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Abstract 22 

Yeast autophagy, autolysis and apoptosis are triggered by nutrient starvation 23 

conditions that usually take place in winemaking. Biological aging of Sherry wines 24 

constitutes an enological environment suitable for the induction of these biological 25 

processes due to the scarcity of nutrients and formation of yeast social communities, i.e. 26 

biofilm; however, few studies have been carried out in this regard. Here, we perform a 27 

proteomic analysis to detect any autolysis/autophagy/apoptosis protein markers and/or 28 

proteins potentially related to these processes under flor forming and fermentative 29 

conditions. The scarce presence of autophagy proteins in flor biofilm forming 30 

conditions, the existence of autophagy inhibitors (e.g. Pph21p), and high quantity of 31 

crucial proteins for autolysis and apoptosis, Pep4p and Mca1p, respectively; indicate 32 

that autophagy may be silenced while autolysis and apoptosis are activated when the 33 

yeasts are forming flor. This is the first time that autophagy, autolysis and apoptosis 34 

have been studied as a whole in flor yeast to our knowledge. 35 

Importance 36 

Flor yeasts are Saccharomyces cerevisiae strains traditionally used in 37 

winemaking and have the ability to survive under starvation conditions and form 38 

biofilm. These capabilities make flor yeast interesting organisms to study the biological 39 

processes of autophagy, autolysis and apoptosis. With this work, we aim to seek for 40 

evidences —protein markers— of these processes in a flor yeast when subjected to 41 

biofilm forming and fermentative conditions. Our results suggest that while autophagy 42 

may be silenced under biofilm conditions, autolysis and apoptosis are activated. The 43 

data provided improve the knowledge of yeast behavior under different enological 44 

conditions and can further improve quality of wines in a near future. 45 
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Introduction 48 

Yeast autolysis has been a subject of study for decades and its positive influence 49 

on the organoleptic profile of some types of wines is widely recognized (reviewed in 50 

[1]), while biological processes of autophagy and apoptosis are less known in yeasts 51 

(reviewed in [2-5]). These three processes —autophagy, autolysis and apoptosis— are 52 

associated with each other and are all triggered by starvation for nutrients (among other 53 

stress conditions) [6-9], which usually happen in enological environments. Autolysis, 54 

for instance, takes place during ageing of sparkling wines produced by the traditional 55 

méthode champenoise in which yeasts are subjected to low contents of nitrogen and 56 

carbon conditions [10-14]. Autophagy was reported as well during sparkling wine aging 57 

by the occurrence of morphological changes and the presence of autophagic bodies [15]. 58 

Piggot et al. (2011) [16] also showed that autophagy takes place in still wine 59 

fermentation. More recently, Orozco et al. (2013) [17] found that factors relating to 60 

apoptosis, such as caspase Mca1p or apoptosis-inducing factor Aif1p play a positive 61 

role in yeast longevity during winemaking in times of dwindling resources during 62 

chronological aging.  63 

Other environments common in winemaking in which these processes may 64 

occur are flocs and biofilms. The benefit of a cellular suicide program in social 65 

communities seems evident because self-destruction of damaged and old cells, which 66 

consume dwindling nutrients, contributes to the viability/reproductive success of 67 

healthier members of the community. In the case of Sherry wine, special S. cerevisiae 68 

strains, known as flor yeasts, have to deal with lack of fermentable carbon sources 69 
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(among other stresses) and form an air-liquid biofilm formation, so-called flor, in 70 

biological aging conditions that occur after fermentation [18, 19]. In this work, we 71 

attempt to approach the three biological processes —autophagy, autolysis and 72 

apoptosis— in a flor biofilm environment. Hitherto, only  autolysis has been evidenced 73 

under biological aging conditions [20] while autophagy and apoptosis have remained 74 

unreported. Nonetheless, in a previous study, our group accounted the presence of 75 

apoptosis factors when studying the mitochondrial proteome in a flor yeast when 76 

forming flor [21].  77 

Following other authors’ experiments in which proteins are used as markers [22, 78 

