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One Sentence Summary: Dynamics of the upper respiratory tract microbiome during 30 

influenza A virus infection 31 

 32 

Abstract: 33 

Infection with influenza can be aggravated by bacterial co-infections, which often results in 34 

disease exacerbation because of host responses and cellular damage. The native upper respiratory 35 

tract (URT) microbiome likely plays a role, yet the effects of influenza infection on the URT 36 

microbiome are largely unknown. We performed a longitudinal study to assess the temporal 37 

dynamics of the URT microbiomes of uninfected and influenza virus-infected humans and 38 

ferrets. Uninfected human patients and ferret URT microbiomes had stable “heathy ecostate” 39 

communities both within and between individuals. In contrast, infected patients and ferrets 40 
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exhibited large changes in bacterial community composition over time and between individuals. 41 

The “unhealthy” ecostates of infected individuals progressed towards the “healthy ecostate” over 42 

time, coinciding with viral clearance and recovery. Blooms of Pseudomonas were a statistically 43 

associated constant in the disturbed microbiomes of infected individuals. The dynamic and 44 

resilient nature of the microbiome during influenza virus infection in multiple hosts provides a 45 

compelling rationale for the maintenance of the microbiome homeostasis as a potential 46 

therapeutic target to prevent IAV associated bacterial co-infections.  47 

 48 

Keywords: Influenza A virus, resilience, biodiversity, microbiome, upper respiratory tract, 49 

H1N1, H3N2, ecostate, humans, ferrets 50 

Main Text: 51 

Introduction 52 

Influenza A virus (IAV) is a highly infectious upper respiratory tract (URT) disease in humans 53 

and animals caused by a negative-sense segmented RNA virus. It is recognized as a major public 54 

health concern resulting yearly in significant disease and economic burden. Frequent nucleotide 55 

substitutions lead to changes on the hemagglutinin and neuraminidase glycoproteins on the 56 

surface of IAV particles (also known as antigenic drift) that contribute to the need for continuous 57 

vaccine updates. This evolutionary arms race between vaccine design and viral mutation 58 

contributes to annual influenza epidemics worldwide, which on average results in 3 to 5 million 59 

cases of severe illness and up to 291,000 to 646,000 deaths annually (1). The modular 60 

architecture of the segmented IAV genome allows for genetic re-assortment (antigenic shift) with 61 

other divergent IAVs, resulting in the sporadic emergence of novel viruses capable of causing 62 

large epidemics or pandemics. Circulation of a new IAV in the naïve human population has 63 
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caused pandemics in the past resulting in significant morbidity and mortality, the most notable in 64 

1918 and 1919, when the Spanish flu killed approximately 20 to 50 million people worldwide 65 

(2). Retrospective analyses of autopsy specimens from the 1918 pandemic revealed the 66 

prevalence of secondary superinfection caused by URT bacteria (3-5). However, the role of 67 

bacterial co-infection in disease prognosis is not only confined to pandemics; bacterial and virus 68 

co-infection during seasonal influenza epidemics are commonly associated with increase hospital 69 

admissions, severe disease and deaths (6, 7). 70 

 71 

Although the microbiome of non-diseased individuals is relatively stable, IAV infection has been 72 

shown to increase the diversity of bacterial taxa that are present in the URT (8). Specifically, 73 

IAV can cause changes in the relative abundances of Staphylococcus and Bacteroides genera (9), 74 

as well as Haemophilus, Fusobacteria, and other taxa (10). Temporary disturbances to the 75 

microbiome due to the changes in the local epithelia during acute or chronic conditions has also 76 

been reported as a predisposing factor for infections (11-14). The observed diversity in the 77 

human URT microbiome, together with its role in immunity and susceptibility to pathogens has 78 

been described previously (11, 15, 16). Other studies have reported that the URT microbiome 79 

may also play a beneficial role in modulating the inflammatory response induced during IAV 80 

infection (16, 17). In addition, the intestinal microbiome composition has been shown to 81 

positively regulate the toll-like receptor 7 signaling pathway following infection with IAV (18). 82 

Nonetheless, the exact mechanisms by which prior infection with IAV increase susceptibility to a 83 

secondary bacterial infection have not been determined. Importantly, the effect of IAV 84 

replication and induction of innate immune response on the composition of the human or animal 85 

URT microbiome remains to be elucidated and analyzed in depth on a community wide scale. 86 
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Humans and ferrets share similar lung physiology and both are known to be susceptible and 87 

transmit the same strains of the IAVs (19, 20). This has made the ferrets an ideal model to study 88 

the dynamics of IAV infection in URT. However, it is unknown whether there is similarity 89 

between the ferret and human URT microbiome in terms of composition and its temporal 90 

dynamics and modulation upon IAV infection. In this study, we examined the longitudinal 91 

diversity of the URT microbiome of influenza infected and uninfected human cohorts, as well as 92 

control uninfected and experimentally infected ferrets. These experiments revealed a strong 93 

consistency in the microbiome composition and dynamics between the two host systems, 94 

demonstrating that experimentally infected ferrets recapitulated closely the modulation of the 95 

microbiome observed in naturally infected humans. Our results suggest that microbiome 96 

disturbance and resilience dynamics may be critical to addressing the bacterial co-infections 97 

associated with influenza-derived morbidity. 98 

 99 

Results 100 

Effects of influenza on the URT microbiome dynamics in human clinical samples 101 

In order to determine if the human microbiome structure is modulated by the IAV infection, we 102 

established a human cohort study and obtained nasopharyngeal swabs at multiple time points 103 

after the initial influenza-prompted hospital visits (days 1 to 22) from 30 human subjects 104 

recruited during 2011 and 2012. As healthy controls, we included nasal swab samples taken at 6 105 

time points (days 1, 2, 3, 5, 7 and 28) from 22 healthy human subjects free of any respiratory 106 

infections (Table S1). Our goal was to assess and compare the temporal microbiome biodiversity 107 

in response to ecological disturbances of the URT caused by viral infection. 108 
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The dynamics and relative abundances of bacteria in the URT microbiome were examined by 109 

pyrosequencing of the V1-V3 region of the 16S rRNA, which yielded a total of 2.3 million 110 

sequences, which clustered into 707 operational taxonomic units (OTUs) (Table 1). The count 111 

abundance data for the OTUs was normalized to account for the sampling process and the library 112 

size, as confounding factors for the beta-diversity analyses. Additionally, OTUs with counts less 113 

than 5 were removed to avoid inflating the importance of any contaminant sequences that might 114 

be present in the data. This resulted in over 90% of the reads mapped back to the OTUs (Table 115 

1). Metric multidimensional scaling of the beta diversity explains 38.5% of the variability across 116 

the first three components (Fig. 1). The plot shows that the IAV infection status has a strong 117 

influence on the ordination of the samples, as measured by the Bray-Curtis metric (R=0.649, p-118 

value < 0.001). The uninfected and infected communities cluster away from each other (Fig. 1). 119 

Of interest, the microbiome for the IAV-infected cohort is more dynamic than that of the 120 

uninfected IAV-free cohort, validating the “Anna Karenina” principle of microbiomes, which 121 

refers to the notion that there is much more variability in the microbial communities of infected 122 

(dysbiotic) individuals than in healthy individuals. The nasopharyngeal samples from infected 123 

humans demonstrated higher diversity between infection states than within them (Fig. S1). The t-124 

statistic for the “All within infection” versus “All between infection” for the human data set was 125 

-150.82 and the p-value was also significant (Table S2), which indicates that IAV infection in 126 

humans results in the clustering of microbiomes according to infection status. 127 

