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SUMMARY 15 

Persistent infections require bacteria to evolve from their naïve colonization state by 16 

optimizing fitness in the host. Bacteria may follow the same adaptive path, but many 17 

distinct paths could enable equally successful persistence. Here, we map the development 18 

of persistent infection over 10 years by screening 8 infection-relevant phenotypes of 443 19 

longitudinal Pseudomonas aeruginosa isolates from 39 young cystic fibrosis patients. Using 20 

Archetype Analysis to map the multi-trait evolutionary continuum and Generalized Additive 21 

Mixed Models to identify trait correlations accounting for patient-specific influences, we 22 

find: 1) a 2-3 year timeline of rapid substantial adaptation after colonization, 2) variant 23 

"naïve" and "adapted" states reflecting discordance between phenotypic and molecular 24 

adaptation and linked by distinct evolutionary trajectories, and 3) new phenotypes 25 

associated with pathoadaptive mutations. Our results underline the environmental 26 
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influences affecting evolution of complex natural populations, while providing a clinically 27 

accessible approach for tracking patient-specific pathogen adaptation to guide treatment. 28 
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 32 

INTRODUCTION 33 

Bacteria have spent millennia evolving complex and resilient modes of adaptation to new 34 

environments, and many species can also effectively deploy these skills as pathogens during 35 

colonization and persistence within human hosts (Flores-Mireles et al., 2015; Lieberman et 36 

al., 2014; Rau et al., 2010). As they gradually increase their fitness via accumulating genetic 37 

and epigenetic changes, distinct pathogen populations may travel along the same 38 

predictable path to successful colonization. However, many other unique sequences of 39 

multi-trait adaptation could enable equally successful persistence (Cohen-Cymberknoh et 40 

al., 2011). This makes it difficult to pinpoint specific traits that signal the state of pathogen 41 

fitness and associated risk of an incurable chronic infection, complicating patient treatment 42 

intended to inhibit persistence. Meanwhile, recurrent, treatment-resistant infections are 43 

increasing problems worldwide (Flores-Mireles et al., 2015; Kline and Bowdish, 2016; May, 44 

2014; O’Neill, 2016).  45 

 46 

Even for a well-studied model system of bacterial persistence and chronic infection such as 47 

the airway infections of cystic fibrosis (CF) patients, evolutionary trajectories remain difficult 48 

to map due in part to the competing modes of evolution at play in these patients. While the 49 

general scientific consensus of the field is that select traits converge to similar states during 50 

most infections (such as loss of virulence and increase in antibiotic resistance), studies have 51 

also shown a high degree of population heterogeneity (Jorth et al., 2015; Lieberman et al., 52 

2014; Markussen et al., 2014; Winstanley et al., 2016). This heterogeneity could be 53 

influenced by two distinct modes of evolution: 1) parallel, independent evolution caused by 54 

spatial segregation for long-term chronic infected patients (Jorth et al., 2015; Markussen et 55 

al., 2014) or 2) diversification, or “bet hedging”, creating resilient populations (Yachi et al., 56 
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1999) from the early colonization stage, where greater mixing of the environment and 57 

bacterial populations is possible (Johansen et al., 2012). 58 

 59 

In this study, we map the development of persistent bacterial infections by phenotypically 60 

screening a collection of 443 longitudinal clinical Pseudomonas aeruginosa isolates from 39 61 

young CF patients, measuring how 8 infection-relevant traits adapt during the initial 10 62 

years of colonization. While laboratory evolution studies have measured phenotypic 63 

adaptation to a new, minimal media environment which generally occurs within the initial 64 

5,000-10,000 generations, only estimates are available for the period of significant 65 

adaptation in complex host environments like the CF lung (based on growth rates and 66 

genetic adaptation) (Barrick et al., 2009; Woods et al., 2011; Yang et al., 2011). Thus, we 67 

provide new insights into the in vivo transition from initial colonization to persistent chronic 68 

infection. Previous studies have provided information on the genetic evolution of single 69 

clonal lineages of human pathogens and identified specific genetic adaptations that 70 

correlated with the ability to colonize and persist (Marvig et al., 2013, 2015; Smith et al., 71 

2006). While some studies have paired these findings with phenotypic observations (Rau et 72 

al., 2010; Silva et al., 2016; Sommer et al., 2016; Yang et al., 2011) in order to associate 73 

genetic changes with phenotypic changes, this is especially challenging in natural 74 

populations. Genotype-phenotype links are eroded over the course of evolution by 75 

environment-based tuning of pathogen activity, or “acclimation”, and accumulation of 76 

mutations, or “genetic adaptation”. Therefore, the genotype alone cannot provide a 77 

complete predictive picture of the adaptation process (Jansson and Baker, 2016; Jansson 78 

and Hofmockel, 2018), and we therefore propose that phenotypic characterization is equally 79 

important for the understanding of evolution. 80 

 81 

To map adaptation of the pathogen lineages infecting our patients, we analyzed our 82 

phenotypic dataset using generalized additive mixed models (GAMMs) and archetype 83 

analysis (AA), reassessing current theories of phenotypic evolution in the CF airways. We 84 

identify emergent patterns of bacterial phenotypic change across our patient cohort that 85 

depart from expected evolutionary paths and estimate the length of the period of initial 86 

rapid adaptation letting the bacteria transition from a “naïve” to a “chronic” phenotypic 87 

state. We further identify distinct and repeating trajectories of pathogen evolution, and by 88 
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leveraging our prior molecular study of this isolate collection, we propose mechanistic links 89 

between these phenotypic phenomena and genetic adaptation. These findings support the 90 

promise of using select phenotypic traits to track pathogen adaptation across a patient 91 

population, monitor patient-specific infection states, tailor the use of antibiotics, and 92 

eventually inhibit the transition to a persistent and chronic infection.  93 

 94 

RESULTS 95 

First, we present our 8-phenotype screen and associated summary statistics. To 96 

contextualize our interpretation of this data, we then describe our data-driven modeling 97 

approach and validation. Finally, we use our models to identify and present significant 98 

evolutionary trends that contribute to persistence of P. aeruginosa in our CF patient cohort. 99 

 100 

Evaluating pathogen adaptation in the early stage of infection 101 

A unique dataset. The 443 clinical P. aeruginosa isolates in this study originate from a cohort 102 

of 39 children with CF (median age at first P. aeruginosa isolate = 8.1 years) treated at the 103 

Copenhagen CF Centre at Rigshospitalet and capture the early period of adaptation, 104 

spanning 0.2-10.2 years of colonization by a total of 52 clone types. Of these isolates, 373 105 

were previously characterized in a molecular study of adaptation (Marvig et al., 2015). 106 

When we discuss time in this study, we generally refer to the “colonization time of an 107 

isolate” (ColT). This is defined for each specific lineage as the time since colonization was 108 

first identified in a patient until the isolate in question was sampled. This enables us to have 109 

an approximate reference for when the bacteria initially transferred from one environment 110 

to another and adaptation to the CF airways could begin. It is important to note that the 111 

first time P. aeruginosa is identified in a patient sample is not likely to be the true “time 112 

zero” of adaptation, since a significant bacterial load is necessary for reliable culturing. 113 

 114 

In contrast to our previous study, here we focus on phenotypic characterization including 115 

measurement of 8 phenotypes that encompass growth rates, antibiotic susceptibility, 116 

virulence factors, and adherence (Figure 1 and 2); we define adherence as a shared trend in 117 

adhesion and aggregation which we associate with a biofilm-like lifestyle. These phenotypes 118 

are generally accepted to change over the course of colonization and infection of CF patient 119 
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airways (Jiricny et al., 2014; López-Causapé et al., 2017; Silva et al., 2016; Winstanley et al., 120 

