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ABSTRACT 19 

Persistent infections require bacteria to evolve from their naïve colonization state by 20 

optimizing fitness in the host. This optimization involves coordinated adaptation of multiple 21 

traits, obscuring evolutionary trends and complicating infection management. Accordingly, 22 

we screen 8 infection-relevant phenotypes of 443 longitudinal Pseudomonas aeruginosa 23 

isolates from 39 young cystic fibrosis patients over 10 years. Using statistical modeling, we 24 

map evolutionary trajectories and identify trait correlations accounting for patient-specific 25 

influences. By integrating previous genetic analyses of 474 isolates, we provide a window into 26 

early adaptation to the host, finding: 1) a 2-3 year timeline of rapid adaptation after 27 
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colonization, 2) variant "naïve" and "adapted" states reflecting discordance between 28 

phenotypic and genetic adaptation, 3) adaptive trajectories leading to persistent infection via 29 

3 distinct evolutionary modes, and 4) new associations between phenotypes and 30 

pathoadaptive mutations. Ultimately, we effectively deconvolute complex trait adaptation, 31 

offering a framework for evolutionary studies and precision medicine in clinical microbiology. 32 

 33 

 34 

Bacteria have spent millennia evolving complex and resilient modes of adaptation to new 35 

environments, and some species effectively deploy these skills as pathogens during 36 

colonization and persistence within human hosts1–3. Due to gradual increases in fitness via 37 

accumulating genetic and epigenetic changes, it has been difficult to pinpoint overarching 38 

drivers of adaptation (from systems-level traits down to individual mutations) that reliably 39 

signal fitness [Leon et al. 2018]. Distinct populations may travel along the same predictable 40 

path to successful persistence, but other unique sequences of multi-trait adaptation can be 41 

equally optimal4 in a complex, fluctuating environment5. This is even more relevant in a 42 

clinical context where dynamic selection pressures are applied via therapeutic treatment 43 

intended to eradicate infection. 44 

 45 

Even for a well-studied model system of bacterial persistence and chronic infection such as 46 

the airway infections of cystic fibrosis (CF) patients, evolutionary trajectories remain difficult 47 

to map due in part to competing modes of evolution. We know from laboratory evolution 48 

studies in highly controlled conditions that these multiple modes are at work and induce 49 

substantial phenotypic adaptation to minimal media within the initial 5,000-10,000 50 

generations6–8, but only an estimate is available of the timeline of adaptation in the complex 51 

CF lung environment9. Multiple recent studies have shown a high degree of population 52 

heterogeneity in chronic CF infections that could be influenced by competing evolutionary 53 

modes, but past consensus has been that select traits converge torwards similar “evolved” 54 

states during most CF infections (e.g. loss of virulence and increase in antibiotic 55 

resistance)3,10–12. This convergence can be complex and drug-driven, as recent studies have 56 

shown development of collateral sensitivity to antibiotics (treatment with one drug can 57 

induce reciprocal changes in sensitivity to other drugs)13; this illustrates that a single selection 58 
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pressure can reversibly affect multiple other traits, obscuring evolutionary trends. Bacterial 59 

infections of CF airways are thus influenced by strong and competing selective forces from 60 

very early in a patient’s life, but few studies have focused on the early periods of infection 61 

where environmental strains transition to successful pathogens in patient lungs.   62 

 63 

Studies have assessed the genetic evolution of human pathogens and identified specific 64 

genetic adaptations correlating with colonization and persistence14–16. However, only a few 65 

have linked genotypic and phenotypic changes2,9,17,18, as this is especially challenging in 66 

natural populations. The genetic signature of adapting phenotypes is obscured over the 67 

course of evolution by the continuous accumulation of mutations and acclimatization by 68 

environment-based tuning of pathogen activity. Furthermore, it is inherently difficult to 69 

identify genotype-phenotype links for complex traits governed by multiple regulatory 70 

networks19,20. Consequently, we are far from the reliable prediction of phenotypic adaptation 71 

by mutations alone during evolution in a complex, dynamic environment19,21, and we propose 72 

that for now, phenotypic characterization is equally important. 73 

 74 

To address the complexity of pathogen adaptation in the host environment, we analyzed our 75 

phenotypic dataset using statistical methods that account for the environmental effects on 76 

patient-specific lineages (Generalized Additive Mixed Models – GAMMs) and assess adaptive 77 

paths traversing the evolutionary landscape from a multi-trait perspective (Archetype 78 

Analysis – AA). We identify emergent patterns of bacterial phenotypic change across our 79 

patient cohort that depart from expected evolutionary paths and estimate the period of initial 80 

rapid adaptation during which the bacteria transition from a “naïve” to an “evolved” 81 

phenotypic state. We further identify distinct and repeating trajectories of pathogen 82 

evolution, and by leveraging our prior genomics study of this isolate collection16, we propose 83 

new associations between these phenotypic phenomena and genetic adaptation. We find 84 

that specific traits, such as growth rate and ciprofloxacin resistance, can serve as rough 85 

estimators of adaptation in our patients, while multi-trait modeling can map complex, 86 

patient-specific trajectories towards distinct evolutionary optimums that enable persistence. 87 

Implementation of this trajectory modeling as a diagnostic tool in patient care might enable 88 

clinicians to respond more quickly and effectively to evolving pathogens and inhibit the 89 

transition to a persistent infection.  90 
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 91 

RESULTS 92 

 93 

 94 
Evaluating pathogen adaptation in the early stage of infection 95 

A unique dataset. The 443 clinical P. aeruginosa isolates originate from a cohort of 39 youth 96 

with CF (median age at first P. aeruginosa isolate = 8.1 years) treated at the Copenhagen CF 97 

Centre at Rigshospitalet and capture the early period of adaptation, spanning 0.2-10.2 years 98 

of colonization by a total of 52 clone types. Of these isolates, 373 were previously 99 

characterized in a molecular study of adaptation16. The “colonization time of an isolate” (ColT) 100 

is defined for each specific lineage, approximating the length of time since a given clone type 101 

began colonization of the CF airways in the specific patient. Importantly, our colonization time 102 

metric does not necessarily start at the true “time zero”, since a significant bacterial load is 103 

necessary for a positive culture. Our isolate collection also does not capture the complete 104 
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Figure 1. Study design. Upper panel: Every month, CF patients are seen at the CF clinic at 
Rigshospitalet in Copenhagen, Denmark. Here they deliver a sputum or endolaryngeal suction 
sample where selective microbiological culturing is performed76. The longitudinally collected isolates 
have been genome sequenced and analyzed previously16. Middle panel: Longitudinally collected 
isolates have been subjected to different phenotypic analyses for this study and are here (lower 
panel) analyzed using two data modelling approaches: Archetype Analysis (AA) and Generalized 
Additive Mixed Model (GAMM). By integrating these approaches, we map dominant evolutionary 
trajectories and analyze mechanistic links between phenotypic and genetic adaptation. 
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population structure, but a previous study shows that 75% of our patients have a monoclonal 105 

infection persisting for years with mutations accumulating in a highly parsimonious fashion 106 

indicating unidirectional evolution16. Additionally, a metagenomic study of 4 patients from 107 

our cohort indicates that the single longitudinal isolates are representative of the major 108 

propagating subpopulation22. 109 

 110 

To obtain systems-level readouts of pathogen adaptation in the host and thereby assess 111 

multi-trait evolutionary trajectories, we present an infection-relevant characterization of our 112 

isolate collection entailing high-throughput measurements of 8 phenotypes: growth rates (in 113 