 128 

Perturbation and resilience of the human URT microbiome is not dependent on the clinical 129 

parameters or influenza virus subtype 130 
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To complement the qualitative overview of the IAV-infected data points, we integrated 131 

additional clinical metadata including gender, antibiotic usage, age and influenza subtype; and 132 

included details of the amplification of IAV genomes from these samples to more accurately 133 

classify these data points as either positive or unknown for the presence of virus. Positive and 134 

unknown infected microbiomes were tested to determine if they were distinct enough to cluster 135 

separately based on their beta diversity. Analyses of the beta diversity metrics using PCoA, 136 

focusing just on the IAV-infected samples, did not allow deriving any conclusions from this 137 

analysis alone. In addition, the grouping of infected samples based on gender did not show any 138 

significant association (ANOSIM R=0.03124, p-value <0.023), implying that there was no 139 

significant effect of gender on the clustering of the samples (Table S3). When we used distances 140 

between the samples as the response variable (ADONIS df 1, R2 =0.0209), only 2.1% of the 141 

variation in the distances was explained when the gender of the patients was accounted for as a 142 

predictor of the model. Hence, sex could not be correlated with the microbiome of the infected 143 

human samples. Age and effects of post visit antibiotic treatment on the microbiome trends were 144 

also examined. No significant association could be observed between post visit antibiotic usage 145 

and clustering of the infected human samples in two statistical tests (ANOSIM R=-0.046, p-146 

value < 0.732, and ADONIS df 1, R2 =0.012), which was surprising. However, the age of the 147 

patients seemed to have some influence on the sample grouping when all 26 categorical values 148 

were taken into consideration (ANOSIM R=0.47, p-value < 0.001). The statistical analyses show 149 

that while the p-value was significant, the clustering on the basis of age was only moderately 150 

strong (ADONIS R2 = 0.409, df 25; Table S3). Since there was no indication of this effect among 151 

IAV-infected patients in the ordination plots, it is possible that the significant p-value could be 152 

attributed to the high number of samples or the differences in dispersion among the different 153 
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sample groupings, emphasizing the importance of considering in the analysis both the p-value 154 

and the effect size. 155 

 156 

Pseudomonas blooms during viral infection in the human URT 157 

We examined taxonomic profiles for all the infected and healthy patients across all the time 158 

points using the taxa abundance values for the top ten most prevalent taxa at the order level (Fig. 159 

2). All other taxa were pooled into an additional taxon named “Other”. Pseudomonas was the 160 

most abundant taxonomic group in all samples from influenza-infected individuals (Fig. 2, and 161 

Fig. S2 and S3). Less abundant phyla included Bacteroidetes, Firmicutes, Actinobacteria and 162 

some other families of Proteobacteria, like Rhodanobactereceae and Pasteurellaceae (c. 163 

Gammaproteobacteria) and Brucellaceae of the Rhizobiales order (c. Alphaproteobacteria). 164 

Pseudomonas was also clearly identified as the predominant taxon when temporal dynamic 165 

analyses were done on individuals independently (Fig. S4). As for the uninfected subjects, 166 

Actinobacteria was the most dominant taxon and Pseudomonas was the least abundant 167 

taxonomic group present, also seen when individual subjects where analyzed (Fig. S4). Other 168 

less abundant phyla included Verrucomicrobia and within the Proteobacteria, the 169 

Alphaproteobacteria and Epsilonproteobacteria classes. 170 

The human URT microbiome is distributed into distinct ecostates due to IAV infection 171 

Due to the dynamic nature of the human URT microbiome during IAV infection, we 172 

hypothesized that infection perturbs the microbiome structure resulting in distinct signature 173 

microbiomes that differentiate infected from uninfected individuals. Thus, we used the Infinite 174 

Dirichlet-multinomial Mixture Model (iDMM) (21), which is an extension of the Dirichlet-175 

multinomial mixture model (DMM) (22) that helps understand and interpret taxon abundance 176 
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data by adding statistical validation if a taxa is associated with a given case-control condition. 177 

This is an un-supervised clustering method that applies Bayesian statistics to quantitatively 178 

assess the data and accurately capture the features that are present. Essentially, given a set of 179 

subsampled distributions, the iDMM model predicts the original number of full-size distributions 180 

together with their composition. The nonparametric nature of the iDMM model makes it ideal for 181 

understanding the complex ecological data in this study, where the original number of the 182 

sampled communities (known as ecostates) is unknown. 183 

The iDMM model was run over 2000 iterations over all data points (33 patients at multiple time 184 

points), which collapsed the data into a total of four ecostates (Table 2). Plotting the mean of the 185 

likelihood ratio at each iteration showed that, 25 iterations into the analysis, the maximum 186 

likelihood ratio converges for the model. One of the four ecostates included all 127 uninfected 187 

data points (or the “healthy” ecostate) while the 146 infected data points were distributed across 188 

the three other ecostates (or “unhealthy” ecostates). Interestingly, a few patients moved from the 189 

“unhealthy” ecostates during acute influenza infection to the “healthy” ecostate in the later time 190 

points. This suggests that the human microbiome exhibits resilience but potentially a weak 191 

elasticity; however, this could be due to the lack of a precise temporal control of the time of 192 

infection. 193 

We also identified a diagnostic OTU for each of these ecostates, which is the OTU with the 194 

highest posterior predictive probability in the ecostate and therefore drives the clustering. The 195 

iDMM analysis predicted the diagnostic OTU for the healthy ecostate to be Otu000008 which 196 

belongs to the Flavobacteria class (Cloacibacterium), with a posterior predictive probability of 197 

0.08, followed by Otu000010 (Corynebacterium_1) and Otu000013 (Comamonadaceae), 198 

belonging to the class Actinobacteria and Betaproteobacteria, respectively (Table 2). For the 199 
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“unhealthy” ecostates, Otu000003, Otu000004 and Otu000002 were diagnostic for Ecostate 1, 2 200 

and 3 respectively (Table 2). Ecostate 1 had the largest number of infected data points (114), 201 

followed by Ecostate 3 (20) and Ecostate 2 (9). Otu000003 and Otu000002 belong to the 202 

Pseudomonadaceae family (the latter being an unclassified Pseudomonadaceae), with relatively 203 

high posterior probabilities associated with each of them (Table 2). Otu000004 belonged to the 204 

Actinobacteria class and was the diagnostic OTU for Ecostate 2 with 9 infected data points. 205 

Remarkably, the diagnostic OTUs for all four ecostates for the human samples are also among 206 

the first ten most abundant OTUs for the data.  207 

A random forest analysis was also used to identify predictive features in the data. The method we 208 

developed iterates through unique random forest models (each seeded with a different random 209 

state) and attempts to fit the model to a random subset of the data with five samples removed 210 

from the training set, (see Materials and Methods). If the model could accurately predict all five 211 

of the omitted samples during the cross-validation step, then its feature importance vector (mean 212 

decrease gini index) including weights for every OTU’s predictive capacity was collected. The 213 

results from the random forest classification aligned with our diagnostic iDMM OTU prediction 214 

in the human samples (Table S4). The analysis showed Otu000002 (unclassified 215 

Pseudomonadales) to be the most predictive of the IAV-infected samples, followed by 216 

Otu000001 (Rhizobiales) and Otu000003 (Pseudomonas) with a maximum accuracy of 71%. 217 

When we examined the taxonomy of Otu000001 in detail, it was classified with 100% 218 

confidence down to Genus Ochrobactrum, at which point the read length is unable to 219 

differentiate the species any further. Nevertheless, the actual OTU sequence is 100% identical to 220 

Ochrobactum anthropi, an opportunistic human pathogen (23-25). Similarly, the in depth 221 

analyzes of Otu000006 identified the taxonomy of this OTU as uncultivated lineages of 222 
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Rhodanobacter, which have also been previously associated with human respiratory tract 223 

microbiomes (26). Comparison with our negative controls confirmed that these were not 224 

contaminants and supported the notion that Ochrobactrum was also diagnostic for the infection 225 

state in humans, which is likely to be consistent with the presence of O. anthropii or similar 226 

opportunistic species. 227 

 228 

Influenza virus infection modulates the microbiome structure of the URT in ferrets 229 