2016; Yang et al., 2008) and also lend themselves to high-throughput screening. That is, an 121 

evolved isolate would grow slowly, adhere proficiently, be more likely to exhibit a mucoid 122 

and/or hypermutator phenotype, have reduced protease production, and resist antibiotics, 123 

in contrast to a naïve isolate. However, a visual inspection of our measurements ordered by 124 

the colonization time does not indicate an overarching adaptive trajectory from naïve to 125 

evolved phenotypes (Figure 2). Instead, we find isolates that resemble both “naïve” and 126 

“evolved” phenotypic states throughout the study period. 127 

 128 

Modeling multi-trait evolution. To analyze our dataset capturing the scale, complexity, and 129 

noise of pathogen adaptation in a population of patients, we need to use modeling methods 130 

that minimize patient-specific effects, smooth irregular sampling intervals and enable the 131 

mapping of multi-trait evolution from start to end state. Our framework balances model 132 

complexity and precision – also known as “the bias-variance tradeoff”. We therefore 1) 133 

modeled the inherent dynamic continuum of multi-trait evolution using AA and 2) evaluated 134 

temporal correlations between phenotypic adaptation across patients by fitting cross-135 

patient trendlines using GAMMs (Figure 1).  136 

 137 

With AA, we relate each isolate according to its similarity to the isolates with the most 138 

extreme phenotypes in our collection. These extremities of our data, or “archetypes”, are 139 

positioned at the “corners” of the principal convex hull (PCH), the polyhedron of minimal 140 

volume that still fully encapsulates our phenotype dataset in a multi-dimensional trait space 141 

(Mørup and Hansen, 2012) that represents the pathogen evolutionary landscape of our 142 

young patient cohort. We conceptualize archetypes as the initial and final states of plausible 143 

adaptive trajectories across this landscape and predict both the number of archetypes and 144 

their distinct phenotypic profiles that best represent our data. In contrast to ordination 145 

approaches similar to Principal Component Analysis (PCA) which describes samples using 146 

ambiguous, difficult to interpret dimensions of major variance, AA describes each isolate 147 

contained within the principal convex hull in relation to its similarity to each archetype. 148 

Thus, the characteristics of each isolate are directly interpretable along an evolutionary 149 

continuum from “naïve” to “evolved” archetypes, comparable to the naïve and evolved 150 

phenotypic states as described above. To visualize this continuum, we relied on 2D 151 
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projections of our multivariate fits using a “simplex” plot as shown in Figure 3C (Seth and 152 

Eugster, 2016). Though this visualization obscures the true dimensionality of the isolate 153 

distribution by implying the archetypes are equidistant, we partly compensated for this by 154 

using PCA and biological insight gained from the GAMMs to guide archetype placement such 155 

that we maintain interpretability from an evolutionary perspective. 156 

 157 

With the GAMMs, we want to predict whether a given phenotype (the “predicted” or 158 

“dependent” variable) significantly correlates with other phenotypes (the “explanatory” or 159 

“independent” variables). We do this by accounting for time as well as patient-specific 160 

environments as random effects via this flexible mixed model approach enabling both linear 161 

and nonlinear fits. We ultimately prioritize accuracy in our fits rather than forcing linear 162 

relationships that do not effectively capture natural evolutionary dynamics that we expect 163 

to vary from patient to patient. This accuracy and flexibility invariably increase the risk of 164 

overfitting. However, we counteract this by both the default penalization of fits inherent to 165 

the method used and by model estimation via restricted maximum likelihood (REML) 166 

(Wood, 2006). Furthermore, to avoid assumptions of “cause-and-effect” relationships 167 

between our variables, we implement a feature reduction approach; we permute through 168 

different one-to-one models of all phenotypes, and then combine the statistically significant 169 

individual phenotypes into a multi-feature model. We further remove any phenotype that 170 

loses significance in the multi-feature model, assuming that it is correlated with a more 171 

impactful phenotype. From this point, all mentions of significant relationships or 172 

correlations are obtained from the GAMM analyses with p-values < 0.01 based on Wald-173 

type tests as described in (Wood, 2006, 2013), unless otherwise stated. 174 

 175 

Effective mapping of phenotypic trends 176 

Archetype analysis. AA predicted six distinctive archetypes sufficient to describe each isolate 177 

within the evolutionary landscape (Figure 3A). The simplex plot of Figure 3C shows 178 

annotation of the archetypes by the standout features of each archetype that contribute to 179 

its identification as an extremal corner of the dataset – we therefore only annotate by the 180 

highest or lowest values for each phenotype across all fitted archetype trait profiles and 181 

neglect moderate values (Figure 3B). This simplex key illustrates that two archetypes 182 
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resembled naïve and un-evolved isolates with fast growth, antibiotic susceptibility, and low 183 

adherence (Archetype A3 and A5). Meanwhile, two archetypes accounted for slow-growing 184 

evolved archetypes (A2 and A6). Two regions in the simplex visualization represent different 185 

focal points of adaptation, namely an increase in adherence (A2 and A4) versus ciprofloxacin 186 

resistance (A1 and A6). A substantial portion of isolates in our study resemble the “naïve” 187 

archetypes more closely than the “evolved” archetypes as indicated by their localization in 188 

the simplex plot (Figure 3C, most isolates cluster on the left near the “naïve” archetypes).  189 

 190 

Generalized additive mixed models. The GAMM analysis showed that we could statistically 191 

support relationships between traits across patients (Figure 3D). We find that the growth 192 

rates in Artificial Sputum Medium (ASM) and Lysogeny Broth (LB) are significantly correlated 193 

and therefore only refer to the growth rate in ASM from this point – this is closer to the in 194 

vivo conditions of the CF airway environment. When evaluating adaptation of the specific 195 

phenotypes over time we found that the survival time of a lineage in a patient's lungs had a 196 

significant correlation with both growth rate and sensitivity to ciprofloxacin but did not 197 

correlate with sensitivity to aztreonam (Figure 3C, Figure 4A and 4B). This difference reflects 198 

that the Copenhagen CF Centre regularly administers ciprofloxacin to the CF patients but 199 

not aztreonam (Hansen et al., 2008). 200 

 201 

An important distinction between AA and GAMMs is that many isolates clearly cluster in the 202 

AA simplex plot according to phenotypes whose adaptation is not significantly influenced by 203 

time of colonization as shown by GAMMs. This contrast shows the importance of combining 204 

these approaches to understand our data. As an example, both adhesion and aggregation 205 

do not correlate with colonization time for this population of young patients. Furthermore, 206 

the biofilm-related metric of mucoidity does not significantly correlate with any other 207 

measured phenotype, despite its use as an important biomarker of chronic infection in the 208 

Copenhagen CF Centre (Pedersen et al., 1992).  209 

 210 

Initial adaptation happens within 3 years of colonization 211 

We suspect that the routes to successful persistence and a transition to chronic infection 212 

are initiated early in infection (Hansen et al., 2012; Marvig et al., 2015). During the initial 213 
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period of colonization spanning the first 2-3 years, the GAMMs indicate that a substantial 214 

change occurs in both growth rate and ciprofloxacin susceptibility, shown by the sharp 215 

slopes in this period (Figure 4A-B). Using AA, we also see a substantial shift of isolate 216 

distribution from “naïve” towards “evolved” archetypes in this adaptation window (Figure 217 

4C). Furthermore, the adaptation at 2-3 years of colonization is quite diverse, reaching the 218 

outer boundaries of the simplex plot and confirming the rapid adaptation shown by the 219 

GAMMs. Interestingly, the four hypermutator isolates arising in this window do not alone 220 

define the trait boundaries of the AA; other normo-mutator isolates are located in equal 221 

proximity to the “evolved” archetypes (Figure 4D, full dataset in Figure S1).  222 

 223 

To evaluate whether the rapid phenotypic adaptation occurred in parallel with genetic 224 

adaptation, we investigated the accumulation of nonsynonymous mutations (Figure 4D-E). 225 