Luria-Bertani broth (LB) and Artificial Sputum Medium (ASM)), antibiotic susceptibility (to 114 

ciprofloxacin and aztreonam), virulence factors (protease production and mucoidity), and 115 

adherence (adhesion and aggregation) (Figure 1 and 2). We define adherence as a shared 116 

trend in adhesion and aggregation which we associate with a biofilm-like lifestyle (see 117 

Methods for further discussion of limitations of these measures). These phenotypes are 118 

generally accepted to change over the course of colonization and infection of CF airways 119 

based primarily on studies of chronically-infected patients10,17,23,24. 120 

 121 

That is, an “evolved” isolate would grow slowly, adhere proficiently, be more likely to exhibit 122 

a mucoid and/or hypermutator phenotype, have reduced protease production, and resist 123 

antibiotics, in contrast to a “naïve” isolate (Figure 2B). However, simply ordering our 124 

measurements by colonization time does not illustrate an overarching adaptive trajectory 125 

from naïve to evolved phenotypes (Figure 2C). Instead, we see substantial heterogeneity, with 126 

isolates that resemble both naïve and evolved phenotypic states throughout the study period. 127 

Given that we are investigating a unique collection from a young patient cohort that we track 128 

for a substantial period of colonization, this data fills the critical gap between studies of acute 129 

infections and chronic infections25. We are surprised to see naïve phenotypes retained in late 130 

colonization as well as isolates in early colonization that deviate significantly from PAO1 131 

phenotypes. However, a general pattern of heterogeneity is in alignment with previous 132 

studies of both P. aeruginosa and Burkholderia spp. infections3,11,12.  133 

 134 
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 135 

 136 
A unique modeling approach. Because our data is heterogeneous, we required specialized 137 

modeling approaches to account for specific environmental pressures and assess the 138 

boundaries of the evolutionary landscape. Previous studies have employed linear mixed 139 

models of phenotypic adaptation26, and employed archetype analysis in the comparison of 140 

features of transcriptomic adaptation by P. aeruginosa27. Similar studies of multi-trait 141 

evolutionary trade-offs using polytope fitting have predicted the genetic polymorphism 142 

structure in a population28. We use related modeling methods to ensure that patient-specific 143 

effects are minimized, irregular sampling intervals are smoothed and a multi-trait perspective 144 

is prioritized by 1) modeling the dynamic landscape of multi-trait evolution using AA and 2) 145 

evaluating temporal correlations of phenotypic adaptation by fitting cross-patient trendlines 146 
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Figure 2. Phenotypic characterization. We present summary statistics of our phenotype screen 
including (A) mean and standard deviation of isolate data versus the P. aeruginosa PAO1 value or 
antibiotic breakpoint we use for normalization, respectively, as well as boxplots of continuous 
variables (showing the median, 1st and 3rd quartile hinges, whiskers extending from the hinges to 
the most extant value within 1.5x inter-quartile range, and outliers as points). We then compare the 
(B) expected adaptation over time based on field consensus versus (C) the measured raw 
adaptation of our isolate collection over time. After sorting the isolates (x-axis) by the time since 
colonization of a specific lineage or “colonization time” (ColT), it is still difficult to see consistent 
patterns of phenotypic change over time. Colors are linked with the expected change of the specific 
phenotype (B), so that blue denotes a “naïve” phenotype and red denotes an “evolved” phenotype. 
For growth rate (in artificial sputum medium (ASM)), adhesion, and aggregation, naïve and evolved 
phenotypes are roughly divided by comparison with the reference isolate PAO1 phenotype. For 
aztreonam and ciprofloxacin MIC, naïve and evolved phenotypes are based on sensitivity or 
resistance as indicated by the EUCAST breakpoint values as of March 2017. 
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using GAMMs (Figure 1). We describe our approach below in brief, with more extended 147 

explanation available in both the Methods and Supplements 1 and 2. 148 

 149 

With AA, we want to assess multi-trait adaptive paths within the context of the evolutionary 150 

landscape. We map these paths (or trajectories) by first fitting idealized extreme isolates 151 

(“archetypes”) located on the boundaries of the evolutionary landscape and then evaluating 152 

every other isolate according to its similarity to these idealized extremes. The archetypes are 153 

positioned at the “corners” of the principal convex hull (PCH), the polytope of minimal volume 154 

that effectively encapsulates our phenotype dataset29 (Figure 1, bottom panel). We 155 

conceptualize archetypes as the “naïve” and “evolved” states of plausible adaptive 156 

trajectories and predict both the optimal number of archetypes and their distinct phenotypic 157 

profiles. We illustrate the AA by the 2D projection of our multi-trait model via a “simplex” 158 

plot, as shown in Figure 3C30. 159 

 160 

With the GAMMs, we want to predict whether a given phenotype (the “predicted” variable) 161 

significantly correlates with other phenotypes or time (the “explanatory” variables). To do 162 

this we need to account for the effects of patient specific environments and the effect of 163 

sampling time, while fitting trend lines for each trait (Figure 1, bottom panel). This is done by 164 

fitting patient and time as random effects; we reduce the risk of overfitting by using a 165 

penalized regression spline approach with smoothing optimization via restricted maximum 166 

likelihood (REML)31. To avoid assumptions of “cause-and-effect” between our variables, we 167 

permute through different one-to-one models of all phenotypes, and then reduce our models 168 

by combining only the statistically significant individual phenotypes into a multi-variable 169 

model. We further remove any phenotype that loses significance in the multi-variable model, 170 

assuming that it is correlated with a more impactful phenotype. From this point, all mentions 171 

of significance are obtained from the GAMM analyses with p-values < 0.01 based on Wald-172 

type tests as described in31,32, unless otherwise stated. 173 

 174 

Revealing multi-trait adaptation on a cross-patient scale 175 

AA predicted six distinctive archetypes sufficient to describe each isolate within the 176 

evolutionary landscape of 5 continuous traits as shown in Figure 3A. We use only growth rate 177 
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in ASM due to its correlation with growth rate in LB (Figure 3D). The simplex plot of Figure 3C 178 

highlights the standout features of each archetype by annotating according to the highest or 179 

lowest values for each phenotype across all archetype trait profiles (Figure 3B). This simplex 180 

key illustrates that two archetypes resembled naïve and un-evolved isolates with fast growth, 181 

antibiotic susceptibility, and low adherence (Archetype A3 and A5), while two others 182 

accounted for slow-growing evolved archetypes (A2 and A6), in accordance with the accepted 183 

paradigm10,24. A substantial portion of isolates in our study resemble the naïve archetypes 184 

more closely than the evolved archetypes as indicated by their localization in the simplex plot 185 