23], we performed a targeted proteomic analysis to detect any 79 

autophagy/autolysis/apoptosis markers and/or related proteins, in a flor yeast strain 80 

under a biofilm forming condition (lacking glucose and high in ethanol) and under a 81 

fermentative condition (high glucose). This study is part of a sequence of un-82 

targeted/targeted proteomic researches of flor yeasts [21, 24-27], which distinctively 83 

analyze the autolysis/autophagy/apoptosis proteome under biofilm forming and 84 

fermentative conditions. 85 

Material and methods 86 

Microorganism and cultivation conditions 87 

S. cerevisiae G1 (ATCC: MYA-2451), a wild type of an industrial wine flor 88 

yeast strain, capable of fermenting and aging wine, from the Department of 89 

Microbiology (University of Cordoba, Spain) collection was used in this work. G1 90 

under biological aging conditions, produces a thick flor velum about 30 days after 91 

inoculation with a cellular viability higher than 90% and a small proportion of sediment 92 

cells in the bottom of flasks [28]. 93 
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A medium mimicking a biological aging condition, in this case a biofilm 94 

forming condition (BFC), was prepared without sugars consisting of 0.67% w/v YNB 95 

w/o amino acids, 10 mM glutamic acid, 1% w/v glycerol and 10% v/v ethanol, 96 

incubated at 21 ºC without shaking for 29 days. Fermentative condition (FC) was 97 

developed in a medium containing 0.67% w/v YNB without amino acids, 10 mM 98 

glutamic acid, and 17% w/v glucose, and yeasts were incubated at 21 ºC under gentle 99 

shaking for 12 h or until the middle of the log phase. 1×10
6
 cells/mL were inoculated in 100 

each medium. All experiments were carried out by triplicate in flasks closed with 101 

hydrophobic cotton. 102 

Proteome analysis 103 

Sampling times were chosen to obtain the maximum number of proteins in 104 

viable cells [28-31]. These were at the middle of the log phase, different for each 105 

condition: 12 hours from inoculation for FC and 29 days for BFC. At day 29th G1 flor 106 

yeast cells are in the initial phase of velum formation (Ph I) and the biofilm is 107 

completely formed in the air–liquid interface [32]. 108 

Methods for harvesting the cells and protein extraction are indicated in [21, 24]. 109 

Yeast proteins under both conditions were extracted and later subjected to fractionation 110 

through 3100 OFFGEL (Agilent Technologies, Palo Alto, CA) followed by an 111 

identification by LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, San 112 

Jose, CA, USA) equipped with a nano LC Ultimate 3000 system (Dionex, Germany) 113 

(see [21-25] for more details). After identification, protein were quantified in terms of 114 

the exponentially modified protein abundance index (emPAI; [33]).  115 

Proteins related to autophagy, autolysis and apoptosis were selected by using 116 

SGD (http://www.yeastgenome.org/), Uniprot and references. These proteins together 117 
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with the identification and quantification values are shown in Supplemental material 1. 118 

This file shows information about each autophagy, autolysis and apoptosis related 119 

protein detected in this analysis including a brief description, biological process and 120 

molecular function, the molar weight (Mr), a score value (combination of the XCorr 121 

values for its constituent peptides), observable and observed peptides and relative 122 

content as calculated from its PAI value. Protein content averages in mol% considering 123 

all proteins detected in each sample, were 0.24 at BFC and 0.16 at FC. 124 

Information about proteins annotated in the autophagy, autolysis and apoptosis 125 

processes, considering the whole proteome of S. cerevisiae [34] and their content 126 

according to Ghaemmaghami et al. (2003) [29], were used as reference material (Table 127 

1). Further, the SGD tool “GO Term finder” was used to determine the FDR (False 128 