We used the isolates representing the first P. aeruginosa culture from a patient as the 226 

reference point for identification of accumulating mutations. Using AA, we observed that 227 

most of the first isolates with 0-30 mutations aligned with “naïve” archetypes, and 2-3-year-228 

old isolates with 9-48 mutations extended to the outer boundaries of adaptation (A2, A6, 229 

and A1) (Figure 4C-D). However, we also observed the persistence of WT-like genotypes 230 

with few mutations alongside evolved genotypes (Figure 4D). When analyzing the entire 231 

dataset using GAMMs, we found a significant, near-linear relationship between colonization 232 

time and the number of non-synonymous SNPs, but this near-linear trend was not present 233 

when evaluating the total number of mutations (Figure 4E). We theorize that this difference 234 

is driven by the apparent logarithmic accumulation of indels, where indel accumulation 235 

appears to slow around year 2 of colonization as shown in Figure 4E. 236 

 237 

Multi-trait analysis enables complex genotype-phenotype associations  238 

The obscuring of genotype-phenotype links via polygenic mutations and their pleiotropic 239 

effects is rarely easy to deconvolute. As our models are unbiased by any genetic 240 

information, we have a unique perspective from which to map genotype-phenotype 241 

relationships. We previously identified 52 “pathoadaptive genes”, which are genes mutated 242 

more often than expected from genetic drift and thus are assumed to confer an adaptive 243 

advantage during infection (Marvig et al., 2015; Sokurenko et al., 1999). By overlaying 244 
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nonsynonymous mutations on AA simplex plots, we evaluated mutation impacts on the 245 

following pathoadaptive genes: 1) top ranked mexZ and other repressors of drug efflux 246 

pumps (nfxB/nalD), 2) mucoidity regulators mucA/algU and the hypothesized infection-state 247 

switching retS/gacAS/rsmA regulatory pathway which we previously examined from a 248 

genetic adaptation perspective (Goodman et al., 2004; Marvig et al., 2015), and 3) 249 

quinolone resistance genes gyrA/gyrB (Kugelberg et al., 2005; Nakamura et al., 1989; 250 

Robillard and Scarpa, 1988) given the rapid adaptation of ciprofloxacin susceptibility. We 251 

saw no obvious spatial correlations with mutations linked to mucoidity regulation in the AA 252 

model (Figure S2) which parallels mucoidity’s lack of significance in our GAMM analyses. 253 

Isolates with mexZ mutations are prevalent and also distributed throughout the simplex 254 

plot, so we analyzed mexZ mutants in combination with other pump repressor gene 255 

mutations. We found that even double-mutant isolates grouped by their effect on different 256 

pairings of efflux pumps showed diverse phenotypes via AA, though we noted a unique 257 

distribution of the many isolates impacted by a mutation in nfxB (Figure S3, Figure 5B). The 258 

isolate distributions of gyrA/B and retS/gacAS/rsmA mutants were also striking in their 259 

spatial segregation according to AA (Figure 5A-B). 260 

 261 

Ciprofloxacin resistance genes. The primary drivers of ciprofloxacin resistance in P. 262 

aeruginosa are theorized to be mutations in drug efflux pump repressor nfxB and mutations 263 

in gyrA and gyrB encoding the two gyrase subunits of the DNA replication system (Kugelberg 264 

et al., 2005; Nakamura et al., 1989; Robillard and Scarpa, 1988). We would therefore expect 265 

isolates with mutations in these resistance genes to cluster around archetypes A1 and A6, 266 

which are characterized by high ciprofloxacin minimal inhibitory concentrations (MICs) 267 

(Figure 3C). However, AA illustrates a much broader distribution of gyrA/B mutants among 268 

archetypes, and a third distinct distribution of nfxB mutants (Figure 5A-B, left panel). In 269 

association with this AA diversity, we see a range of ciprofloxacin resistance levels 270 

associated with affected isolates both across and within patient lineages, and no dominant 271 

mutations/mutated regions which repeat across lineages (Figure 5A-B, right panel). The 272 

incidence of resistance due to these distinct mechanisms was equal at 78% of affected 273 

isolates (54 out of 69 resistant gyrase mutants vs 37 out of 47 resistant nfxB mutants based 274 

on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint). 275 

However, the persistence of these respective mutations in affected lineages was dissimilar. 276 
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Generally, nfxB mutation occurred earlier in lineage evolution and persisted in far fewer 277 

lineages compared to gyrA/B mutations, which likely contributes to nfxB’s band-like 278 

distribution via AA compared to the broader distribution of gyrase mutants towards 279 

adapted archetypes. 280 

 281 

Interestingly, when we further consider the gyrase-mutated isolate plot, we also see that 282 

isolates with a gyrB mutation (33 isolates alone or 14 in concert with gyrA) are concentrated 283 

closer to “biofilm-linked” archetypes A2 and A4 than isolates with only a gyrA mutation (33 284 

isolates). This positive association of gyrB on adhesion was confirmed by GAMM, but when 285 

evaluating it by moving the two SNPs affecting the most isolates in both gyrA and gyrB (2 286 

lineages each, Figure S4) into a laboratory P. aeruginosa strain (PAO1), we did not find the 287 

same association (Figure S5-6) (p-values > 0.05, ANOVA with Tukey correction, 288 

F(4,10)=0.233). We then evaluated the presence of co-occurring mutations in biofilm-linked 289 

genes in the gyrB-mutated lineages. In all but one lineage, there was no obvious genetic 290 

explanation for the increased adhesion. Ultimately, this genotype-phenotype link was 291 

indecipherable due to the complexity of mutation patterns and the multi-genetic signature 292 

of biofilm regulation (Wolska et al., 2016). 293 

 294 

retS/gacAS/rsmA. The functional model of the retS/gacA/gacS/rsmA regulatory system is a 295 

“bimodal” switch between acute and chronic infection phenotypes (Goodman et al., 2004; 296 

Ventre et al., 2006). Posttranscriptional regulator rsmA activates an acute infection 297 

phenotype characterized by planktonic growth and inhibits a non-motile “biofilm” lifestyle. 298 

retS mutants are preserved in many lineages because they repress rsmA via the gacA/S two-299 

component system and thus promote a chronic infection phenotype. However, our previous 300 

genetic analysis (Marvig et al., 2015) unexpectedly showed that multiple evolving lineages 301 

gained a subsequent mutation in gacA/S that at times appeared years after the retS 302 

mutation. Despite the complexity of this regulatory system, we show a clear phenotypic 303 

separation between clinical isolates that are retS mutants versus retS+gacA/S mutants via 304 

our AA model (Figure 5C, left panel). In this study, three of eight patients with 305 

nonsynonymous mutations in this system have isolates which are retS+gacA/S double 306 

mutants (Figure 5C, right panel). While retS mutants resemble more “evolved” archetypes 307 