(Figure 3C, most isolates cluster on the left near the naïve archetypes). This aligns with the 186 

infection stage of the patients included in this study. Importantly, we also find two regions in 187 

the simplex visualization which represent different focal points of adaptation: 1) an increase 188 

in adherence (A2 and A4) and 2) ciprofloxacin resistance (A1 and A6).  189 

 190 

We also built a GAMM for each of our six continuous phenotypes to identify whether any of 191 

the other traits and time influenced it significantly across our patient cohort (Figure 3D). 192 

When evaluating adaptation of the specific phenotypes, we found that the colonization time 193 

had a significant impact on both growth rate and sensitivity to ciprofloxacin but did not 194 

significantly influence sensitivity to aztreonam (Figure 3C, Figure 4A and 4B), which is a 195 

reflection of the regular administration of ciprofloxacin but not aztreonam to our patients33. 196 

 197 
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 198 

 199 

Phenotypic trends contrast with CF paradigms 200 

An important distinction between AA and GAMMs is that many isolates clearly cluster in AA 201 

according to phenotypes whose adaptation is not significantly influenced by time of 202 

colonization as shown by GAMMs. This contrast shows the importance of combining these 203 

approaches to understand our data. As an example, both adhesion and aggregation do not 204 

correlate with colonization time for this population of young patients, though we see 205 

selection for adherence in a few specific patients via AA. That this is not a major trend in our 206 

data is surprising when we consider that a biofilm lifestyle is expected to be beneficial to 207 

persistence in chronically infected patients4,34–36. Furthermore, the biofilm-related metric of 208 
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Figure 3. AA and GAMM models. We present a summary of the models underpinning our study 
of pathogen adaptation. (A) Screeplot showing the average residual sum of squares (RSS) for 25 
iterations of each fit of a given number of archetypes. The “elbow” of the plot indicates that six 
archetypes are sufficient to model our dataset. (B) Characteristic trait profiles describing the 5 
distinct phenotype levels that each of our 6 archetypes represents. We use the following 
abbreviations to represent our normalized data: grASM – growth rate in ASM, agg – Aggregation, 
adh – Adhesion, azt – aztreonam susceptibility, cip – ciprofloxacin susceptibility. (C) Simplex plot 
of the AA showing the six archetypes (A1-A6) sorted by their characteristic growth rate (A3 and 
A5 vs A2 and A6), decreased sensitivity towards ciprofloxacin (A1 and A6), and increased 
aggregation and adhesion (A2 and A4). All further simplex visualizations are also sorted 
accordingly and can be interpreted using this key, which is annotated with the extreme phenotype 
values for each archetype. The complete analysis can be found in Supplementary material 1. (D) 
P-values for GAMM models with multiple explanatory variables (columns) for the six predictor 
variables (rows), after model reduction. P-values are only shown for explanatory variables that 
showed a significant (p-value<0.01) impact on the predictor in question. The complete analysis 
can be found in Supplementary material 2. 
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mucoidity does not significantly correlate with any other measured phenotype, despite its 209 

use as an important biomarker of chronic infection in the Copenhagen CF Centre37. We 210 

hypothesize that the rate of adaptation and relative benefit of this phenotype may vary 211 

significantly and be sensitive to temporal stresses such as antibiotic treatment. In support of 212 

our findings, others have recently shown that the longitudinal relationship between 213 

mucoidity and a clinical diagnosis of chronic infection is not as direct as previously expected38. 214 

Together, these results prompt further reassessment of common assumptions regarding the 215 

evolutionary objectives of P. aeruginosa in CF infections. 216 

 217 

Initial adaptation happens within 3 years of colonization 218 

We find that the routes to successful persistence and a transition to chronic infection are 219 

initiated early in infection16,39. The GAMMs indicate that a substantial change occurs in both 220 

growth rate and ciprofloxacin susceptibility during the first 2-3 years (5256 - 7884 bacterial 221 

generations23) of colonization as shown by the slopes in this period (Figure 4A-B). Using AA, 222 

we also see a substantial shift from naïve towards evolved archetypes as shown by the broad 223 

distribution of isolates reaching the outer simplex boundaries by year 3 (Figure 4C), further 224 

confirming the rapid adaptation shown by the GAMMs. While the first isolate of each patient 225 

in our collection may not represent the true start of adaptation given sampling limitations, 226 

the window of rapid adaptation is still likely substantially contracted compared to the 227 

previous estimate of within 42,000 generations9. In fact, our data resembles the rate of fitness 228 

improvement found in the laboratory evolution study of Escherichia coli that showed change 229 

within the first 5,000-10,000 generations6,7.  230 

 231 

Interestingly, the four hypermutator isolates arising in the early adaptation window do not 232 

alone define the AA boundary, indicating that the acquisition of a high number of mutations 233 

does not explain all extreme phenotypes (Figure 4D, full dataset in Figure S1). To further 234 

evaluate parallels between phenotypic and genetic adaptation, we investigated the 235 

accumulation of nonsynonymous mutations in coordination with archetypal relationships 236 

(Figure 4D-E). We used the isolates representing the first P. aeruginosa culture from a patient 237 

as the reference point for identification of accumulating mutations. We observed that most 238 

of the first isolates with 0-30 mutations aligned with naïve archetypes, and 2-3-year-old 239 
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isolates with 9-48 mutations extended to the outer boundaries of adaptation (A2, A6, and A1) 240 

(Figure 4C-D). We also observed the persistence of WT-like genotypes with few mutations 241 

alongside evolved genotypes (Figure 4D). Thus, we find discordant molecular and phenotypic 242 

adaptation from a multi-trait perspective. 243 

 244 

 245 

 246 
When analyzing the entire dataset using GAMMs, we found a significant, near-linear 247 

relationship between colonization time and the number of nonsynonymous SNPs, but 248 
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Figure 4. Rapid early adaptation. We present specific GAMM and AA models to illustrate the rapid 
adaptation of growth rate and ciprofloxacin over time and contrast these patterns with genetic 
adaptation via the accumulation of nonsynonymous mutations. Here, we use GAMMs to illustrate 
the significant impact of the explanatory variable colonization time on (A) growth rate in ASM, (B) 
ciprofloxacin sensitivity in ASM, (E) the accumulation of all mutations (orange) and nonsynonymous 
SNPs (blue) and indels (insertions and deletions). We use simplex visualizations of AA to show (C) 
“naïve” trait alignment of the first isolate of the twenty patients where we have analyzed the first P. 
aeruginosa isolate ever cultured at the CF clinic (blue circles) in contrast to “evolved” isolates that 
have been cultured at year 2-3 of colonization (red squares, all patients of the dataset). We contrast 
this trait-based ordination with (D) genetic adaptation, shown by a color overlay of the number of 
nonsynonymous mutations present in each isolate. Isolate 95 (purple circle) of the DK12 clone type 
has a very high number of mutations (>100) because one isolate in that lineage (isolate 96) is very 
different from the remaining 11 isolates. For the GAMM analysis shown in Figure 4E, we filtered out 
the mutations from the errant DK12 96 single isolate that affected the whole lineage. Hypermutators 
are marked by purple triangles. (A/B/E notation) GAMMs are illustrated by solid smoothed 
trendlines, dashed two standard error bounds, and gray points as residuals. Y-axes are labelled by 
the predictor variable on which the effect of colonization time of the clone type (“ColT”) has been 
estimated as well as the estimated degrees of freedom (edf) (for the E upper panel the edf is ordered 
as all mutations/NS SNPs). Residuals have not been plotted in the upper panel of (E) for clarity 
reasons. X-axes are the ColT in years and patients are included as random smooths together with 
ColT. A rug plot is also visible on the x-axis to indicate the density of observations over time.  
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accumulation of all nonsynonymous mutations appears logarithmic with accumulation 249 