Discovery Rate) and p-value for each protein group annotation considering all 129 

autophagy, autolysis and the apoptosis proteins in each sample (Supplemental material 130 

2). p-value is defined at the probability or chance of seeing at least “x” number of genes 131 

(in our case ORFs) out of the total “n” genes in the list annotated to a particular GO 132 

(Gene Ontology) term, given the proportion of genes in the whole genome that are 133 

annotated to that GO Term. GO Terms with p-values lower than 0.1 have been 134 

highlighted (Supplemental material 2). The p-value is calculated using the 135 

Hypergeometric distribution. Four numbers are used to calculate each p-value: n, the 136 

number of objects in the sample; N, the number of objects in the reference population 137 

(6604 proteins from the S. cerevisiae whole proteome), k, the number of objects 138 

annotated with this item in the sample; and M, the number of objects annotated with 139 

item in the reference population: 140 
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                                                      141 

Results   142 

Proteins involved in the autophagy, autolysis and apoptosis processes were 143 

identified in both BFC and FC samples. In both conditions, the frequency of proteins 144 

involved in these processes were high (> S. cerevisiae proteome frequency values, see 145 

Table 1). Apoptosis protein frequencies overpassed S. cerevisiae proteome frequency by 146 

4 and 2-fold under BFC and FC, respectively. Autophagy proteins were more frequent 147 

and abundant under FC (considering the sum of content of all autophagy proteins under 148 

the conditions) (Table 1).  The total protein content in BFC was half of the S. cerevisiae 149 

autophagy proteome content reported by Ghaemmaghami et al. (2003) [29] at log phase 150 

under rich-medium conditions pointing out a down-regulation during biological aging. 151 

The opposite happens for the autolysis and apoptosis proteomes in which BFC 152 

proteome was higher in frequency and abundance: 2.91 at BFC vs. 1.96% at FC and 153 

4.20 at BFC vs. 1.66 mol% at FC for the autolysis proteome, while 2.42% at BFC vs. 154 

1.31% at FC and 2.96 at BFC vs. 1.98 mol% at FC for the apoptosis proteome. 155 

To achieve a detailed conclusion, each process has been treated separately from 156 

now on. 157 

1. Autophagy 158 

6 and 11 proteins out of the 95 autophagy proteins in S. cerevisiae were reported 159 

under BFC and FC, respectively. From the SGD GO Term Finder (Supplemental 160 

material 2), a high frequency of BFC autophagy proteome was found involved in 161 

reticulophagy —autophagy selective for the endoplasmic reticulum (2 proteins, Atg11p 162 
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and Ypt1p; out of a total of 9 proteins annotated in the S. cerevisiae proteome). On the 163 

other hand, under FC, many proteins were associated to macroautophagy (also highly 164 

frequent if considering the total S. cerevisiae autophagy proteome, see Supplemental 165 

material 2) and organelle organization. This last biological process is referred to the 166 

assembly, arrangement of constituent parts, or disassembly of an organelle within a cell, 167 

which are all frequent in growing cells and is the case of flor yeast under a nutrient-rich 168 

condition such as FC. 169 

Yeasts autophagy involves several steps: i) regulation of induction, ii) vesicle 170 

nucleation, iii) cargo packaging, iv) vesicle expansion and completion, v) retrieval, vi) 171 

docking and fusion, vii) vesicle breakdown and viii) permease efflux (Table 1 and Fig. 172 

1). Two proteins (out of 26) with autophagy regulation function were quantified under 173 

BFC: Bcy1p and Pph21p (Fig. 2). The first inhibits protein kinase A (PKA) in the 174 

absence of cAMP (low levels when low glucose content) [35], that controls a variety of 175 

cellular processes and inhibits autophagy [2, 36, 37] while Pph21p, as well detected 176 

under FC, is a member of the Phosphatase 2A complex (PP2A) which is induced by 177 