(A1 – 2 and A6), all but one isolate clusters around the “naïve” archetypes (A3 – A5). 308 
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According to patient-specific trajectories, this reversion happens after an initial migration 309 

towards “evolved” archetypes. Because of the low sampling number and because we only 310 

see double mutants in three patients, we did not follow up with additional GAMM analyses 311 

of the effect of these mutations on different phenotypes. 312 

 313 

Infections persist via distinct routes of adaptation 314 

As our trait associations with specific mutations highlight the importance of lineage-based 315 

analysis, we here further investigate lineage influences by mapping patient-specific adaptive 316 

trajectories, which may present clinically useful information for treatment management. By 317 

performing a patient-specific analysis using AA, we find that P. aeruginosa infections can 318 

persist successfully in individual patients despite different phenotypic starting points (A3-5) 319 

and/or end points (A1, 2, and 6). Figure 6A-C shows three adapting lineages that follow 320 

distinct trajectories and each persist for at least three years in a patient, while Figure 6D 321 

shows a patient with diverse isolates that do not appear to follow a clear adaptive 322 

trajectory. In both Figure 6A and C, we see a rapid evolution towards an endpoint of 323 

ciprofloxacin resistance. In Figure 6A, the colonization initiates with two isolates, but we 324 

determined that the isolate near A4 is genotypically distinct from the remaining 11 isolates 325 

of that lineage based on mutational differences. The persisting sublineage seems to initiate 326 

with the isolate near A3, after which it gains a gyrB mutation that guides the trajectory 327 

towards A1 and subsequent mutations then push the lineage phenotype towards A2, 328 

characterized by increased adherence and decreased sensitivity to aztreonam. This 329 

trajectory towards A2 is also seen in Figure 6B, which begins as a broad band of isolates 330 

moving from A3/A4 towards A2/A6. However, the isolates seem directed towards A2 rather 331 

than A6 or a mix thereof over infection. These results illustrate the diverse adaptive 332 

trajectories followed by P. aeruginosa in our patient cohort, which connect distinct start and 333 

endpoints of adaptation yet enable years of persistence. 334 

 335 

In summary, the results of our investigations together illustrate how a multi-trait analysis 336 

perspective can identify unique emergent characteristics of evolving bacteria, but also 337 

highlight the strong influence of lineage-specific trajectories, the historic contingency of 338 

mutations, and the impact it can have on the phenotypes expressed. 339 
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 340 

DISCUSSION 341 

By integrating phenotypic and molecular characterizations of our unique isolate collection 342 

with well-suited data modeling, we illuminate specific evolutionary priorities in early 343 

infection. We overcome remarkable genetic and phenotypic diversity to 1) observe rapid 344 

early adaptation and its discordance with genetic adaptation, 2) associate novel phenotypes 345 

with pathoadaptive genes, and 3) retrieve meaningful mappings of distinct patient-specific 346 

trajectories. Phenotypic traits represent systems-level impacts of many different molecular 347 

markers and are shown in this study to adapt along parallel evolutionary paths. We 348 

therefore propose a “new” model of investigation or, more appropriately, we re-emphasize 349 

the value of classical phenotype-based investigations. Specifically, instead of focusing on 350 

genetic readouts of adaptation, where a specific mutation or gene may or may not be 351 

consistently linked with a specific phenotype; we suggest that mapping changes of carefully 352 

selected traits provides a better basis for predictions of the next steps of colonization and 353 

infection. Here, we specifically use clinically feasible phenotypic screens, modeling and 354 

visualization methods to evaluate trait adaptation, and map patient-specific evolutionary 355 

trajectories with the potential for integration with clinical diagnostics. 356 

 357 

We deconvolute pathogen evolution in the host by a unique integration of methods. 358 

Previous studies employed linear mixed models of phenotypic adaptation (Andersen et al., 359 

2015), and employed archetype analysis in the comparison of features of transcriptomic 360 

adaptation by P. aeruginosa (Thøgersen et al., 2013), and most recently, prediction of the 361 

polymorphism structure in a population based on evolutionary trade-offs in a multi-trait 362 

fitness landscape (Sheftel et al., 2018). However, by integrating the two approaches, we 363 

illuminate complex patterns and facilitate the deconvolution of trait adaptation to decipher 364 

the major evolutionary highways in our patient cohort. For example, we do not see 365 

significant cross-patient selection for adherence using GAMMs, but we see selection for 366 

adherence in a few specific patients via AA. That this is not a major trend in our data is 367 

surprising when we consider that a biofilm lifestyle is expected to be beneficial to 368 

persistence in chronically infected patients (Bjarnsholt et al., 2009; Cohen-Cymberknoh et 369 

al., 2011; Høiby, 2002; Pressler et al., 2011). However, it leads us to hypothesize that the 370 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326025doi: bioRxiv preprint 

https://doi.org/10.1101/326025


 13 

rate of adaptation and relative benefit of this phenotype may vary significantly and be more 371 

sensitive to temporal stresses such as antibiotic treatment. In support of our findings, others 372 

have recently shown that the longitudinal relationship between mucoidity and a clinical 373 

diagnosis of chronic infection is not as direct as previously expected (Heltshe et al., 2017). 374 

Together, these results prompt further reassessment of common assumptions regarding the 375 

evolutionary objectives of P. aeruginosa in CF infections. 376 

 377 

We map remarkable evolutionary dynamics in the early stages of patient colonization, 378 

where we estimate the initial window of rapid adaptation to be within 5256 - 7884 bacterial 379 

generations (Yang et al., 2008). While the first isolate of each patient in our collection may 380 

not represent the true start of adaptation given sampling limitations, we see general 381 

alignment of our “first” isolates via archetype distribution; the window of rapid adaptation 382 

is therefore still likely substantially contracted compared to the previous estimate of within 383 

42,000 generations (Yang et al., 2011). In fact, our data resembles the rate of fitness 384 

improvement found in the laboratory evolution study of E. coli, which was shown to change 385 

significantly within the first 5,000-10,000 generations (Barrick et al., 2009; Woods et al., 386 

2011). With regards to the corresponding genetic adaptation during this period, the cross-387 

patient trend fit by GAMMs reflects an expected accumulation of mutations over time. 388 

However, AA demonstrates patient-specific differences; specific lineages show different 389 

numbers of mutations after having adapted over 2-3 years (with a range of 9-48 mutations, 390 

not including hypermutators). Furthermore, the isolates with the highest numbers of 391 

mutations, the hypermutators, do not define the boundaries of phenotypic adaptation, 392 

which supports the idea that molecular and phenotypic adaptation can be discordant. Select 393 

beneficial mutations (for example, a highly impactful indel) can alone induce important 394 

phenotypic changes that improve fitness, especially via pleiotropic effects (Solovieff et al., 395 

2013) in accordance with the theory that the likelihood of beneficial mutations decreases 396 

over time (Desai and Fisher, 2007). Our logarithmic gain of indels replicates the findings of 397 

the laboratory evolution study of E. coli which has been propagating for more than 60,000 398 

generations (Good et al., 2017). This observation suggests that other methods of adaptation 399 

may contribute in equal degree to  adaptation via mutation, such as acclimation to the CF 400 

lung environment via gene expression changes (Dötsch et al., 2015; Rossi et al., 2018). 401 

 402 
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Our study highlights important limitations to genotype-phenotype associations and 403 

underlines the usefulness of a multi-trait perspective; individual mutations may have 404 

pleiotropic effects and obscure genetic signatures as they accumulate over time. For 405 

example, we show an unexpected phenotypic reversion to an “acute infection state” via 406 

historically contingent mutations in the retS/gacAS/rsmA system. This does not easily 407 

reconcile with theories about preservation of a persistent colonization via convergence 408 

towards a “chronic phenotype”. However, over time some patients are colonized by new 409 

clone types and/or other pathogens; this could require re-establishment of a colonization 410 

mid-infection and thus induce the population to revert towards an acute infection state 411 

where fast growth and motility improve its ability to compete. In evaluating primary 412 

ciprofloxacin resistance genes nfxB and gyrA/B, we see substantial diversity in ciprofloxacin 413 

susceptibility for isolates which share the same mutation, unique mutations fixing in each 414 

lineage, and differential extents of adaptation boundaries using AA. This last observation led 415 

us to note that nfxB-mutated isolates are associated with earlier incidence and more limited 416 

lineage persistence versus isolates with gyrA/B mutations. This may be caused by a 417 

differential fitness impact of nfxB mutation that limits tolerance of this mutation to a 418 

narrower range of genotypic backgrounds than that of gyrA/B mutation, or it could be 419 

associated with differential treatment regimens that influence the relative benefit of a given 420 

ciprofloxacin resistance mechanism; further study is required to tease out these 421 

mechanisms by both evaluating patient treatment histories and adding additional lineages 422 

to the study. We also discovered an association between gyrB mutation and increased 423 

adhesion; to our knowledge, there is no direct link between gyrB and the capability to 424 