slowing after 2 years (Figure 4E). This behavior resembles that of the laboratory evolution of 250 

E. coli (propagated for more than 60,000 generations)40, though accumulation may slow 251 

sooner in the CF lung. When we plot accumulation of indels alone, we see the likely driver of 252 

the logarithmic trend. When combined with the discordance found by AA, these findings 253 

support the theory that select beneficial mutations (for example, a highly impactful indel) can 254 

alone induce important phenotypic changes that improve fitness41. However, the likelihood 255 

of beneficial mutations presumably decreases over time as theorized previously42 and other 256 

methods of adaptation also contribute, such as acclimation to the CF lung environment via 257 

gene expression changes43,44. 258 

 259 

Multi-trait analysis enables complex genotype-phenotype associations  260 

The obscuring of genotype-phenotype links via polygenic effects and the possible pleiotropic 261 

effects of single mutations is difficult to resolve, especially when working with complex traits. 262 

However, we have a unique multi-dimensional perspective from which to map genotype-263 

phenotype relationships. We previously identified 52 “pathoadaptive genes” - genes mutated 264 

more often than expected from genetic drift and thus assumed to confer an adaptive 265 

advantage during infection16,45. By overlaying nonsynonymous mutations on AA simplex plots, 266 

we evaluated the impact of mutation of the following pathoadaptive genes: 1) mexZ (the most 267 

frequently mutated gene) and other repressors of drug efflux pumps (nfxB and nalD), 2) 268 

mucoidity regulators mucA and algU and the hypothesized infection-state switching 269 

retS/gacAS/rsmA regulatory pathway previously examined from a genetic adaptation 270 

perspective16,46, and 3) ciprofloxacin resistance genes gyrA and gyrB47–49. Isolates with mexZ 271 

mutations are broadly distributed by AA, so we analyzed mexZ mutants in combination with 272 

other pump repressor gene mutations. Even double-mutant isolates (grouped by efflux pump 273 

associations) showed diverse phenotypes via AA, though we noted a unique distribution of 274 

the many isolates impacted by a mutation in nfxB (Figure S3, Figure 5B). We saw no obvious 275 

spatial correlations with mutations linked to mucoidity regulation via AA (Figure S2), 276 

paralleling mucoidity’s lack of significance in our GAMM analyses. However, the isolate 277 

distributions of retS/gacAS/rsmA and gyrA/B mutants were striking in their spatial 278 

segregation (Figure 5A-B). 279 
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B. Ciprofloxacin resistance genes (nfxB) 
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Figure 5. Mechanistic links between phenotypic changes and mutations in ciprofloxacin resistance 
genes and the retS/gacAS/rsmA system. We use AA to illustrate phenotypic separation by isolates 
affected by distinct mutations in ciprofloxacin resistance genes gyrA, gyrB, and nfxB and the 
retS/gacAS/rsmA regulatory system. (A-B, left panel) As visualized by AA simplex plots, the diversity 
of trait profiles associated with isolates with mutations in DNA gyrase (gyrA/B) is in stark contrast to 
the constrained band of nfxB-mutated isolates. Mutations in DNA gyrase and nfxB do not co-occur 
in the same isolate but co-occur in different isolates of 2 lineages (patient P8804, genotype DK08 
and patient P8203, genotype DK32). The differences in time of appearance during the colonization 
period and persistence of gyrA/B mutant isolates versus nfxB mutant isolates is shown in the lineage 
timelines plotted in the right column for gyrA/B (A, right panel) versus nfxB (B, right panel). 
Furthermore, gyrB-mutated isolates cluster more closely with A2 and A4 than gyrA mutated isolates, 
indicating a potential association with adhesion; GAMMs predicts that gyrB mutation has a significant 
impact on adhesion (GAMM, p-value << 0.01).  (C, left panel) Mutations in the retS/gacAS/rsmA 
system shows a clear phenotypic change when retS is mutated alone (blue circles) or in combination 
with gacA or gacS (red squares and circles). The associated lineage plot (C, right panel) shows the 
appearance of double mutations (retS + gacA/S) after a colonization period by retS mutated isolates 
in three patient lineages. (A/B/C – lineage plot notation) Lineage length is based on the span of 
time for which we have collected isolates and is indicated by gray bracketed lines, with only isolates 
affected by a mutation of interest plotted using shape to indicate mutation type. Symbol color 
indicates the specific mutation location in the affected gene and (A/B only) symbol size indicates the 
level of resistance to ciprofloxacin. Multiple isolates may be collected at the same sampling date 
based on differences in colony morphology or collected from different sinuses at sinus surgery, which 
explains the vertical overlap of isolates for some lineages. 
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Differential evolutionary potential via ciprofloxacin resistance mechanisms 282 

The primary drivers of ciprofloxacin resistance in P. aeruginosa are theorized to be mutations 283 

in drug efflux pump repressor nfxB and the gyrase subunits gyrA and gyrB of the DNA 284 

replication system47–49. We would therefore expect isolates with mutations in these genes to 285 

cluster around archetypes A1 and A6 characterized by high ciprofloxacin minimal inhibitory 286 

concentrations (MICs) (Figure 3C). However, AA illustrates a broad distribution of gyrA/B 287 

mutants among archetypes, and a contrasting narrow distribution of nfxB mutants (Figure 5A-288 

B, left panel). In association, we see a range of ciprofloxacin resistance levels associated with 289 

affected isolates both across and within patient lineages, and no dominant 290 

mutations/mutated regions repeating across lineages (Figure 5A-B, right panel). The 291 

incidence of resistance due to these distinct mechanisms was equal at 78% of affected isolates 292 

(54 out of 69 resistant gyrase mutants vs 37 out of 47 resistant nfxB mutants based on the 293 

European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint). However, 294 

the persistence of these respective mutations in affected lineages was dissimilar. Generally, 295 

nfxB mutation occurred earlier in lineage evolution and persisted in fewer lineages compared 296 

to gyrA/B mutations. This likely contributes to nfxB’s distinctive band-like distribution via AA 297 

which suggests an evolutionary restriction associated with sustaining the mutation. 298 