We hypothesized that IAV infection in ferrets will result in the clustering of microbiomes 230 

according to infection status, as observed during IAV infection in humans. Therefore, using the 231 

well-established ferret model of IAV infection, we designed a longitudinal study resembling the 232 

clinical specimens obtained from human patients to obtain nasal wash samples from infected 233 

animals. We collect nasal washes from 7 uninfected ferrets and 7 ferrets infected with the 234 

A/Netherlands/602/2009 (H1N1) pandemic strain, at 0, 1, 3, 5, 7 and 14 days post infection 235 

(dpi). The dynamics and relative abundances of bacteria in the URT microbiome were examined 236 

by pyrosequencing of the V1-V3 region of the 16S rRNA using similar thresholds for length and 237 

expected error as were chosen for the human data. A total of 649,440 reads clustered into 259 238 

(OTUs) with 79% of reads mapping (Table 1). As before, the count abundance data for the OTUs 239 

was normalized and the low abundance taxa were filtered out from the count data. Principal 240 

Coordinates Analysis (PCoA) of beta diversity between the healthy and IAV infected groups 241 

demonstrated variability consistent with the virus perturbing and modulating the microbiome 242 

structure (Fig. 3). Infection status strongly influenced the ordination of the samples as measured 243 

by the Bray-Curtis beta-diversity metric (R=0.503, p-value < 0.001). The IAV-negative and 244 

IAV-positive ferret microbial communities formed discrete clusters, while samples from the IAV 245 
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infected animals showed divergence from each other (Fig. 3). By the final time point, day 14, the 246 

microbiome of infected ferrets (light blue) was more similar to the Day 0 samples (lavender) and 247 

those of the uninfected controls (dark blue). 248 

 249 

Quantitative metrics of diversity were used to compare the microbiomes of influenza infected 250 

and control ferrets. Beta diversity distance analyses (Fig. S5) demonstrated that ferret 251 

microbiomes had higher diversity between infection states than within them. Student’s two 252 

sample two-sided t-tests confirmed that the diversity between the two states (infected and 253 

uninfected) was statistically significant, with the microbiomes of infected ferrets being more 254 

diverse (Table S5). The t-statistic for the “All within infection” versus “All between infection” 255 

was -29.1592 corresponding to a Bonferroni-corrected parametric p-value of 1.90e-166 (Table 256 

S5). The PCoA and statistical analyses showed that infected ferrets have a far more dynamic 257 

URT microbiome than that of the uninfected group. We note that the “healthy” baseline 258 

experiments were not conducted at the same time and some divergence of the microbiomes was 259 

expected given the high level of personalization, and that ferrets are outbred. Remarkably, 4/7 260 

T=0 time points and 7/7 t=14 time points converged to the “healthy” microbiome from an 261 

independent experiment. Overall, the quantitative examination revealed that the range for 262 

infection-associated beta diversity was much lower in the ferret samples than it was from human 263 

clinical samples. 264 

 265 

IAV infection induces temporal changes in the structure of the ferret URT microbiome 266 

To assess the correlation of clinical symptoms overtime during acute IAV infection, we 267 

monitored the body weight of all ferrets from 0 to 14 dpi, which demonstrated a clear weight loss 268 
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among the infected animals (Fig. 4A). As expected, the maximum weight loss coincided with 269 

peak IAV titer from 3 to 5 dpi, and recovery in body weight correlated with the lack of 270 

detectable virus after day 7 (Fig. 4B). To better visualize the temporal trajectory of the ferret 271 

microbiome, the community composition for one representative influenza-infected and one 272 

uninfected ferret (ferret_595 and ferret_592, respectively) were examined with regards to their 273 

taxonomic profiles across six different time points (Fig. 4C and 4D). At the order level, the IAV-274 

infected ferrets exhibited Pseudomonadales abundance at days 5 and 7 dpi (Fig. 4C-F), which 275 

correlated with maximal weight loss and peak viral titers (Fig. 4A and B), suggesting the direct 276 

or indirect influence of the infection on the microbiome. A few of the less-abundant phyla 277 

included Actinobacteria and Firmicutes (Fig. S6). The abundance of Pseudomonas decreased 278 

over time in the infected ferrets, reaching the basal abundance found in healthy ferrets 14 dpi. 279 

For the uninfected ferrets, the microbiomes were more stable and Clostridiales was the most 280 

abundant taxonomic group, followed by Lactobacillales (light blue). Pseudomonadales were 281 

among the least abundant taxonomic group in the uninfected controls (Fig. 4D). This was also 282 

observed when we analyzed the microbiome abundance of each individual animal in both 283 

infected and uninfected groups (Fig. S7). These results demonstrate that IAV infection induces a 284 

dynamic modulation of the microbiome structure in the URT of ferrets, which correlated with 285 

viral replication and pathogenesis. However, our data also suggests that the basal levels could be 286 

reestablished upon viral clearance, as observed in some human samples. 287 

 288 

IAV infection differentiates the ferret URT microbiome structure into defined ecostates 289 

Since the timing of infection was controlled in the ferret experiment, we hypothesized that upon 290 

infection the microbiome structure would be ordered into more defined ecostates for the infected 291 
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and uninfected animals. Hence, we run the iDMM model over 1000 iterations, which collapsed 292 

the data into two ecostates. The mean of the likelihood ratio at each iteration converged 70 293 

iterations into the analysis, splitting into two ecostates until the last iteration. Of interest, one of 294 

the two ecostates was comprised of all the uninfected data points (or the “healthy” ecostate) 295 

while the other contained most of the influenza infected data points (the “unhealthy” ecostate, 296 

Table 2). There were notable exceptions; despite the perturbation caused by the infection, all Day 297 

14 samples in the infected cohort moved from the “unhealthy” ecostate to the “healthy” ecostate, 298 

which is also shown in the ordination plot (Fig. 3). The healthy ecostate also contained a few of 299 

the earlier data points (Day 0 and Day 1) of the influenza-infected cohort, indicating a temporal 300 

lag in changes to the ferret microbiome at those time points when the IAV titer was submaximal 301 

(Fig. 4B). 302 

The iDMM analysis for ferrets predicted the diagnostic OTU for the “unhealthy” ecostate to be 303 

Otu000004 that belonged to the Pseudomonadales order, with a posterior predictive probability 304 

of 0.11 (Table 3), followed by Otu000003 with the next highest predictive probability of 0.08, 305 

belonging more specifically to the Pseudomonas genus (Fig. S6). This is consistent with the 306 

qualitative taxonomic profiling (Fig. 4). For the “healthy” ecostate, Otu000001, which belongs to 307 

the Clostridia family, was the diagnostic OTU with a posterior predictive probability of 0.19 308 

(Table 3). The posterior probabilities for each taxon were calculated within each sample by 309 

observing the fraction of simulated samples with more counts than the observed value. The 310 

probabilities associated with the diagnostic OTUs can be thought in terms of being relative to all 311 

taxa present. Similar to the human data, the diagnostic OTUs for both ecostates are among the 312 

ten most abundant OTUs for the data (Fig. S6). Remarkably, this was also confirmed when  the 313 

microbiome for all ferrets from both infected and uninfected groups was analyzed individually  314 
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(Fig. S7), which indicates that Pseudomonadales are not only predictive of the unhealthy 315 

ecostate but also undergo the greatest temporal dynamic change during IAV infection. This was 316 

confirmed when alpha diversity analyses were conducted, which showed a drastic decrease in 317 

diversity by day 7 (Fig. S8). The results from the random forest analysis aligned well with the 318 

iDMM diagnostic OTU prediction in that Otu000004 (Pseudomonadales) was the most 319 

predictive attribute for the samples from IAV-infected ferrets, followed by Otu000028 320 