adhere (Kugelberg et al., 2005) and we did not see increased adhesion in our engineered 425 

gyrB mutants. It is possible that a mutation in gyrB enables or is simply more tolerant of 426 

other specific mutations that result in increased adhesion in comparison with gyrA 427 

mutation. In general, our results support the theory that specific mutations confer unique 428 

evolutionary restrictions to adaptive trajectories that impact other traits, but genetic 429 

background and host-specific evolutionary pressures influence the type and degree of 430 

restriction. This process could underpin the diversity of phenotypic adaptation we observe 431 

in this study. 432 

 433 
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Complex mutation patterns are an inherent byproduct of evolution and result in equally 434 

complex, varied adaptive trajectories that lead to persistence. Clinicians need improved 435 

methods to predict and prevent the transition from colonization to persistent and chronic 436 

infection. We see particular promise in incorporating records of patient treatment and 437 

response to our assessment of adaptive trajectories to further guide clinicians in patient-438 

tailored treatment management. At the moment, our models can assist by illustrating 439 

distinct evolutionary highways to pathogen persistence in individual patients. In this study, 440 

we find 3 overarching modes of evolution: 1) directed diversity, where a given patient’s 441 

trajectory is characterized by diverse isolates moving in the same general direction such as 442 

increased adhesion and aggregation (Figure 6B) (Andersen et al., 2015), 2) convergent 443 

evolution, where the adaptation is constrained by strong selective pressures driving the 444 

phenotypic change in one particular direction such as resistance to ciprofloxacin (Figure 6C) 445 

(Imamovic et al., 2018), or 3) general diversity, where colonization appears to initiate with 446 

diverse “naïve” isolates and this diversity is maintained or expanded with no interpretable 447 

adaptive trajectory over time (Figure 6D). We theorize that these evolutionary modes and 448 

their dynamics may correlate with infection persistence and patient outcomes.  449 

 450 

In conclusion, our study identifies rapid adaptation of isolates by both mutational 451 

accumulation and acclimation within the first few years of colonization. While specific traits 452 

show cross-patient convergence, we also highlight remarkable diversity both within and 453 

across patients, emphasizing the maintenance of diversity as a useful mode of persistence. 454 

We identify unique highways of evolution that are used by pathogens to persist in the lungs. 455 

By mapping these phenotypic trajectories, we can identify both genetic mechanisms that 456 

regulate these highways and complex traits that signal the impact of treatment on individual 457 

infections. 458 
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 673 

FIGURE TITLES AND LEGENDS 674 

Figure 1. Workflow and study setup. 675 

Upper panel: Every month, CF patients are seen at the CF clinic at Rigshospitalet in 676 

Copenhagen, Denmark. Here they deliver a sputum or endolaryngeal suction sample where 677 

selective microbiological culturing is performed (Johansen et al., 2008). The longitudinally 678 

collected isolates have been genome sequenced and analyzed in a previous study by Marvig 679 

et al. (Marvig et al., 2015). Middle panel: Longitudinally collected isolates have been 680 

subjected to different phenotypic analyses for this study and are here (lower panel) 681 

analyzed using two data modelling approaches: Archetype Analysis (AA) and Generalized 682 

Additive Mixed Model (GAMM). By integrating these approaches, we map dominant 683 
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evolutionary trajectories and analyze mechanistic links between phenotypic and genetic 684 

adaptation. 685 

 686 

Figure 2. Phenotypic characterization. 687 

We present (A) summary statistics of our phenotype screen as well as compare the (B) 688 

expected adaptation over time based on field consensus versus (C) a simple evaluation of 689 

our raw measurements by colonization time. After sorting the isolates (x-axis) by the time 690 

since colonization of a specific lineage or “colonization time” (ColT), it is still difficult to see 691 

consistent patterns of phenotypic change over time. Colors are linked with the expected 692 

change of the specific phenotype (B), so that blue denotes a “naïve” phenotype and red 693 

denotes an “evolved” phenotype. For growth rate (in artificial sputum medium (ASM)), 694 

adhesion, and aggregation, naïve and evolved phenotypes are roughly divided by 695 

comparison with the reference isolate PAO1 phenotype. For aztreonam and ciprofloxacin 696 

MIC, naïve and evolved phenotypes are based on sensitivity or resistance as indicated by 697 

the EUCAST breakpoint values as of March 2017, respectively. 698 

 699 

Figure 3. AA and GAMM models. 700 

We present a summary of the models underpinning our study of pathogen adaptation. (A) 701 

Screeplot showing the average residual sum of squares (RSS) for 25 iterations of each fit of a 702 

given number of archetypes. The “elbow” of the plot indicates that six archetypes are 703 

sufficient to model our dataset. (B) Characteristic trait profiles describing the 5 distinct 704 

phenotype levels that each of our 6 archetypes represents. We use the following 705 

abbreviations to represent our normalized data: grASM – growth rate in ASM, agg – 706 

Aggregation, adh – Adhesion, azt – aztreonam susceptibility, cip – ciprofloxacin 707 

susceptibility. (C) Simplex plot of the AA showing the six archetypes (A1-A6) sorted by their 708 

characteristic growth rate (A3 and A5 vs A2 and A6), decreased sensitivity towards 709 

ciprofloxacin (A1 and A6), and increased aggregation and adhesion (A2 and A4). All further 710 

simplex visualizations are also sorted accordingly and can be interpreted using this key, 711 

which is annotated with the extreme phenotype values for each archetype. The complete 712 

analysis can be found in Supplementary material 1. (D) P-values for GAMM models with 713 

multiple explanatory variables (columns) for the six predictor variables (rows), after model 714 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326025doi: bioRxiv preprint 

https://doi.org/10.1101/326025


 24 

reduction. P-values are only shown for explanatory variables that showed a significant (p-715 

value<0.01) impact on the predictor in question. The complete analysis can be found in 716 

Supplementary material 2. 717 

 718 

Figure 4. Rapid early adaptation. 719 

We present specific GAMM and AA models to illustrate the rapid adaptation of growth rate 720 

and ciprofloxacin over time and contrast these patterns with genetic adaptation via the 721 

accumulation of nonsynonymous mutations. Here, we use GAMMs to illustrate the 722 

significant impact of the explanatory variable colonization time on (A) growth rate in ASM, 723 

(B) ciprofloxacin sensitivity in ASM, (E) the accumulation of all mutations (orange) and 724 

nonsynonymous SNPs (blue) and indels (insertions and deletions). We use simplex 725 

visualizations of AA to show (C) “naïve” trait alignment of the first isolate of the twenty 726 

patients where we have analyzed the first P. aeruginosa isolate ever cultured at the CF clinic 727 

(blue circles) in contrast to “adapted” isolates that have been cultured at year 2-3 of 728 

colonization (red squares, all patients of the dataset). We contrast this trait-based 729 

ordination with (D) genetic adaptation, shown by a color overlay of the number of non-730 

synonymous mutations present in each isolate. Isolate 95 (purple circle) of the DK12 clone 731 

type has a very high number of mutations (>100) because one isolate in that lineage (isolate 732 

96) is very different from the remaining 11 isolates. For the GAMM analysis shown in Figure 733 