 299 

Interestingly, we noted that isolates with a gyrB mutation (22 isolates alone or 14 in concert 300 

with gyrA mutation) are concentrated closer to “biofilm-linked” archetypes A2 and A4 than 301 

isolates with only a gyrA mutation (33 isolates). To our knowledge, there is no direct 302 

relationship between gyrB and the capability to adhere49. This positive association of gyrB on 303 

adhesion was confirmed by GAMM, but when we moved the two SNPs affecting the most 304 

isolates in both gyrA and gyrB (2 lineages each, Figure S4) into lab strain P. aeruginosa 305 

PAO1, we did not find the same association (Figure S5-6) (p-values > 0.05, ANOVA with Tukey 306 

correction, F(4,10)=0.233). We then looked for co-occurring mutations in biofilm-linked genes 307 

in the gyrB-mutated lineages; for all but one lineage, there was no obvious explanation for 308 

increased adhesion. Ultimately, this association underlines the impact that genetic 309 

background and the multi-genetic signature of biofilm regulation can have on the 310 

identification of links between genotype and phenotype50.  311 

 312 

Infection trajectory reversal via a regulatory switch 313 
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The functional model of the retS/gacA/gacS/rsmA regulatory system is theorized to be a 314 

bimodal switch between acute and chronic infection phenotypes46,51. Posttranscriptional 315 

regulator rsmA activates an acute infection phenotype characterized by planktonic growth 316 

and inhibits a non-motile biofilm lifestyle. retS mutants are preserved in many lineages 317 

because they repress rsmA via the gacA/S two-component system, promoting a chronic 318 

infection phenotype. However, our previous genetic analysis16 unexpectedly showed that 319 

multiple evolving lineages gained a subsequent mutation in gacA/S that often appeared years 320 

after the retS mutation. Despite the complexity of this regulatory system, we show a clear 321 

phenotypic separation between clinical isolates that are retS mutants versus retS+gacA/S 322 

mutants via our AA model (Figure 5C, left panel). In this study, three of six patients with 323 

nonsynonymous mutations in this system have isolates which are retS+gacA/S double 324 

mutants (Figure 5C, right panel). While retS mutants resemble the evolved archetypes (A1 – 325 

2 and A6), all but one double mutant clusters around the naïve archetypes (A3 – A5). 326 

According to patient-specific trajectories, this reversion happens after an initial migration 327 

towards evolved archetypes. Because of the limited isolates and patients affected, we did not 328 

follow up with additional GAMM analyses of the effect of these mutations on different 329 

phenotypes. 330 

 331 

This unexpected phenotypic reversion to an “acute infection state” does not easily reconcile 332 

with theories about persistence via convergence towards a “chronic phenotype”. However, 333 

over time some patients are colonized by new clone types and/or other pathogens; this could 334 

require re-establishment of a colonization mid-infection and thus induce the population to 335 

revert towards an acute infection state where fast growth and motility improve its ability to 336 

compete.  337 

 338 

Infections persist via distinct routes of adaptation 339 

Given the above insights from lineage-based analysis, we further investigate lineage 340 

influences by mapping patient-specific adaptive trajectories. We find 3 overarching modes of 341 

evolution that P. aeruginosa can utilize to persist successfully in individual patients: 1) 342 

convergent evolution, 2) directed diversity or 3) general diversity. Figure 6A-D shows 343 

examples of adapting lineages employing these modes. We see rapid convergent evolution 344 
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towards an endpoint of ciprofloxacin resistance in patient P5304 (Figure 6A). Diverse isolates 345 

appear to move in the same general direction of increased adhesion and aggregation in 346 

patient P4104 (Figure 6B), which we term “directed diversity”, while no directionality is 347 

apparent in the diverse isolates of the trajectory of patient P0804 (Figure 6C), which we term 348 

“general diversity”.  In the complex trajectory of patient P1404 (Figure 6D), the genotypic 349 

distinction of the young isolate near A4 indicates that the persisting sublineage initiates with 350 

the isolate near A3, after which it gains a gyrB mutation guiding the trajectory towards 351 

ciprofloxacin resistant A1. This mutation is retained during the subsequent shift towards A2, 352 

characterized by increased adherence and decreased sensitivity to aztreonam. These results 353 

illustrate the diverse adaptive trajectories followed by P. aeruginosa in our patient cohort, 354 

which connect distinct start and endpoints of adaptation yet enable years of persistence. 355 

 356 

 357 

 358 
Here, we draw specific examples from patients with high sampling resolution and at least 3 359 

years of infection within our cohort, but to capture the full spectrum of evolutionary modes 360 

will require more uniform cross-cohort sampling that also addresses population dynamics as 361 

D. A3 > A1 > A2/6, P1404

0 7
Colonization time

A5 A1

A6

A2A4

A3

B. Directed, P4104

0 3.8
Colonization time

A5 A1

A6

A2A4

A3

C. Diverse, P0804

A5 A1

A6

A2A4

A3

0 6.7
Colonization time

0 8.3
Colonization time

A5 A1

A6

A2A4

A3

A. Convergent, P5304

Figure 6. Evolutionary trajectories guided by different adaptation needs. We present four different 
trajectories showing modes of evolution found in multiple patients: (A) Convergent evolution driven 
primarily by changes of a single phenotypic trait (decreased ciprofloxacin sensitivity). (B) Directed 
diversity with early/naïve isolates showing a population moving in a broad and diverse plane from 
naïve archetypes towards evolved archetypes. (C) General diversity where the population has no 
clear evolutionary trajectory. (D) A special case of convergent evolution with one outlier isolate 
(isolate 96 of DK12) but an otherwise clear trajectory first towards ciprofloxacin resistance and 
afterwards a gain in adhesive capabilities. 
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well as the inclusion of more patients. With these expansions, we theorize that distinctive 362 

evolutionary trajectories will correlate with infection persistence and patient outcomes. 363 

 364 

DISCUSSION 365 

Complex mutation patterns are an inherent byproduct of evolution and result in equally 366 

complex adaptive trajectories that lead to persistence. Phenotype represents the cumulative 367 

systems-level impacts of these mutation patterns. We therefore emphasize the value of 368 

classical phenotype-based investigations as a highly relevant complement to genomics 369 

approaches. By integrating these perspectives via our statistical modeling framework, it is 370 

possible to identify consistent pan-cohort trends while illuminating complex patient-specific 371 

patterns and their genetic drivers. This approach could also be valuable in assessing evolution-372 

based scenarios such as interpretation of laboratory evolution experiments, investigations of 373 

long-term microbiome fluctuations and other studies of evolving clonal populations. 374 