(Enterobacteriaceae) and Otu000017 (Bacillales), with a maximum accuracy of 96% (Table S6). 321 

Altogether, these data indicates that IAV infection results in a nasal bloom of multiple 322 

Pseudomonadales in the ferrets, displacing the Clostridia associated with the “healthy” and 323 

stable ecostate.  324 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/325324doi: bioRxiv preprint 

https://doi.org/10.1101/325324


16 
 

Discussion 325 

This longitudinal study describes taxonomic microbiome population dynamics in the upper 326 

respiratory tract of humans and ferrets during IAV infection. Given the unequivocal association 327 

between viral and bacterial co-infection and influenza disease severity, there is a pressing need to 328 

better understand how perturbation of the host microbiome correlates with viral infections that 329 

facilitate opportunistic co-infections. The nature of the 16S sequencing approach taken, that is a 330 

loci-based population survey, means that we can address taxonomy-centric ecological principles 331 

of disturbance and resilience (27, 28) in the URT microbiome. Our results strongly suggest that 332 

the core URT microbiome is perturbed by IAV infection via direct and uncharacterized indirect 333 

processes, which may in turn might facilitate co-infections with bacterial pathogens causing 334 

increased hospitalizations and morbidity associated with IAV infection. Additionally, the results 335 

provide a clear approach for the design of future studies explicitly examining the mechanistic 336 

links between IAV and bacterial co-infection, along with the development of therapeutic 337 

treatments aimed at the microbiome as a community.  338 

Without disturbance or perturbation, the URT microbiome was stable in both uninfected humans 339 

and ferrets. IAV does not directly infect any microbiome constituents, yet infection disturbs the 340 

healthy-state microbiome in both hosts in a statistically robust manner. The microbiomes of 341 

infected (unhealthy) individuals or animals were quite different from each other (Fig. 4, 2 and 342 

Fig. S2, S3, S5 and S6). However, in both hosts, unhealthy microbiomes were divergent from the 343 

healthy microbiomes and numerous community assemblies were possible in the unhealthy state. 344 

This is a clear demonstration of the Anna Karenina principle (29), restated as “all healthy 345 

microbiomes are the same, while unhealthy microbiomes are unique.” This high diversity of 346 

unhealthy microbiomes during early stages of acute infection is consistent with earlier studies 347 
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(8), but here we demonstrate specifically that it can occur as a consequence of an indirect 348 

disturbance such as IAV infection. We propose that the disturbance of the healthy URT 349 

microbiome creates transient ecological niches for opportunistic bacterial pathogens. How viral 350 

infection induces a disturbance in the microbiome requires further assessment. Nevertheless, the 351 

host antiviral responses such as the induction of interferon during IAV infection, could 352 

contribute to the perturbation of the microbiome in a dynamic manner, though this requires host 353 

and microbiome metatranscriptomics or metaproteomics measurements in controlled 354 

experiments focused at the onset of infection. Nevertheless, maximum disturbance correlated 355 

with maximum viral loads and weight loss in the ferret model, which suggests a close 356 

relationship between active infection, disease and disturbance of the microbiome, with kinetics 357 

that are similar to the antiviral response induced during IAV infection (30). 358 

The sole statistical exception to the high community diversity of infected microbiomes was the 359 

increased relative abundance of Pseudomonadales, regardless of age, sex, antibiotic treatment, or 360 

even host organism. Oddly enough in humans, no significant influence of the host type (age and 361 

sex) or behavior (antibiotic usage) was observed on the temporal nature of the microbiome 362 

elasticity, and more statistical power would be needed to draw any further robust associations 363 

from the data. Yet, the “bloom” of Pseudomonadales is consistent with previous reports in 364 

H1N1-infected patients (9, 15, 31, 32). In our study, Pseudomonadales are present in relatively 365 

low proportions in the healthy microbiome of these host organisms.  Therefore, their “bloom” 366 

might be due to a more hostile environment for the other taxa or perhaps a more hospitable 367 

environment for the Pseudomonadales, making this an excellent candidate for future strain 368 

isolation, genome sequencing, and transcriptional profiling. The increased abundance of 369 

Pseudomonadales and the decreased relative abundance of Clostridiales and Actinobacteria in 370 
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the infected cohorts suggest a potential use for probiotic treatments capable of modulating the 371 

microbiome back into the healthy ecostate (33). Such a treatment would be homologous to those 372 

proposed for perturbing or restoring the gut microbiome (34). Understanding how and why 373 

Pseudomonadales succeed after disturbance will provide valuable information for conducting 374 

future microbiome centric URT studies in a controlled setting. It should be noted that the 375 

blooming Pseudomonads are not P. aeruginosa, instead a variety of other related species within 376 

the genera, and understanding their functional potential and role requires shotgun metagenomics 377 

analyses for more detailed phylogenetic and functional profiling. 378 

In addition, in humans secondary Pseudomonas infections have been extensively described 379 

before, and Pseudomonas infections have been specifically linked to nosocomial infections as a 380 

result respiratory support treatments in hospital settings (35-39). It is currently unknown whether 381 

infection with other respiratory viruses can also induce the modulation of the URT microbiome, 382 

however; since severe viral infections often require respiratory support, including intubation, it is 383 

likely that co-infection with pathogens such as the Pseudomonadales could actually be favored 384 

due to previous perturbations of the microbiome. Hence, additional associative studies to 385 

elucidate factors that modulate the temporal change of the microbiome structure could also aid in 386 

understanding the factors that promote or support secondary bacterial colonization during severe 387 

respiratory viral infections. 388 

In the ferret model, there is a clear demonstration of ecological resilience in the URT 389 

microbiome; namely a return to the original community after disturbance, a phenomenon also 390 

observed, albeit less clearly, in the human samples, which had an unknown and likely more 391 

diverse ecostate prior to infection. Similar observations have been reported in the human gut 392 

microbiome after the massive disturbance associated with antibiotic treatment (27), though our 393 
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findings expands it to the URT and the indirect effects of the IAV infection. The controlled 394 

experiments with ferrets resulted in near complete recovery. Human URT microbiomes do not 395 

unequivocally show a return to the health state, but in several patients, the microbiome returned 396 

to the healthy ecostate. Although it is tempting to suggest that the ferret microbiome might have 397 

greater elasticity (i.e. less time required for demonstration of resilience), there are multiple 398 

potential reasons for the discrepancy between ferrets and humans. Considering metabolic rate 399 

relative to organism size, the ferret may recover at a more rapid rate simply due to a higher 400 

metabolism. More pertinently, the human cohort has an undetermined infection date, were 401 

infected by different viral strains (and viral variants as determined by whole IAV genome 402 

sequences) and had a selection bias towards phenotypically responsive patients (e.g. 403 

symptomatic hospitalized patients), where zero time (Day 0) was the first hospital visit. Beyond 404 

the potential differences in absolute temporal trends in microbiome resilience and elasticity, the 405 

human and ferret microbiomes share similar trends at the ecosystem and individual taxon level 406 

that warrant further experimentation. The results here provide an experimental baseline for 407 

examining both predictive and therapeutic intervention focused experiments in the ferret model 408 

system. For example, the presented hypothesis that IAV driven microbiome disturbance 409 

increases the propensity for bacterial pathogen co-infection can be robustly tested by bi-partite 410 

exposures to viral, and then bacterial pathogens. The effects of lifestyle (diet, smoking, exercise) 411 

and abiotic influences (humidity, temperature) on the microbiome and its resilience should also 412 

be examined, particularly with regards to temporal dynamics of microbiome disturbance and 413 

recovery. Potential therapeutic approaches involve thwarting the associated threat of 414 

opportunistic bacterial pathogens or interventions focused on the bloom of Pseudomonas, where 415 

probiotic treatments could be explored to maintain the homeostasis as seen in the healthy 416 
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individuals. Our results are especially relevant in the context of secondary bacterial infections 417 

following primary infection with IAV (40). Multiple studies, including this one, have now shown 418 

that a subset of the taxa that are most frequently associated with secondary infections have 419 

increased relative abundance during IAV infection. It is possible that such outcomes could be 420 

reduced by modulating the host immune response during IAV infection (17). Reducing the high 421 

morbidity and mortality rates associated with such secondary infections would improve quality 422 

of life and longevity while simultaneously reducing healthcare costs (35, 41, 42). 423 