4E, we filtered out the mutations from the errant DK12 96 single isolate that affected the 734 

whole lineage. Hypermutators are marked by purple triangles. (A/B/E notation) GAMMs are 735 

illustrated by solid smoothed trendlines, dashed two standard error bounds, and gray points 736 

as residuals. Y-axes are labelled by the predictor variable on which the effect of colonization 737 

time of the clone type (“ColT”) has been estimated as well as the estimated degrees of 738 

freedom (edf) (for the E upper panel the edf is ordered as all mutations/NS SNPs). Residuals 739 

have not been plotted in the upper panel of (E) for clarity reasons. X-axes are the ColT in 740 

years and patients are included as random smooths together with ColT. A rug plot is also 741 

visible on the x-axis to indicate the density of observations over time.  742 

 743 
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Figure 5. Mechanistic links between phenotypic changes and mutations in 744 

ciprofloxacin resistance genes and the retS/gacAS/rsmA system. 745 

We use AA to illustrate phenotypic separation by isolates affected by distinct mutations in 746 

ciprofloxacin resistance genes gyrA, gyrB, and nfxB and the retS/gacAS/rsmA regulatory 747 

system. (A-B, left panel) As visualized by AA simplex plots, the diversity of trait profiles 748 

associated with isolates with mutations in DNA gyrase (gyrA/B) is in stark contrast to the 749 

constrained band of nfxB-mutated isolates. Mutations in DNA gyrase and nfxB do not co-750 

occur in the same isolate but co-occur in different isolates of 2 lineages (patient P8804, 751 

genotype DK08 and patient P8203, genotype DK32). The differences in time of appearance 752 

during the colonization period and persistence of gyrA/B mutant isolates versus nfxB 753 

mutant isolates is shown in the lineage timelines plotted in the right column for gyrA/B (A, 754 

right panel) versus nfxB (B, right panel). Furthermore, gyrB-mutated isolates cluster more 755 

closely with A2 and A4 than gyrA mutated isolates, indicating a potential association with 756 

adhesion; GAMMs predicts that gyrB mutation has a significant impact on adhesion (GAMM, 757 

p-value << 0.01).  (C, left panel) Mutations in the retS/gacAS/rsmA system shows a clear 758 

phenotypic change when retS is mutated alone (blue circles) or in combination with gacA or 759 

gacS (red squares and circles). The associated lineage plot (C, right panel) shows the 760 

appearance of double mutations (retS + gacA/S) after a colonization period by retS mutated 761 

isolates in three patient lineages. (A/B/C – lineage plot notation) Lineage length is based on 762 

the span of time for which we have collected isolates and is indicated by gray bracketed 763 

lines, with only isolates affected by a mutation of interest plotted using shape to indicate 764 

mutation type. Symbol color indicates the specific mutation location in the affected gene 765 

and (A/B only) symbol size indicates the level of resistance to ciprofloxacin. Multiple 766 

isolates may be collected at the same sampling date based on differences in colony 767 

morphology, which explains the visible vertical overlap of isolates for some lineages. 768 

 769 

Figure 6. Evolutionary trajectories guided by different adaptation needs. 770 

We present four different trajectories showing modes of evolution found in multiple 771 

patients: (A) A special case of directed evolution with one outlier isolate (isolate 96 of DK12) 772 

but an otherwise clear trajectory first towards ciprofloxacin resistance and afterwards a gain 773 

in adhesive capabilities. (B) Diverse early/naïve isolates showing a population moving in a 774 
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broad and diverse plane from naïve archetypes towards evolved archetypes. (C) A 775 

constrained convergence driven primarily by changes of a single phenotypic trait (decreased 776 

ciprofloxacin sensitivity). (D) A diverse population with no clear evolutionary trajectory. 777 

 778 

METHODS 779 

The isolate collection 780 

The current isolate library is comprised of 443 longitudinally collected single P. aeruginosa 781 

isolates distributed within 52 clone types collected from 39 young CF patients treated at the 782 

Copenhagen CF Centre at Rigshospitalet (median age at first P. aeruginosa isolate = 8.1 783 

years, range = 1.4-24.1 years, median coverage of colonization: 4.6 years, range: 0.2-10.2 784 

years). This collection is a complement to and extension of the collection previously 785 

published (Marvig et al., 2015) and captures the period of initial rapid adaptation (Barrick et 786 

al., 2009; Woods et al., 2011; Yang et al., 2011), with 389 isolates of the previously 787 

published collection included here in addition to 54 new isolates. For our study of 788 

phenotypic evolution over time using GAMMs, we only included isolates from clone types 789 

that were capable of creating a persistent mono-clonal colonization or infection, and 790 

therefore two patients with a sustained multi-clonal infection were excluded. However, we 791 

included four patients (P9904, P0405, P5504, and P2204) that show clone type substitution 792 

during the collection period. We also excluded isolates belonging to clone types present in a 793 

patient at two or fewer time-points, unless the two time-points were sampled more than 6 794 

months apart. We also excluded any isolate with any missing phenotype measurement from 795 

our panel of phenotype screens. 389 of the isolates have been clone typed as a part of our 796 

prior phylogenetics study (Marvig et al., 2015) and the remaining isolates have been clone 797 

typed as a step of the routine analysis at the Department of Clinical Microbiology at 798 

Rigshospitalet. This clone type identification was performed as described previously (Marvig 799 

et al., 2015), and the sequencing was carried out as follows: DNA was purified from over-800 

night liquid cultures of single colonies using the DNEasy Blood and Tissue Kit (Qiagen), 801 

libraries were done with Nextera XT and sequenced on an Illumina MiSeq using the v2 802 

250x2 kit. 803 

 804 
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Ethics approval and consent to participate 805 

The local ethics committee at the Capital Region of Denmark (Region Hovedstaden) 806 

approved the use of the stored P. aeruginosa isolates: registration number H-4-2015-FSP. 807 

 808 

Phenotypic characterizations 809 

For all phenotypes, four technical replicates were produced for each isolate. For all but the 810 

antibiotic MIC tests, phenotypic analysis was carried out by stabbing from a 96 well plate 811 

pre-frozen with overnight cultures diluted with 50% glycerol at a ratio of 1:1. 812 

 813 

Growth rate in Lysogeny broth (LB) and Artificial sputum medium (ASM) 814 

Isolates were re-grown from frozen in 96 well plates in 150ul media (LB or ASM) and 815 

incubated for 20h at 37°C with OD630nm measurements every 20 min on an ELISA reader. 816 

Microtiter plates were constantly shaking at 150 rpm. LB growth rates were first assessed by 817 

manual fitting of a line to the exponential phase of the growth curve. This dataset was then 818 

used to confirm the accuracy of R code that calculated the fastest growth rate from each 819 

growth curve using a “sliding window” approach where a line was fit to a 3-9 timepoint 820 

interval based on the level of noise in the entire curve (higher levels of noise triggered a 821 

larger window to smooth the fit). To develop an automated method of analyzing the ASM 822 

growth curves, which are much more noisy and irregular than the LB growth curves across 823 

the collection, we used standardized metrics for identifying problematic curves that we then 824 

also evaluated visually. Curves with a maximum OD increase of less than 0.05 were 825 

discarded as non-growing. Curves with linear fits with an R2 of less than 0.7 were discarded 826 

as non-analyzable, and a small number of outlier curves (defined as curves analyzed for 827 

growth rates of 1.5 times the mean strain growth rate) were also discarded. Examples of our 828 

analyzed curves are shown in Figure S7 and all visualizations are available upon request. 829 

 830 

“Adherence” measures 831 

The ability to form biofilm is a complex trait that is impacted by multiple factors, such as the 832 

production of polysaccharides, motility, and the ability to adhere (Hentzer et al., 2001; 833 

O’Toole and Kolter, 1998; Ryder et al., 2007). In this study, we have measured adhesion to 834 

peg-lids and estimated the ability to make aggregates – both traits have been linked with an 835 
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isolate’s ability to make biofilm (Déziel et al., 2001; Kragh et al., 2016). Because of this, we 836 

are using these two measures as an estimate of our isolates’ ability to make biofilm. 837 

However, because we are aware of the complexity of the actual biofilm-forming phenotype, 838 

we have chosen to refer to this adhesion/aggregation phenotype as “adherence” and not 839 

“biofilm formation”. 840 

 841 

Adhesion in LB. Adhesion was estimated by measuring attachment to NUNC peg lids. 842 