 375 

Our study identifies rapid phenotypic adaptation of isolates within the first few years of 376 

colonization by both mutational accumulation and acclimation as indicated by the 377 

discordance between genotypic and phenotypic adaptation. This resembles the findings from 378 

the long-term laboratory evolution of E. coli40. While specific traits show cross-patient 379 

convergence (growth rate and ciprofloxacin resistance), we highlight remarkable diversity 380 

both within and across patients. In addition to convergent and directed evolution, we thus 381 

emphasize the maintenance of general diversity as a useful evolutionary mode of persistence 382 

as supported by prior observations of resilience in diverse populations52–54. Among our 383 

patient-specific trajectories, we also find varying routes within these categories of evolution 384 

that are used by different patient lineages to achieve successful persistence. These important 385 

evolutionary findings can further be translated to the clinic. Although early aggressive 386 

antibiotic therapy has been shown to substantially delay the transition to chronic infection33, 387 

we provide a valuable estimate of this narrow window based on analysis at high temporal 388 

resolution. Furthermore, we provide a quantitative approach to monitoring infection state 389 

via patient-specific trajectories which can offer important insights into bacterial response to 390 

treatment. 391 

 392 
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Given that individual mutations may have pleiotropic effects and obscure genetic signatures 393 

as they accumulate over time19, our study underlines the necessity of a multi-trait 394 

perspective. Our genotype-phenotype associations support the theory that specific mutations 395 

confer unique evolutionary restrictions to adaptive trajectories; these restrictions impact the 396 

fixation of other mutations or adaptation of other traits, but genetic background and host-397 

specific evolutionary pressures influence the type and degree of restriction8. By mapping 398 

phenotypic trajectories, we can identify both genetic mechanisms that regulate these 399 

highways and complex traits that signal the impact of treatment on individual infections. In 400 

the future, we see particular promise in incorporating records of patient treatment and 401 

response to our assessment of adaptive trajectories to further guide clinicians and advance 402 

precision medicine in clinical microbiology.  403 
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 615 

METHODS 616 

The isolate collection 617 

The current isolate library is comprised of 443 longitudinally collected single P. aeruginosa 618 

isolates distributed within 52 clone types collected from 39 young CF patients treated at the 619 

Copenhagen CF Centre at Rigshospitalet (median age at first P. aeruginosa isolate = 8.1 years, 620 

range = 1.4-24.1 years, median coverage of colonization: 4.6 years, range: 0.2-10.2 years). 621 

This collection is a complement to and extension of the collection previously published 16 and 622 

captures the period of initial rapid adaptation6,7,9, with 389 isolates of the previously 623 

published collection included here in addition to 54 new isolates. To build a homogeneous 624 

collection for our study of evolution, we excluded two patients with a sustained multi-clonal 625 

infection. For the GAMM analysis, we excluded isolates belonging to clone types present in a 626 

patient at two or fewer time-points, unless the two time-points were sampled more than 6 627 

months apart. The isolates not included in the previous study have been clone typed as a 628 

routine step at the Department of Clinical Microbiology at Rigshospitalet. This clone type 629 

identification was performed as described previously16, and the sequencing was carried out 630 

as follows: DNA was purified from over-night liquid cultures of single colonies using the 631 

DNEasy Blood and Tissue Kit (Qiagen), libraries were made with Nextera XT and sequenced 632 

on an Illumina MiSeq using the v2 250x2 kit. 633 

 634 

Ethics approval and consent to participate 635 

The local ethics committee at the Capital Region of Denmark (Region Hovedstaden) approved 636 

the use of the stored P. aeruginosa isolates: registration number H-4-2015-FSP. 637 

 638 
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Phenotypic characterizations 639 

For all phenotypes except the antibiotic MIC tests, phenotypic analysis was carried out by 640 

replicating from a 96 well plate pre-frozen with overnight cultures diluted with 50% glycerol 641 

at a ratio of 1:1 and four technical replicates were produced for each isolate. 642 

 643 

Growth rate in Luria-Bertani broth (LB) and Artificial sputum medium (ASM)55 644 

Isolates were re-grown from frozen in 96 well plates in 150ul media (LB or ASM) and 645 

incubated for 20h at 37°C with OD630nm measurements every 20 min on an ELISA reader. 646 

Microtiter plates were constantly shaking at 150 rpm. LB growth rates were first assessed by 647 

manual fitting of a line to the exponential phase of the growth curve. This dataset was then 648 

used to confirm the accuracy of R code that calculated the fastest growth rate from each 649 

growth curve using a “sliding window” approach where a line was fit to a 3-9 timepoint 650 

interval based on the level of noise in the entire curve (higher levels of noise triggered a larger 651 

window to smooth the fit). To develop an automated method of analyzing the ASM growth 652 

curves, which are much more noisy and irregular than the LB growth curves across the 653 

collection, we used standardized metrics for identifying problematic curves that we then also 654 

evaluated visually. Curves with a maximum OD increase of less than 0.05 were discarded as 655 

non-growing. Curves with linear fits with an R2 of less than 0.7 were discarded as non-656 

analyzable, and a small number of outlier curves (defined as curves analyzed for growth rates 657 

of 1.5 times the mean strain growth rate) were also discarded. Examples of our analyzed 658 

curves are shown in Figure S7 and all visualizations are available upon request. 659 

 660 

“Adherence” measures 661 

The ability to form biofilm is a complex trait that is impacted by multiple factors, such as the 662 

production of polysaccharides, motility and the ability to adhere 56–58. In this study, we have 663 

measured adhesion to peg-lids and estimated the ability to make aggregates – both traits 664 

have been linked with an isolate’s ability to make biofilm 59,60. Because of this, we are using 665 

these two measures as an estimate of our isolates’ ability to make biofilm. However, because 666 

we are aware of the complexity of the actual biofilm-forming phenotype, we have chosen to 667 

refer to this adhesion/aggregation phenotype as “adherence” and not “biofilm formation”. 668 

 669 
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Adhesion in LB. Adhesion was estimated by measuring attachment to NUNC peg lids. Isolates 670 

were re-grown in 96 well plates with 150µl medium where peg lids were used instead of the 671 

standard plate lids. The isolates were incubated for 20 hours at 37°C, after which OD600nm was 672 

measured and subsequently, the peg lids were washed in a “washing microtiter plate” with 673 

180µl PBS to remove non-adhering cells. The peg lids were then transferred to a microtiter 674 

plate containing 160µl 0.01% crystal violet (CV) and left to stain for 15 min. The lids were then 675 

washed again three times in three individual “washing microtiter plates” with 180µl PBS to 676 

remove unbound crystal violet. To measure the adhesion, the peg lids were transferred to a 677 

microtiter plate containing 180µl 99% ethanol, causing the adhering CV stained cells to detach 678 

from the peg lid. This final plate was used for measurements using an ELISA reader, measuring 679 

the CV density at OD590nm. (Microtiter plates were bought at Fisher Scientific, NUNC Cat no. 680 