 424 

Materials and Methods 425 

Human sample collection and study design 426 

Patient clinical–epidemiological data, along with nasopharyngeal swabs were collected after 427 

informed written consent was obtained under protocol 11-116, reviewed and approved by the 428 

Scientific Ethics Committee of the School of Medicine at Pontificia Universidad Catolica de 429 

Chile (PUC) before the start of sample collection. Between July 2011 and November 2012, a 430 

total of 146 nasopharyngeal swabs samples were collected from 30 hospitalized patients in 431 

Santiago, Chile, diagnosed with influenza-like illness (ILI). Of the 30 patients in the study, 28 432 

were confirmed and subtyped as H1N1pdm09 or H3N2 Influenza through RT-PCR by Clinical 433 

Virology Laboratory at PUC. The remaining 2 patients could not be confirmed as influenza 434 

positive by qRT-PCR, RT-PCR and/or the hemagglutination inhibition (HI) assay, but still 435 

displayed the perturbation in their microbiome so they were included in the analyses. Between 436 

one and six samples from the acute phase of infection were taken from each patient, together 437 

with a sample up to 22 days post diagnosis (convalescence phase or healthy baseline) from most 438 

of individuals. Control samples from 22 healthy individuals, confirmed as negative against 439 
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influenza A virus and 13 other common respiratory viruses, were taken with the same criteria in 440 

March to June of 2014. Epidemiological history, signs and symptoms, other diagnostics and 441 

treatments of each patient were also collected during hospitalization as detailed in Table S3. 442 

Furthermore, 96.4% of patients received oseltamivir antiviral treatment and 89.3% received 443 

antibiotics originating from the families of the fluoroquinolones (levofloxacine, morifloxacine or 444 

ciprofloxacine), 3rd generation cephalosporins (ceftriaxone or cefepime), carbapenems 445 

(meropenem or imipenem), metrodinazole, cotrimoxazole or vancomycin. These treatments 446 

where supplied in a combination of 5 (4% of patients), 4 (8%), 3 (12%), 2 (40%) or one (36%) 447 

antibiotics in a complete treatment (at least seven days) or less. Severe infection criteria were 448 

established in accordance with the hospitalization due to influenza and/or derivation to Critical 449 

Care Unit (which involves oxygen support or mechanical ventilation and/or vasoactive drug 450 

administration) after symptoms onset. The microbiome data analyzed were obtained from the 451 

nasopharyngeal swabs of 33 infected subjects (14 male and 19 female), ages ranging from one 452 

year to 76 years, for a total of 146 samples. The naming convention of influenza A viruses 453 

detected from patients are as follows: A/Santiago/pxdy/2011 or A/Santiago/pxdy/2012 (p=patient 454 

and d=day). The negative controls analyzed in the study were nasopharyngeal swabs taken from 455 

22 healthy patients (10 males and 12 females), most taken at all 6 time points (1, 2, 3, 5, 8 and 28 456 

dpi), for a total of 127 samples, which were negative for influenza and other respiratory 457 

infections.  458 

 459 

Ferret infection and sample collection 460 

The animal experiments described here were performed under protocols approved by the Icahn 461 

School of Medicine at Mount Sinai Institutional Animal Care and Use Committee, adhering 462 
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strictly to the NIH Guide for the Care and Use of Laboratory Animals. Six months old female 463 

ferrets (Mustela putorious furo) were confirmed to be seronegative against circulating H1N1, 464 

H3N2 and B influenza viruses before they purchased from Triple F Farms. Throughout the 465 

experiment the animals were housed individually in PlasLabs poultry incubators with access to 466 

food and water ad libitum. All infections and nasal wash samples were done on ferrets 467 

anesthetized with ketamine (25 mg/kg) and xylazine (2mg/kg) intramuscularly. A detailed time 468 

point study was conducted in ferrets infected with 1x106 plaque forming units diluted in a final 469 

volume of 5.0 ml of sterile PBS per animal of the A/Netherlands/602/2009 H1N1 pandemic 470 

strain through intranasal inoculation. Control animals were mock infected only with 0.5 ml of 471 

sterile PBS. Then nasal wash samples were taken from the 7 uninfected and 7 infected animals. 472 

To study the effect of IAV infection on the URT microbiome, samples were taken at 6 different 473 

timepoints: on day 0 (1 hr post inoculation) and then on days 1, 3, 5, 7 and 14 post infection 474 

(dpi). Body weights were obtained for 14 consecutive days, and viral titers were determined by 475 

plaque assay in MDCK cells as previously described (43) for the first 7 dpi. 476 

 477 

 478 

Sample processing and sequence analyses 479 

All bacterial genomic DNA (gDNA) extractions were performed using the Qiagen All Prep kit 480 

and were subjected to 16S amplification using the HMP 16S sequencing protocol and the 481 

amplicons were sequenced using the Roche 454 Titanium pipeline (44). Appropriate positive and 482 

negative controls from amplification were also included. The V1-V3 hypervariable regions were 483 

amplified for 16S profiling (forward primer: 27F 5’- AGAGTTTGATCCTGGCTCAG-3’ and 484 

reverse primer: 534R 5’- ATTACCGCGGCTGCTGG-3’) of the 16S ribosomal RNA gene.  485 
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 486 

Data Analysis  487 

Reads were de-multiplexed according to barcodes followed by trimming of both barcodes and 488 

adapter sequences. Following the initial processing of the sequence data, sequences were 489 

combined, dereplicated and aligned in mothur (version 1.36.1 (45)) using the SILVA template 490 

(46) (SSURef_NR99_123) and the sequences were organized into clusters of representative 491 

sequences based on taxonomy called Operational Taxonomic Units (OTU) using the UPARSE 492 

pipeline (47). In the ferrets, all except two libraries generated more than 3000 reads per sample. 493 

A total of 649,440 sequences were subsequently clustered into 259 OTUs with a sequence 494 

similarity threshold of 97% (45), a length threshold of 250 bp and an expected error threshold of 495 

0.15. For human samples, the distribution of reads per sample was much more uneven. A total of 496 

2,342,992 sequences were sorted into 707 OTUs, using the same thresholds as above and the 497 

same downstream filtering of the OTUs and samples was performed in a similar manner. Initial 498 

filtering of the samples ensured discarding samples containing less than 5 sequences. Libraries 499 

were normalized using metagenomeSeq’s cumulative sum scaling method (48) to account for 500 

library size acting as a confounding factor for the beta diversity analysis. In addition to 501 

discarding singletons, OTUs that were observed fewer than 5 times in the count data were also 502 

filtered out to avoid the inflation of any contaminants that might skew the diversity estimates. 503 

 504 

Informatics 505 

Beta diversity metrics were calculated across all samples using the Bray-Curtis dissimilarity 506 

index and overall trends in the community composition for ferrets and humans on the basis of 507 
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presence or absence of the flu infection were explored using Principal Coordinates Analysis 508 

(PCoA) in QIIME (49) (version 1.9.1) and then visualized in Emperor (50) (version 0.9.51). 509 