Isolates were re-grown in 96 well plates with 150µl medium where peg lids were used 843 

instead of the standard plate lids. The isolates were incubated for 20 hours at 37°C, after 844 

which OD600nm was measured and subsequently, the peg lids were washed in a “washing 845 

microtiter plate” with 180µl PBS to remove non-adhering cells. The peg lids were then 846 

transferred to a microtiter plate containing 160µl 0.01% crystal violet (CV) and left to stain 847 

for 15 min. The lids were then washed again three times in three individual “washing 848 

microtiter plates” with 180µl PBS to remove unbound crystal violet. To measure the 849 

adhesion, the peg lids were transferred to a microtiter plate containing 180µl 99% ethanol, 850 

causing the adhering CV stained cells to detach from the peg lid. This final plate was used 851 

for measurements using an ELISA reader, measuring the CV density at OD590nm. (Microtiter 852 

plates were bought at Fisher Scientific, NUNC Cat no. 167008, peg lids cat no. 445497)   853 

 854 

Aggregation in ASM. Aggregation in each well was first screened by visual inspection of 855 

wells during growth assays in LB and ASM and by evaluation of noise in the growth curves, 856 

resulting in a binary metric of “aggregating” versus “not aggregating”. However, to 857 

incorporate this trait in our archetype analysis, we needed to develop a continuous metric 858 

of aggregation. Based on the above manual assessment, we developed a metric based on 859 

the average noise of each strain’s growth curves. While we tested several different metrics 860 

based on curve variance, the metric that seemed to delineate isolates according to the 861 

binary aggregation measure most successfully was based on a sum of the amount of every 862 

decrease in OD that was followed by a recovery at the next time point (versus the expected 863 

increase in exponential phase and flatline in stationary phase). This value was normalized by 864 

the increase in OD across the whole growth curve, to ensure that significant, irregular 865 

swings stood out with respect to overall growth. This metric therefore specifically accounts 866 

for fluctuation - both a limited number of large fluctuations in OD630nm (often seen in ASM 867 
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during stationary phase) as well as smaller but significant fluctuations across the entire 868 

curve (i.e. sustained irregular growth). While an imperfect assay of aggregation compared to 869 

available experimental methods (Caceres et al., 2014), this high-throughput aggregation 870 

estimate showed a significant relationship with adhesion when analyzed with GAMMs 871 

(Figure 3D), supporting its potential as a measure of adherence-linked behavior. We show 872 

examples of the measurement and comparison with binary aggregation data in Figures S7-8. 873 

 874 

Protease production 875 

Protease activity was determined using 20x20 cm squared LB plates supplemented with 876 

1.5% skim milk. From a “master microtitre plate”, cells were spotted onto the square plate 877 

using a 96 well replicator. Colonies were allowed to grow for 48h at 37°C before protease 878 

activity, showing as a clearing zone in the agar, was read as presence/absence. 879 

 880 

Mucoidity 881 

Mucoidity was determined using 20x20 cm squared LB plates supplemented with 25 ug/ml 882 

ampicillin. From a “master microtitre plate”, cells were spotted onto the square plate using 883 

a 96 well replicator. Colonies were allowed to grow for 48h at 37°C before microscopy of 884 

colony morphologies using a 1.25x air Leica objective. By this visual inspection, it was 885 

determined if a colony was mucoid or non-mucoid. 886 

 887 

MIC determination of ciprofloxacin and aztreonam 888 

MICs were determined by E-tests where a suspension of each isolate (0.5 McFarland 889 

standard) was inoculated on 14 cm-diameter Mueller-Hinton agar plates (State Serum 890 

Institute, Hillerød, Denmark), where after MIC E-Test Strips were placed on the plate in 891 

accordance with the manufacturer’s instructions (Liofilchem®, Italy). The antimicrobial 892 

concentrations of the E-tests were 0.016-256µg/ml for aztreonam and 0.002-32µg/ml for 893 

ciprofloxacin. 894 

 895 

Construction of gyrA/B mutants 896 

Four P. aeruginosa PAO1 mutants carrying point mutations in gyrA and gyrB were 897 

constructed: PAO1::gyrA
G259A, PAO1::gyrA

C248T, PAO1::gyrB
C1397T , and PAO1::gyrB

G1405T. A 898 
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recombineering protocol optimized for Pseudomonas was adapted from Ricaurte et al. 899 

(2017)(Ricaurte et al., 2018). A PAO1 strain carrying a pSEVA658-ssr plasmid(Aparicio et al., 900 

2018) expressing the recombinase ssr was grown to exponential phase with 250 rpm 901 

shaking at 37°C. Bacteria were then induced with 3-methylbenzoate and electroporated 902 

with recombineering oligonucleotides. Cells were inoculated in 5 ml of glycerol-free Terrific 903 

Broth (TB) and allowed to recover overnight at 37C with shaking. CipR colonies were 904 

identified after streaking on a Cip-LB plate (0.25 mg L-1) and sent for sequencing after colony 905 

PCR. 906 

 907 

Each recombineering oligonucleotide contained 45 base pair homology regions flanking the 908 

nucleotide to be edited. Oligonucleotides were designed to bind to the lagging strand of the 909 

replichore of both genes and to introduce the mismatch in each mutation: G259A and 910 

C248T in gyrA, and C1937T and G1405T in gyrB, respectively. The recombineering 911 

nucleotides used are the following: (Rec_gyrA_G259A -  912 

G*C*ATGTAGCGCAGCGAGAACGGCTGCGCCATGCGCACGATGGTGTtGTAGACCGCGGTGTCGCC913 

GTGCGGGTGGTACTTACCGATCACG*T*C; Rec_gyrA_C248T -  914 

A*G*CGAGAACGGCTGCGCCATGCGCACGATGGTGTCGTAGACCGCGaTGTCGCCGTGCGGGTGGT915 

ACTTACCGATCACGTCGCCGACCAC*A*C; Rec_gyrB_C1397T -  916 

C*C*GATGCCACAGCCCAGGGCGGTGATCAGCGTACCGACCTCCTGGaAGGAGAGCATCTTGTCGA917 

AGCGCGCCTTTTCGACGTTGAGGAT*C*T; Rec_gyrB_G1405T 918 

C*C*TCGCGGCCGATGCCACAGCCCAGGGCGGTGATCAGCGTACCGAaCTCCTGGGAGGAGAGCAT919 

CTTGTCGAAGCGCGCCTTTTCGACG*T*T). 920 

 921 

Modeling of phenotypic evolution 922 

To identify patterns of phenotypic adaptation while limiting necessary model assumptions 923 

that might bias our predictions, we chose to implement generalized additive mixed models 924 

(GAMMs), where the assumptions are that functions are additive and the components are 925 

smooth. These models allow us to account for patient-specific effects, thereby enabling us 926 

to identify trends in phenotypic adaptation across different genetic lineages and different 927 

host environments. Furthermore, to be able to simultaneously assess multiple phenotypes 928 

of each isolate from a systems perspective, we implemented archetype analysis (AA), where 929 
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each isolate is mapped according to its similarity to extremes, or archetypes, fitted on the 930 

boundaries of the multi-dimensional phenotypic space. This modeling approach allows us to 931 

predict the number and characteristics of these archetypes and furthermore identify 932 

distinctive evolutionary trajectories that emerge from longitudinal analysis of fitted isolates 933 

for each patient.  934 

 935 

For all analyses, the time of infection is defined within each lineage as the time since the 936 

clone type of interest was first discovered in the patient in question. This is biased in the 937 

sense that the time since colonization can only be calculated from the first sequenced 938 

isolate of a patient. However, we have collected and sequenced the first isolate that has 939 

ever been cultured in the clinic for 20 out of the 39 patients. 940 

 941 

Normalization of phenotypic values were carried out the following way for both AA and 942 