167008, peg lids cat no. 445497)   681 

 682 

Aggregation in ASM. Aggregation in each well was first screened by visual inspection of wells 683 

during growth assays in ASM and by evaluation of noise in the growth curves, resulting in a 684 

binary metric of “aggregating” versus “not aggregating”. However, to incorporate this trait in 685 

our archetype analysis, we needed to develop a continuous metric of aggregation. Based on 686 

the above manual assessment, we developed a metric based on the average noise of each 687 

strain’s growth curves. While we tested several different metrics based on curve variance, the 688 

metric that seemed to delineate isolates according to the binary aggregation measure most 689 

successfully was based on a sum of the amount of every decrease in OD that was followed by 690 

a recovery at the next time point (versus the expected increase in exponential phase and 691 

flatline in stationary phase). This value was normalized by the increase in OD across the whole 692 

growth curve, to ensure that significant, irregular swings stood out with respect to overall 693 

growth. This metric therefore specifically accounts for fluctuation - both a limited number of 694 

large fluctuations in OD630nm (often seen during stationary phase) as well as smaller but 695 

significant fluctuations across the entire curve (i.e. sustained irregular growth). While an 696 

imperfect assay of aggregation compared to available experimental methods 61, this high-697 

throughput aggregation estimate showed a significant relationship with adhesion when 698 

analyzed with GAMMs (Figure 3D), supporting its potential as a measure of adherence-linked 699 

behavior. We show examples of the measurement and comparison with binary aggregation 700 

data in Figures S7-8. 701 
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 702 

Protease production 703 

Protease activity was determined using 20x20 cm squared LB plates supplemented with 1.5% 704 

skim milk. From a “master microtitre plate”, cells were spotted onto the square plate using a 705 

96 well replicator. Colonies were allowed to grow for 48h at 37°C before protease activity, 706 

showing as a clearing zone in the agar, was read as presence/absence. 707 

 708 

Mucoidity 709 

Mucoidity was determined using 20x20 cm squared LB plates supplemented with 25 ug/ml 710 

ampicillin. From a “master microtitre plate”, cells were spotted onto the square plate using a 711 

96 well replicator. Colonies were allowed to grow for 48h at 37°C before microscopy of colony 712 

morphologies using a 1.25x air Leica objective. By this visual inspection, it was determined if 713 

a colony was mucoid or non-mucoid. 714 

 715 

MIC determination of ciprofloxacin and aztreonam 716 

MICs were determined by E-tests where a suspension of each isolate (0.5 McFarland 717 

standard) was inoculated on 14 cm-diameter Mueller-Hinton agar plates (State Serum 718 

Institute, Hillerød, Denmark), where after MIC E-Test Strips were placed on the plate in 719 

accordance with the manufacturer’s instructions (Liofilchem®, Italy). The antimicrobial 720 

concentrations of the E-tests were 0.016-256µg/ml for aztreonam and 0.002-32µg/ml for 721 

ciprofloxacin. 722 

 723 

Construction of gyrA/B mutants 724 

Four P. aeruginosa PAO1 mutants carrying point mutations in gyrA and gyrB were 725 

constructed: PAO1::gyrAG259A, PAO1::gyrAC248T, PAO1::gyrBC1397T , and PAO1::gyrBG1405T. A 726 

recombineering protocol optimized for Pseudomonas was adapted from Ricaurte et al. 727 

(2017)62. A PAO1 strain carrying a pSEVA658-ssr plasmid63 expressing the recombinase ssr 728 

was grown to exponential phase with 250 rpm shaking at 37°C. Bacteria were then induced 729 

with 3-methylbenzoate and electroporated with recombineering oligonucleotides. Cells were 730 

inoculated in 5 ml of glycerol-free Terrific Broth (TB) and allowed to recover overnight at 37°C 731 
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with shaking. CipR colonies were identified after streaking on a Cip-LB plate (0.25 mg L-1) and 732 

sent for sequencing after colony PCR. 733 

 734 

Each recombineering oligonucleotide contained 45 base pair homology regions flanking the 735 

nucleotide to be edited. Oligonucleotides were designed to bind to the lagging strand of the 736 

replichore of both genes and to introduce the mismatch in each mutation: G259A and C248T 737 

in gyrA, and C1937T and G1405T in gyrB, respectively. The recombineering nucleotides used 738 

are the following: (Rec_gyrA_G259A -  739 

G*C*ATGTAGCGCAGCGAGAACGGCTGCGCCATGCGCACGATGGTGTtGTAGACCGCGGTGTCGCC740 

GTGCGGGTGGTACTTACCGATCACG*T*C; Rec_gyrA_C248T -  741 

A*G*CGAGAACGGCTGCGCCATGCGCACGATGGTGTCGTAGACCGCGaTGTCGCCGTGCGGGTGGT742 

ACTTACCGATCACGTCGCCGACCAC*A*C; Rec_gyrB_C1397T -  743 

C*C*GATGCCACAGCCCAGGGCGGTGATCAGCGTACCGACCTCCTGGaAGGAGAGCATCTTGTCGA744 

AGCGCGCCTTTTCGACGTTGAGGAT*C*T; Rec_gyrB_G1405T 745 

C*C*TCGCGGCCGATGCCACAGCCCAGGGCGGTGATCAGCGTACCGAaCTCCTGGGAGGAGAGCAT746 

CTTGTCGAAGCGCGCCTTTTCGACG*T*T). 747 

 748 

Modeling of phenotypic evolution 749 

To identify patterns of phenotypic adaptation while limiting necessary model assumptions 750 

that might bias our predictions, we chose to implement generalized additive mixed models 751 

(GAMMs), where the assumptions are that functions are additive and the components are 752 

smooth. These models allow us to account for patient-specific effects, thereby enabling us to 753 

identify trends in phenotypic adaptation across different genetic lineages and different host 754 

environments. Furthermore, to be able to simultaneously assess multiple phenotypes of each 755 

isolate from a systems perspective, we implemented archetype analysis (AA), where each 756 

isolate is mapped according to its similarity to extremes, or archetypes, fitted on the 757 

boundaries of the multi-dimensional phenotypic space. This modeling approach allows us to 758 

predict the number and characteristics of these archetypes and furthermore identify 759 

distinctive evolutionary trajectories that emerge from longitudinal analysis of fitted isolates 760 

for each patient.  761 

 762 
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For all analyses, the time of infection is defined within each lineage as the time since the clone 763 

type of interest was first discovered in the patient in question. This is biased in the sense that 764 

the time since colonization can only be calculated from the first sequenced isolate of a 765 

patient. However, we have collected and sequenced the first isolate that has ever been 766 

cultured in the clinic for 20 out of the 39 patients. 767 

 768 

Normalization of phenotypic values were carried out the following way for both AA and 769 

GAMM: ciprofloxacin and aztreonam MICs were normalized by dividing the raw MICs with 770 

the breakpoint values from EUCAST: ciprofloxacin breakpoint value: >0.5 µg/ml, aztreonam 771 

breakpoint value: >16 µg/ml (EUCAST update 13. March 2017). This results in values above 772 

one equaling resistance and equal to or below one equaling sensitive. The response and the 773 

explanatory variables were log2 transformed to get a better model fit for ciprofloxacin MIC, 774 

aztreonam MIC, Adhesion, and Aggregation. For the AA, Adhesion, Aggregation and growth 775 

rate in ASM was further normalized (before log2 transformation) by scaling the values by the 776 

values of the laboratory strain P. aeruginosa PAO1 such that zero was equivalent to the PAO1 777 

phenotype measurement or the EUCAST MIC breakpoint. PAO1 was chosen to be the 778 

reference point of “wild type” phenotypes. 779 

 780 

Because the mutations identified in our collection are based on our previous study 16 where 781 

mutations were called within the different clone types, we added a second filtering step to 782 

identify mutation accumulation within patients. The second filtering step removed mutations 783 

present in all isolates of a lineage (a clone type within a specific patient) from the analysis. 784 