 510 

Taxonomic classification of the samples was done by classifying the representative sequences 511 

from the OTUs using mothur and the SILVA database, with a confidence threshold of 97%. The 512 

relative abundances for the taxonomic profiles for each subject was calculated in QIIME using 513 

summarize_taxa.py. The visualization of the top ten most prevalent taxa for each of the 514 

organisms was done in R (version 3.2.2) using dplyr and reshape2 to manipulate the data and 515 

ggplot2 for generating the plots. Following the qualitative analysis of the data, we employed an 516 

infinite dimensional generalization of the multinomial Dirichlet mixture model (21) which tries 517 

to model the original set of communities from the input data with additional posterior predictive 518 

probabilities (PPD) for statistical cut offs. The model was executed over 1000 iterations for the 519 

ferret data and 2000 iterations for the human data since this parameter should increase with the 520 

number of samples present in the dataset. Scripts located at 521 

https://github.com/jacobian1980/ecostates were improved by introducing a seed in the beginning 522 

of the algorithm to improve the reproducibility of the model and optimized the community 523 

number based on the PPDs which compare empirically observed data with the data that would be 524 

expected if the DMM were the correct underlying model (51, 52). All downstream analyses with 525 

the communities, including exploration of community membership, were performed in R. 526 

Additionally, a diagnostic OTU was computed for each ecostate, or sampled community, which 527 

is the OTU with the highest posterior predictive probability in the ecostate and therefore drives 528 

the clustering. The quantitative portion of the analysis was supplemented by performing random 529 

forest classification on the data to confirm the diagnostic results using Scikit-Learn (version 530 
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0.18.1) in Python (version 3.5.2) from Continuum Analytics Anaconda Suite. The training 531 

dataset included: a (n x m)-dimensional attribute matrix consisting of the relative abundance 532 

values for the OTUs and the samples, where n and m refer to the number of samples and the 533 

number of OTUs respectively, and a (n)-dimensional vector relating each observation to the 2 534 

experimental states (positive and negative for the virus). The average of the feature importance 535 

vectors from 20000 models that could accurately predict all 5 left-out samples (~85% accuracy) 536 

was computed to obtain a weight for each OTU’s predictive capacity to classify the experimental 537 

state of each sample. The hyperparameters for the random forest model were 618 decision trees 538 

per forest, gini index as impurity criterion and the square root of the number of features (OTUs 539 

in this case) to use for each split in the decision tree. 540 

 541 

Data Availability: Raw amplicon sequence reads for this study have been deposited to Sequence 542 

Read Archive (SRA) under accession number: SRP009696 [BioProject accession number: 543 

PRJNA76689] for the ferrets and accession numbers: SRP092459 [BioProject accession number: 544 

PRJNA240559] and SRP128464 [PRJNA240562] for the infected and uninfected human 545 

subjects respectively. 546 
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Figures 697 

 698 

Figure 1. Diversity of the URT microbiome of human patients infected with influenza A699 

virus (IAV). Beta diversity analysis for longitudinal nasopharyngeal swab samples obtained700 

from heathy and IAV infected individuals. Principal coordinates analysis (PCoA) of Bray Curtis701 

distances was done for samples from humans, labeled as influenza positive in red (P, indicating702 

data points with positive IAV qRT-PCR detection), influenza unknown in yellow (U, indicates703 

time points from positive individuals that were below the qRT-PCR detection limits at different704 

time points after the onset of symptoms) and uninfected samples in blue (Flu negative). The total705 

variability explained by all three principal coordinates (PCs) is shown on the axes. 706 
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 707 

Figure 2. Comprehensive taxonomic breakdown for IAV-free (left) and IAV-infected708 

(right) human subjects. The plot summarizes the relative taxonomic abundances at the class709 

level for taxonomic groups that are present in greater than 5% of the samples (see legend below).710 

Gammaproteobacteria (Pseudomonas, orange) bloom is prevalent among the infected patients711 

(right), whereas Actinobacteria is the most abundant among healthy patients. 712 

 713 

32 

 

ed 

ss 

). 

nts 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 17, 2019. ; https://doi.org/10.1101/325324doi: bioRxiv preprint 

https://doi.org/10.1101/325324


33
 

 714 

Fig. 3: Diversity of the URT microbiome in ferrets during IAV infection. Beta diversity715 

analysis for longitudinal URT samples taken after experimental infection with the716 

A/Netherlands/602/09 H1N1 strain (Infected) or in control animals. Principal coordinates717 

analysis (PCoA) of Bray Curtis distances was performed for all samples.  Data points for718 

uninfected ferrets are in blue, the T=0 for the infected ferrets in lavender, the T=14 for infected719 

ferrets in cyan, and all other infected time points are in red. The total variability explained by all720 

three principal coordinates (PCs) is shown on the axes. Each group of ferret was composed of 7721 
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animals.722 

 723 

Fig. 4. Qualitative and quantitative representation of the temporal trajectory of the ferret724 

microbiome. (A) Percent body weights of groups of 7 ferrets mock inoculated (uninfected) or725 
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intranasally infected with 1X106 pfu of influenza A/Neth/602/09 virus. Body weights were 726 

determined daily for 14 days, and are represented as the average percent body weight compared 727 

to the initial weight of each animal on the day of inoculation and error bars are the standard 728 

deviation for each time point. (B) Viral titers of nasal washes of ferrets infected with 1X106 pfu 729 

of A/Neth/602/09 virus. Nasal washes were obtained on days 1, 3, 5 and 7 post infection and are 730 

represented as the average viral titer of 7 infected animals. Error bars indicate the standard 731 

deviation for each time point. (C-D) Comprehensive taxonomic breakdown of an influenza 732 

infected (C) and uninfected ferret (D), at different timepoints. Taxa abundance values for top ten 733 

most prevalent taxa at the order level for different timepoints (0 to14 dpi). Only taxa labels with 734 

a confidence score of >= 90% were retained in the analysis. The remaining taxa are pooled into 735 

an additional taxon labeled “Other”. (E-F) Average and standard deviation of the relative 736 

Pseudomonas abundance across all infected (E) and uninfected (F) ferrets (n=7 for each). 737 
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TABLES 738 

Table 1. Summary statistics for amplicon-based sequencing of the V1-V3 region of the 16S 739 

rRNA gene. 740 

a. All ferret and human samples were extracted from nasal washes and nasopharyngeal swabs, respectively, at several time points 741 

post infection.  742 

 Humans Ferrets 

Total no. of samplesa  273 86 

Influenza negative subjects 22 7 

Influenza positive subjects 33 7 

Total no. of reads 2 342 992 649 440 

Total no. of OTUs 707 259 

No. of reads mapped to 
OTUs 

2 151 233 (91.8%) 514 099 (79.2%) 
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Table 2. Diagnostic microbes for each ecostate from the 2000
th
 iteration of the iDMM model for the 743 

infected and uninfected humans. Number of iterations depends on the number of samples (273) present in 744 

the data. 745 

 746 

a. Distribution of samples within ecostates after running the iDMM model.  747 

b. Distribution of samples before running the iDMM model.  748 

c. Bayesian posterior predictive probabilities associated with the diagnostic microbe, which is the highest probability for that 749 

ecostate.  750 

Ecostate  Final  
distribution

a
 

Original 
sample 

distribution
b
 

Diagnostic 
OTU 

Probability 
associated

c
 

Taxonomy 

1 + 2 + 3 
(Infected) 

114 

146 

Otu000003 0.361568 
Bacteria;Proteobacteria; 

Gammaproteobacteria;Pseudomonadales; 
Pseudomonadaceae;Pseudomonas 

9 Otu000004 0.4989514 
Bacteria;Actinobacteria; 

Actinobacteria;Corynebacteriales; 
Corynebacteriaceae; Corynebacterium_1 

20 Otu000002 0.01584407 
Bacteria;Proteobacteria; 
Gammaproteobacteria; 

Pseudomonadales;unclassified 
4  

(Healthy) 130 127 Otu000008 0.07636954 
  Bacteria;Bacteroidetes; 