GAMM: ciprofloxacin and aztreonam MICs were normalized by dividing the raw MICs with 943 

the breakpoint values from EUCAST: ciprofloxacin breakpoint value: >0.5 µg/ml, aztreonam 944 

breakpoint value: >16 µg/ml (EUCAST update 13. March 2017). This results in values above 945 

one equaling resistance and equal to or below one equaling sensitive. The response and the 946 

explanatory variables were log2 transformed to get a better model fit for ciprofloxacin MIC, 947 

aztreonam MIC, Adhesion, and Aggregation. For the AA, Adhesion, Aggregation and growth 948 

rate in ASM was further normalized (before log2 transformation) by scaling the values by 949 

the values of the laboratory strain PAO1 such that zero was equivalent to the PAO1 950 

phenotype measurement or the EUCAST MIC breakpoint. PAO1 was chosen to be the 951 

reference point of “wild type” phenotypes. 952 

 953 

Because the mutations identified in our collection are based on our previous study (Marvig 954 

et al., 2015) where mutations were called within the different clone types, we added a 955 

second filtering step to identify mutation accumulation within patients. The second filtering 956 

step removed mutations present in all isolates of a lineage (a clone type within a specific 957 

patient) from the analysis. 958 

 959 

All statistics were carried out in R (Team, 2017) using the packages mgcv (Wood, 2011; 960 

Wood et al., 2016) for the GAMM analysis and archetype (Eugster and Leisch, 2009, 2011; 961 
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Seth and Eugster, 2014) for the AA. Complementary packages used for analysis are: 962 

tidyverse (Wickham, 2017), itsadug (van Rij et al., 2017), ggthemes (Arnold, 2017), knitr (Xie, 963 

2017) and kableExtra (Zhu, 2017). We also referred to Thøgersen et al. (Thøgersen et al., 964 

2013) and Fernandez et al. (Fernandez et al., 2017) in the design of appropriate assessment 965 

methods for the final AA model. We include two R markdown documents that explains our 966 

modeling steps and further evaluation plots in detail (AA: Supplemental file 1, GAMM: 967 

Supplemental file 2), and summarize our methods below in brief. 968 

 969 

Data modeling 970 

Archetype analysis (AA). We evaluated several different model fitting approaches by varying 971 

the number and type of phenotypes modeled as well as the archetype number and fit 972 

method, using RSS-based screeplots of stepped fits of differing archetype numbers, 973 

explained sample variance (ESV), isolate distribution among archetypes, convex hull 974 

projections of paired phenotypes (all combinations), and parallel coordinate plots as metrics 975 

for choosing the best fit parameters and approach to accurately represent our data. 976 

Ultimately, we focused on 5 continuous phenotypes correlated with growth (growth rate in 977 

ASM), biofilm (adhesion and aggregation), and antibiotic resistance (aztreonam and 978 

ciprofloxacin MICs), which also were linked to relevant findings provided by the GAMM 979 

models. We used a root sum squared (RSS) versus archetype number screeplot of different 980 

fits to determine that a 6 archetype fit would produce the optimal model for this dataset.  981 

 982 

We then performed 500 simulations of a 100 iteration fit using the “robustArchetypes” 983 

method (Eugster and Leisch, 2011), which reduces the impact of data outliers in fitting the 984 

convex hull of the data. We evaluated the mean ESV and the number of isolates with an ESV 985 

greater than 80% for the best model from each simulation in this study and differences in 986 

archetype characteristics to assess convergence, ultimately selecting the model with the 987 

second highest mean ESV (90.32%) and highest number of isolates with an ESV over 80% 988 

(87.13%); this model also resembled the other 10 top models of the simulation study. The 989 

order of archetypes around the simplex plot boundary is not reliant on the similarity of 990 

archetype characteristics, so relationships between phenotypes are not always obvious. We 991 

re-ordered the archetypes in the simplex plot by growth rate and secondarily antibiotic 992 

resistance to improve clarity in the complex 6 archetype plot. This reordering was also 993 
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justified when projecting the archetypes onto a PCA plot of the phenotypes (Supplemental 994 

file 1). All simplex plots have also had the 11 isolates with an ESV < 50% removed such that 995 

we are not drawing any conclusions from these poorly fit data (they are shown via simplex 996 

plot in the supplemental markdown).  997 

 998 

Generalized Additive Mixed Models (GAMMs). For all phenotypes, GAMMs were used to 999 

identify evolutionary trends over time since first colonization. We correct for the patient 1000 

environment and inconsistent sampling over time using a smooth random factor. Models 1001 

were fitted in the following way: All continuously measured phenotypes included in the 1002 

Archetype analysis were fitted as a response variable (”predicted” or “dependent” variable 1003 

in Figure 3D) one-to-one, with both time as a “explanatory” or “independent” variable alone 1004 

and combined with each of the phenotypes to account for potential time-dependence of 1005 

the observations. Factorial/binary phenotypes were implemented as categorical functions 1006 

and continuous phenotypes as smooth functions, allowing for non-parametric fits. Normally 1007 

only one variable/phenotype of interest would be used as the predictor while other 1008 

alterable variables or factors would be used as explanatory variables to explain or predict 1009 

changes in the predictor. However, this requires a preconceived idea of a “one-way-1010 

relationship” where one variable (the predictor) is assumed to be affected by certain other 1011 

variables (the explanatory variables), but where the explanatory variables cannot be 1012 

affected by the predictor. By testing all phenotypes against each other, we avoid 1013 

assumptions regarding the specific direction of relationships between the predictor variable 1014 

and the explanatory variable. Furthermore, in using the GAMMs we prioritize accuracy of 1015 

fitting but increase our risk of overfitting as a byproduct. We sought to counteract the risk 1016 

of overfitting by the default penalization of fits inherent to the method used (Wood, 2011; 1017 

Wood et al., 2016) and by model estimation via restricted maximum likelihood (REML) 1018 

which has been found to be more robust against overfitting (Wood, 2006, 2011). When 1019 

significant relationships were identified in one-to-one models (p-value < 0.05, as based on 1020 

Wald-type tests as described in (Wood, 2006, 2013)), all significant explanatory variables 1021 

were used to build a multi-trait model for the associated predictor. If select explanatory 1022 

phenotypes were then identified as non-significant (p-value > 0.05) in the multi-trait model, 1023 

they would be removed in a reduction step. To identify whether a reduced multi-trait model 1024 

resulted in a better fit than the initial multi-trait model, a Chi-square test was carried out on 1025 
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the models using the compareML function of the R package itsadug (van Rij et al., 2017) 1026 

(Figure 3D). The specific models and additional information can be found in Supplemental 1027 

file 2.  1028 

 1029 

In demonstration of the utility of this approach, the multi-trait models of our 5 primary 1030 

predictor phenotypes show that at least one explanatory phenotype has a statistically 1031 

significant impact on the predictor phenotype. For all of the predictor phenotypes, multiple 1032 

explanatory traits preserved significant impacts after model reduction steps (Figure 3D and 1033 

Supplemental file 2). All mentions of significant relationships or correlations in the main text 1034 

are obtained from the GAMM analyses with Wald-type test statistics presenting p-values < 1035 

0.01, unless otherwise stated. For information on deviance explained, R^2, and degrees of 1036 

freedom for the individual models/variables, we refer to the Supplemental file 2. 1037 

 1038 

SUPPLEMENTARY INFORMATION 1039 

Supplemental File 1. Construction and assessment of the archetype model. 1040 

Supplemental File 2. Construction and assessment of the generalized additive mixed 1041 

models. 1042 

Supplemental Information. 1043 

Figure S1. Hypermutators versus normomutators 1044 

Figure S2. mucA and algU mutants 1045 

Figure S3. mexZ mutants and drug efflux pumps 1046 

Figure S4. Specific mutations in gyrA/B by patient and adhesion 1047 

Figure S5. Adhesion of gyrA/B mutants (PAO1) 1048 

Figure S6. Generation time of gyrA/B mutants (PAO1) 1049 

Figure S7. Example growth curves 1050 

Figure S8. Development of an aggregation metric 1051 

 1052 
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