data,	it	is	unclear	whether	the	map	represents	the	true	species	range	or	

sampling	limitations.	Figure	2	right.	Presence	locations	where	Wrentit	was	observed	in	

eBird	(purple)	and	areas	where	observations	were	submitted	but	Wrentit	was	not	

observed	(gray).		This	map	provides	much	stronger	evidence	of	species	distribution.	
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Figure	3.	Locations	in	New	York	State	where	eBird	participants	have	submitted	

observations.	There	are	214,000	unique	locations	where	observations	have	been	

submitted.	Dark	areas	are	regions	with	high	densities	of	observations.	Note	how	dark	areas	

are	often	correlated	to	areas	with	high	human	population	densities.	
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Figure	4.	Identification	of	species	is	a	difficult	and	confusing	task.	One	of	the	biggest	

mistakes	made	by	observers	in	North	America	is	confusing	male	Purple	Finch,	Haemorhous	

purpurus,	(left)	and	House	Finch,	Haemorhous	mexicanus,	(right).	
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Figure	5.	Reporting	rate	of	a)	Purple	finch	and	b)	House	finch	on	checklists	increases	with	

observer	expertise.	Reporting	rate	is	higher	for	house	finch	but	increases	with	expertise	for	

both	species.	Lines	and	grey	boxes	show	fitted	relationships	and	95%	confidence	intervals.	

Each	dot	is	the	expertise	and	reporting	rate	of	an	individual	observer,	scaled	by	the	number	

of	checklists	they	submitted	in	the	region	and	time	period.	
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Figure	6.	Seasonal	Relative	Abundance	Map	for	Barn	Swallow	(Hirundo	rustica).	This	map	

shows	the	average	relative	abundance	during	each	of	the	stationary	breeding	(June	13-July	

20),	stationary	non-breeding	(December	21	–	February	8),	and	non-stationary	migratory	

seasons.	The	stationary	breeding	and	non-breeding	seasons	are	plotted	on	top	the	

migratory	season,	obscuring	some	aspects	of	the	species’	movements	through	the	annual	

cycle.	
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Figure	7.	Barn	Swallow	estimates	of	relative	abundance	at	2.8km	×	2.8km	resolution	

during	(a)	breeding	(June	21),	(b)	autumn	migration	(October	5),	(c)	non-breeding	

(January	4),	and	(d)	spring	migration	(March	28)	seasons.	Positive	abundance	is	only	

shown	in	areas	estimated	to	be	occupied	with	the	range	boundary	depicted	as	the	

boundary	between	pixels	with	and	without	color.	Lighter	orange	colors	indicate	areas	

occupied	with	higher	abundance.	Relative	abundance	was	measured	as	the	expected	count	

of	the	species	on	a	standardized	1km	survey	conducted	from	7-8AM	by	a	highly	

experienced	participant.		
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Figure	8.	The	weekly	relative	importance	of	each	land	and	water	cover	class	for	Barn	

Swallow	in	a)	the	state	of	Ohio	in	U.S.,	b)	Costa	Rica,	and	c)	Pampas	region	of	Argentina.	

Positive	importance	(colored	shading	above	the	horizontal	black	lines)	indicates	use	of	

habitat	of	a	landcover	type	and	negative	importance	indicates	class	avoidance.	The	strength	

of	the	association	with	each	class	is	proportional	to	the	height	of	the	class	color.	Classes	

with	inconsistent	association	direction,	were	removed,	resulting	in	total	weekly	relative	

importance	that	sums	to	less	than	1.		Barn	Swallow	shows	strong	associations	with	

croplands	in	all	regions.	In	Ohio	there	is	also	a	positive	association	with	the	Deep	Inland	

Water,	the	class	that	describes	the	shore	line	of	Lake	Erie,	during	the	spring	and	autumn	

migration.	In	each	region,	Barn	Swallow	appears	to	avoid	a	different	set	of	landcover	
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classes.	This	reflects	the	different	landscape	structure	within	which	croplands	are	

embedded.	In	Ohio,	croplands	are	situated	within	the	larger	Eastern	Deciduous	forests	with	

Deciduous	Broadleaf	Forest,	Mixed	Forest,	and	Urban	classes.	In	Costa	Rica,	there	is	a	mix	

of	Evergreen	Broadleaf	Forest,	Mixed	Forest,	Woody	Savannas,	and	Oceans,	In	the	Pampas,	

the	landscape	is	predominantly	Grasslands.	
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