Flavobacteriia;Flavobacteriales; 
Flavobacteriaceae;Cloacibacterium 
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Table 3. Diagnostic microbes for each ecostate from the 1000
th
 iteration of the iDMM model for 751 

the ferret samples. Number of iterations depends on the total number of samples (84) present in 752 

the data. All later time point ferrets (T14) return to the healthy ecostate (1). 753 

a. No. of samples at final iteration for each time point in bold (original starting values in parentheses).  754 

b. Bayesian posterior predictive probabilities associated with the microbe, which is the highest probability for that ecostate. 755 

Ecostate Total 
samples No. of samples

a 
 T14    [T7 + T5  +  T3  +  T1]     T0 

Diagnostic 
OTU 

Probability 

associated 
b Taxonomy 

1 
(Healthy) 

58 
(42) 

14 
(7) 

33 
(28) 

11 
(7) Otu000001 0.1865749 

Bacteria;Firmicutes; 
Clostridia;Clostridiales; 

Peptostreptococcaceae; 
Romboutsia 

2  
(Infected) 

26 
(42) 

0 
(7) 

23 
(28) 

3 
(7) Otu000004 0.1112045 

Bacteria;Proteobacteria; 
Gammaproteobacteria; 

Pseudomonadales; 
Moraxellaceae; 
Acinetobacter 
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Supplementary Materials: 756 

 757 

Figure S1. Diversity distance analyses of the microbiome of infected and uninfected 758 

humans. 759 

Figure S2. Relative abundance for the top ten bacterial families in the URT among infected 760 

and uninfected human subjects. 761 

Figure S3. Comprehensive taxonomic breakdown for influenza-infected human subjects. 762 

Figure S4. Comprehensive temporal taxonomic breakdown for 6 human subjects. 763 

Figure S5. Diversity distance analyses of the microbiome of infected and uninfected ferrets. 764 

Figure S6. Relative abundance for the top ten most prevalent bacterial families in the URT 765 

among infected and uninfected ferrets. 766 

Figure S7. Comprehensive taxonomic breakdown for all 14 ferrets. 767 

Table S1. Clinical-epidemiological characteristics of the hospitalized human patients 768 

diagnosed with Influenza A-like illness, and healthy controls. 769 

Table S2. Two-sided Student’s two sample t test results for human samples. 770 

Table S3. Non-parametric multivariate analysis using Anosim and Adonis tests. 771 

Table S4: Random forest analysis results for the human microbiomes. 772 

Table S5. Two-sided Student’s two sample t test results for ferrets. 773 

Table S6. Random forest analysis results for the ferret microbiomes.  774 
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 801 

Figure S1. Diversity distance analyses of the microbiome of infected and uninfected 802 

humans. Box and whisker plots for beta diversity distances within and between influenza types 803 

for the human samples (P: Influenza positive, U: Influenza unknown, Flu negative). The boxplots804 

represent the diversity between the different infection types. All the distances were calculated 805 

using the Bray-Curtis metric. Red line indicates median in each of the sample groupings and the 806 

error bars represent standard deviation.  807 
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Figure S2. Relative abundance for the top ten bacterial families in the URT among infected 809 

and uninfected human subjects. The relative abundance values for the most prevalent bacterial 810 

families among the infected (a, b, and c) and uninfected (d) human samples based on the 811 

Bayesian posterior predictive probabilities from the Infinite Dirichlet Multinomial mixture 812 

Models run over 2000 iterations (top to bottom, (a)-(d)).  813 
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 814 

Figure S3. Comprehensive taxonomic breakdown for influenza-infected human subjects. 815 

The plot summarizes an order level breakdown of the Gammaproteobacteria observed in infected 816 

patients (top left), and the family level classification (top right) for the same, along with the 817 
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relative abundances at the order level for taxonomic groups that are present in greater than 1% 818 

of the samples (bottom). 819 
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Figure S4. Comprehensive temporal taxonomic breakdown for human subjects. The 821 

plot summarizes the relative taxonomic abundances at the order level across all 822 

timepoints for taxonomic groups that are present in greater than 1% of the four influenza 823 

infected subjects (2 for each virus subtype, A-D clockwise) and 2 healthy subjects (E-F). 824 

Pseudomonadales (pink) is prevalent among the infected individuals (to 4), whereas 825 

inconsistent taxa are seen among the healthy control individuals (bottom 2). 826 

  827 
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 828 

Figure S5. Diversity distance analyses of the microbiome of infected and uninfected ferrets. 829 

Box and whisker plots for beta diversity distances within and between influenza types for 830 

samples obtained for groups of 7 Infected (I) and 7 Uninfected (U) ferrets. The boxplots 831 

represent the diversity between the different infection types. Since there are only two possible 832 

infection states for the ferrets, i.e. uninfected and infected, the all-between boxplot is the same as 833 

the last boxplot. All the distances were calculated using the Bray-Curtis metric. Red line 834 

indicates median in each of the sample groupings and the error bars represent standard deviation.835 
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 837 

 838 

 839 

 840 
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 842 

 843 

 844 

 845 

 846 

 847 

Figure S6. Relative abundance for the top ten most prevalent bacterial families in the URT 848 

among infected and uninfected ferrets.  The relative abundance was determined based on the 849 

Bayesian posterior predictive probabilities from the Infinite Dirichlet multinomial mixture 850 

models run over 1000 iterations. Analysis were performed on pyrosequencing data obtained for 851 

the V1-V3 region of the 16S rRNA of nasal wash samples obtained from 7 ferrets infected (top) 852 

with the A/Netherlands/602/2009 H1N1 virus and from uninfected ferrets (bottom) at the time 853 

points indicated on Fig. 4. 854 
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Figure S7. Comprehensive taxonomic breakdown for all 14 ferrets. The plot summarizes the 856 

relative taxonomic abundances at the order level across all timepoints for taxonomic groups that 857 

are present in greater than 5% of the samples (see legend below). Pseudomonadales (pink) is 858 

prevalent among the infected ferrets (bottom 7), whereas Clostridiales (dark blue) is the most 859 

abundant among uninfected ferrets (top 7).  860 
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 861 

Figure S8. Temporal diversity distance analyses of the microbiome of infected and 862 

uninfected ferrets. Changes in alpha diversity within the uninfected (blue) and infected (red) 863 

ferrets during IAV infection. A decrease in alpha diversity was observed among the infected 864 

animals during the acute phase of viral infection (3 to 7 dpi), with an eventual recovery. This was 865 

in agreement with the Pseudomonas bloom observed and the peak IAV titers collected from the 866 

same time points. No decreases were observed at any time points for the healthy uninfected 867 

group. The boxplots represent the diversity between the different time points. All the distances 868 
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were calculated using the Kruskal-Wallis method. The line inside the box indicates median in 869 

each of the sample groupings and the error bars represent standard deviation.  870 
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Table S1. Clinical-epidemiological characteristics of the hospitalized human patients 871 

diagnosed with Influenza A-like illness, and healthy controls. 872 

Characteristic 
Hospitalized patients Healthy 

controls 
(n=22) Total (n=30) H1N1 positive 

(n=13) 
H3N2 positive 

(n=15) 