 785 

All statistics were carried out in R64 using the packages mgcv65,66 for the GAMM analysis and 786 

archetype67–69 for the AA. Complementary packages used for analysis are: tidyverse70, 787 

itsadug71, ggthemes72, knitr73 and kableExtra74. We also referred to Thøgersen et al.27 and 788 

Fernandez et al.75 in the design of appropriate assessment methods for the final AA model. 789 

We include two R markdown documents that explain our modeling steps and further 790 

evaluation plots in detail (AA: Supplemental file 1, GAMM: Supplemental file 2), and 791 

summarize our methods below in brief. 792 

 793 
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Data modeling 794 

Archetype analysis (AA). We evaluated several different model fitting approaches by varying 795 

the number and type of phenotypes modeled as well as the archetype number and fit 796 

method, using RSS-based screeplots of stepped fits of differing archetype numbers, explained 797 

sample variance (ESV), isolate distribution among archetypes, convex hull projections of 798 

paired phenotypes (all combinations), and parallel coordinate plots as metrics for choosing 799 

the best fit parameters and approach to accurately represent our data. Ultimately, we 800 

focused on 5 continuous phenotypes correlated with growth (growth rate in ASM), biofilm 801 

(adhesion and aggregation), and antibiotic resistance (aztreonam and ciprofloxacin MICs), 802 

which also were linked to relevant findings provided by the GAMM models. We used a root 803 

sum squared (RSS) versus archetype number screeplot of different fits to determine that a 6 804 

archetype fit would produce the optimal model for this dataset.  805 

 806 

We then performed 500 simulations of a 100 iteration fit using the “robustArchetypes” 807 

method68, which reduces the impact of data outliers in fitting the convex hull of the data. We 808 

evaluated the mean ESV and the number of isolates with an ESV greater than 80% for the best 809 

model from each simulation in this study and differences in archetype characteristics to 810 

assess convergence, ultimately selecting the model with the second highest mean ESV 811 

(90.32%) and highest number of isolates with an ESV over 80% (87.13%); this model also 812 

resembled the other 10 top models of the simulation study. The order of archetypes around 813 

the simplex plot boundary obscures the true dimensionality of the isolate distribution by 814 

implying the archetypes are equidistant, so relationships between phenotypes are not always 815 

obvious. We re-ordered the archetypes in the simplex plot by growth rate and secondarily 816 

antibiotic resistance to improve clarity in the complex 6 archetype plot. This reordering was 817 

also justified when projecting the archetypes onto a PCA plot of the phenotypes 818 

(Supplemental file 1). All simplex plots have also had the 11 isolates with an ESV < 50% 819 

removed such that we are not drawing any conclusions from these poorly fit data (they are 820 

shown via simplex plot in the supplemental markdown).  821 

 822 

Generalized Additive Mixed Models (GAMMs). For all phenotypes, GAMMs were used to 823 

identify evolutionary trends over time since first colonization. We correct for the patient 824 

environment and inconsistent sampling over time using a smooth random factor. Models 825 
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were fitted in the following way: All continuously measured phenotypes included in the 826 

Archetype analysis were fitted as a response variable (”predicted” or “dependent” variable in 827 

Figure 3D) one-to-one, with both time as an “explanatory” or “independent” variable alone 828 

and combined with each of the phenotypes to account for potential time-dependence of the 829 

observations. Factorial/binary phenotypes were implemented as categorical functions and 830 

continuous phenotypes as smooth functions, allowing for non-parametric fits. Normally only 831 

one variable/phenotype of interest is used as the predictor while other alterable variables or 832 

factors are used as explanatory variables to explain or predict changes in the predictor. 833 

However, this requires a preconceived idea of a “one-way-relationship” where one variable 834 

(the predictor) is assumed to be affected by certain other variables (the explanatory 835 

variables), but where the explanatory variables cannot be affected by the predictor. By testing 836 

all phenotypes against each other, we avoid assumptions regarding the specific direction of 837 

relationships between the predictor variable and the explanatory variable. Furthermore, in 838 

using the GAMMs we prioritize accuracy of fitting but increase our risk of overfitting as a 839 

byproduct. We sought to counteract the risk of overfitting by the default penalization of fits 840 

inherent to the method used65,66 and by model estimation via restricted maximum likelihood 841 

(REML) which has been found to be more robust against overfitting31,66. When significant 842 

relationships were identified in one-to-one models (p-value < 0.05, as based on Wald-type 843 

tests as described in31,32), all significant explanatory variables were used to build a multi-trait 844 

model for the associated predictor. If select explanatory phenotypes were then identified as 845 

non-significant (p-value > 0.05) in the multi-trait model, they would be removed in a reduction 846 

step. To identify whether a reduced multi-trait model resulted in a better fit than the initial 847 

multi-trait model, a Chi-square test was carried out on the models using the compareML 848 

function of the R package itsadug71 (Figure 3D). The specific models and additional 849 

information can be found in Supplemental file 2.  850 

 851 

In demonstration of the utility of this approach, the multi-trait models of our 5 primary 852 

predictor phenotypes show that at least one explanatory phenotype has a statistically 853 

significant impact on the predictor phenotype. For all of the predictor phenotypes, multiple 854 

explanatory traits preserved significant impacts after model reduction steps (Figure 3D and 855 

Supplemental file 2). All mentions of significant relationships or correlations in the main text 856 

are obtained from the GAMM analyses with Wald-type test statistics presenting p-values < 857 
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0.01, unless otherwise stated. For information on deviance explained, R2, and degrees of 858 

freedom for the individual models/variables, we refer to the Supplemental file 2. 859 

 860 

SUPPLEMENTARY INFORMATION 861 

Supplemental File 1. Construction and assessment of the archetype model. 862 

Supplemental File 2. Construction and assessment of the generalized additive mixed models. 863 

Supplemental spreadsheet 1. Phenotype Database 864 

Supplemental Information. 865 

Figure S1, related to Figure 4. Hypermutators versus normomutators 866 

Figure S2, related to Figure 5. mucA and algU mutants 867 

Figure S3, related to Figure 5. mexZ mutants and drug efflux pumps 868 

Figure S4, related to Figure 5. Specific mutations in gyrA/B by patient and adhesion 869 

Figure S5, related to Figure 5. Adhesion and generation time of gyrA/B mutants (PAO1) 870 

Figure S6, related to Figure 2. Example growth curves 871 

Figure S7, related to Figure 2. Development of an aggregation metric 872 

 873 
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