Age 
< 2 years 2 1 1 0 
2 - 65 years 17 8 8 22 
> 65 years 11 4 6 0 
Gender 
Male 15 7 7 10 
Female 15 6 8 12 
Clinical severity factors 
Hospitalized by Influenza 23 8 13 N/A 
CCU by Infuenza 11 5 6 N/A 
O2 supply 20 8 10 N/A 
MV supply 7 5 1 N/A 
VAD supply 5 4 1 N/A 
Treatments 
Antibiotics 27 12 13 N/A 
Antiviral 29 12 15 N/A 
Comorbidities 
Asthma 2 0 2 N/A 
COPD/Respiratory pediatric disease 3 2 1 N/A 
Diabetes 8 3 4 N/A 
Obesity 7 3 4 N/A 
Cancer 4 3 1 N/A 
Cronical cardiovascular disease 12 5 6 N/A 
Cronical renal disease 2 2 0 N/A 
Neurological disorder 5 2 3 N/A 
Severe inmunological compromise 9 5 4 N/A 
Symptoms 
Fever 24 12 10 N/A 
Runny nose 20 9 10 N/A 
Throat pain 4 1 3 N/A 
Expectoration 22 11 10 N/A 
Myalgia 16 8 8 N/A 
Conjunctivitis 5 5 0 N/A 

Nasopharyngeal samples sequenced     

2 days 3 1 0 0 
3 days 4 3 0 0 
4 days 6 5 0 1 
5 days 12 4 8 1 
6 days 5 0 5 20 
7 days 3 0 2 0 
Day up to 21 dpi. 18 1 15 22 

CCU: Clinical Care Unit, MV: Mechanical ventilation, VAD: Vasoactive drugs, COPD: 
Cronical obstructive pulmonary disease. Dpi: Days post infection. N/A: Not applicable. 
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Table S2. Two-sided Student’s two sample t test results for human samples. Comparison of 873 

every pair of boxplots (Fig. S1) to determine if they are significantly different from each other. 874 

The significance indicates that samples within the same infection state are significantly more 875 

similar to each other than samples across or between infection states. 876 

Group 1 Group 2 t statistic 
Parametric 

p-value 

Parametric p-value 

(Bonferroni-

corrected) 

Flu negative vs. Flu negative All within Infection -55.0578521 0 0 

Flu negative vs. Flu negative P vs. P -75.3610857 0 0 

Flu negative vs. Flu negative P vs. U -138.6375158 0 0 

Flu negative vs. Flu negative U vs. U -154.3952941 0 0 

Flu negative vs. Flu negative Flu negative vs. P -221.0081364 0 0 

Flu negative vs. Flu negative All between Infection -263.0843447 0 0 

Flu negative vs. Flu negative Flu negative vs. U -291.4056393 0 0 

All within Infection P vs. P -21.37412196 8.63E-100 2.42E-98 

All within Infection P vs. U -52.60214147 0 0 

All within Infection U vs. U -62.86129962 0 0 

All within Infection Flu negative vs. P -88.60634085 0 0 

All within Infection All between Infection -150.8209456 0 0 

All within Infection Flu negative vs. U -140.7417865 0 0 

P vs. P P vs. U -4.94665465 7.81E-07 2.19E-05 

P vs. P U vs. U -8.909094618 6.93E-19 1.94E-17 

P vs. P Flu negative vs. P -24.73696145 9.46E-129 2.65E-127 

P vs. P All between Infection -24.68676524 9.22E-133 2.58E-131 

P vs. P Flu negative vs. U -34.22348208 7.20E-246 2.02E-244 

P vs. U U vs. U -6.730380217 1.80E-11 5.05E-10 

P vs. U Flu negative vs. P -29.09777915 4.22E-178 1.18E-176 

P vs. U All between Infection -35.90792139 1.91E-275 5.35E-274 

P vs. U Flu negative vs. U -48.51917022 0 0 

U vs. U Flu negative vs. P -21.754135 1.67E-102 4.68E-101 

U vs. U All between Infection -27.42974294 2.62E-163 7.34E-162 

U vs. U Flu negative vs. U -40.12946953 0 0 

Flu negative vs. P All between Infection 0.095133236 0.924209718 1 

Flu negative vs. P Flu negative vs. U -14.55953211 9.70E-48 2.72E-46 

All between Infection Flu negative vs. U -19.42583244 1.35E-83 3.77E-82 
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Table S3. Non-parametric multivariate analysis using Anosim and Adonis tests. Examining 877 

the effect of clinical parameters (gender, age and antibiotic usage) on the infected human URT 878 

microbiomes. 879 

   880 

  881 

Variable 
Anosim test 

(permutations=999) 

df 

(n-1) 

Adonis test 
(permutations=999) 

df 

(n-1) 

Gender  

(n=2; M/F) 

R statistic= 0.03124 

p-value < 0.023 
1 

R2 statistic= 0.0209 

p-value < 0.003 
1 

Antibiotic Usage  

(n=2; Y/N) 

R statistic= -0.046 

p-value < 0.732 
1 

R2 statistic= 0.01216 

p-value < 0.043 
1 

Age  

(n=26) 

R statistic= 0.4778 

p-value < 0.001 
25 

R2 statistic= 0.409 

p-value < 0.001 
25 
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Table S4: Random forest analysis results for the human microbiomes. Ranks range from the 882 

first few attributes predictive of the infection state, followed by the attributes that are most 883 

predictive of the data (maximum accuracy). 884 

Rank 
(1-667) 

Ranked attributes (OTUs) OTU taxonomy Accuracy (%) 

1st Otu000002 Bacteria;Proteobacteria; 
Gammaproteobacteria; 

Pseudomonadales 
 

64.00 

2nd  Otu000002; Otu000001 Bacteria;Proteobacteria; 
Alphaproteobacteria; 

Rhizobiales; 
Brucellaceae; Ochrobactrum 

 

64.00 

3rd   Otu000002; Otu000001; Otu000003 Bacteria; Proteobacteria; 
Gammaproteobacteria; 

Pseudomonadales; 
Pseudomonadaceae; 

Pseudomonas 
 

62.00 

137th  Otu000002; Otu000001; Otu000003; Otu000006; 
Otu000055; Otu000035; Otu000005, etc (130 
other OTUs) 

 71.00 

  885 
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Table S5. Two-sided Student’s two sample t test results for ferrets. Comparison of every pair 886 

of boxplots (Fig. S4). The significance indicates that samples within the same infection state are 887 

significantly more similar to each other than samples across or between infection states. 888 

Group 1 Group 2 t statistic Parametric p-value 
Parametric p-value 

(Bonferroni-corrected) 
I vs. I All within Infection 0.073562 0.941364778 1 

I vs. I U vs. U 0.133209 0.894043353 1 

I vs. I All between Infection -22.1458 9.17E-100 9.17E-99 

I vs. I I vs. U -22.1458 9.17E-100 9.17E-99 

All within Infection U vs. U 0.080792 0.935613791 1 

All within Infection All between Infection -29.1592 1.90E-167 1.90E-166 

All within Infection I vs. U -29.1592 1.90E-167 1.90E-166 

U vs. U All between Infection -23.8123 1.24E-113 1.24E-112 

U vs. U I vs. U -23.8123 1.24E-113 1.24E-112 

All between Infection I vs. U 0 1 1 

  889 
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Table S6. Random forest analysis results for the ferret microbiomes. Ranks range from the 890 

first few attributes predictive of the infection state, followed by the attributes that are most 891 

predictive of the data (maximum accuracy). 892 

 893 

Rank 
(1-259) 

Ranked attributes (OTUs) OTU taxonomy 
Accuracy 

(%) 
1st  Otu000004 Bacteria;Proteobacteria; 

Gammaproteobacteria; 
Pseudomonadales; 

Moraxellaceae;Acinetobacter 
 

79.79 

2nd  Otu000004; Otu000028 Bacteria;Proteobacteria; 
Gammaproteobacteria; 

Enterobacteriales; 
Enterobacteriaceae;Enterobacter 

 

91.69 

3rd  Otu000004; Otu000028; Otu000017 Bacteria;Firmicutes; 
Bacilli;Bacillales; 

Family_XII;Exiguobacterium 
 

89.26 

7th  Otu000004; Otu000028; Otu000017; Otu000001; 
Otu000027; Otu000170; Otu000008 

 96.47 
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