TORC1 (one of the main regulators for autophagy along with PKA and Sch9 protein) 178 

and has an inhibitor function over the autophagosome formation genes. TORC1, PKA 179 

and Sch9 protein act as inhibitors of autophagosome formation. When autophagy 180 

triggering stimuli are perceived, these regulators are negatively induced [2, 36, 37]. 181 

With regards to FC, besides Pph21p other proteins with autophagy regulation 182 

function were quantified: Rts1p, also member of the PP2A complex, Sin3p (also known 183 

as Rpd1p) component of both the Rpd3S and Rpd3L histone deacetylase complexes that 184 

regulate transcription, silencing, autophagy (as an inhibitor) and other processes by 185 

influencing chromatin remodeling [38-41]; and Tor1p, subunit of TORC1 (Fig. 2). 186 
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 From the 24 proteins involved in the autophagosome formation process in the S. 187 

cerevisiae proteome, only 1 was detected under FC, Shp1p. In this step, the 188 

autophagosome-generating machinery comprised of Atg proteins collectively form the 189 

pre-autophagosomal structure/phagophore assembly site (PAS) that will lead to the 190 

autophagosome vesicles. In addition, no proteins were found to take part in the vesicle 191 

nucleation step (initial stage of autophagosome vesicles formation) and two (out of 8 in 192 

S. cerevisiae proteome) in vesicle cargo packaging (Ald6p and Atg11p) under both BFC 193 

and FC. The cytosolic acetaldehyde dehydrogenase (Ald6p), specifically targeted to the 194 

vacuole by autophagosomes [42], was detected in high amounts under FC and log phase 195 

under rich conditions [29] (0.56 vs. 0.30 mol%, respectively) while under BFC remains 196 

much lower, 0.03 mol% (Fig. 2). The depletion of this protein has been used as a 197 

marker for the autophagy process [8, 42]. Under nutrient starvation conditions, the 198 

Ald6p in cells was quickly depleted because of preferential degradation of this protein 199 

during autophagy. 200 

Small GTPase Rab Ypt1p was the only protein quantified to be involved in 201 

vesicle expansion/completion out of the 26 reported in S. cerevisiae. Its content under 202 

BFC was 0.19 mol% while under FC, 0.32 mol%. This autophagy step is coordinately 203 

performed by Atg proteins (Atg3p-5p, Atg7p, Atg8p, Atg10p, Atg12p, Atg16p), 204 

Sec2/4p and Ypt1p and complexes COG and TRAPPIII (Fig. 2).  205 

Atg11p, which participates in the cargo packaging step as well, was the unique 206 

protein reported in the study, having a role in the pre-autophagosomal structure retrieval 207 

(to form new autophagosomes). Atg11p together with Atg23p, and Atg27p, facilitates 208 

the anterograde transport of Atg9p to the PAS. This process occurs whether the cells are 209 

maintained in starvation state or growing state through Cytoplasm-to-vacuole targeting 210 

(Cvt) pathway [43-45]. Cvt is a specific form and constitutive of autophagy that uses 211 
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autophagosomal-like vesicles for selective transport of hydrolases Lap4p and Ams1p to 212 

the vacuole [46, 47]. Depending on the nutrient condition, the vesicles engulfs two 213 

different cargo: Ams1p and Lap4p (under nitrogen-rich conditions) and be besides these 214 

hydrolases, bulk cytoplasm (upon nutrient starvation) (shown in Fig. 1).  215 

Out of the 15 proteins that mediate the docking and fusion of the autophagosome 216 

to the vacuole, one was reported under BFC, Sec13p and two, Mon1p and Ykt6p at FC 217 

(Fig. 2). This step results in the release of autophagic bodies that are further 218 

disintegrated, and their contents degraded for reuse in biosynthesis. Sec13p besides 219 

autophagy, is involved in other processes [48, 49]. Meanwhile, Mon1p, in complex with 220 

Ccz1p (not identified), is required for multiple vacuole delivery pathways including the 221 

autophagy, pexophagy, endocytosis and cytoplasm-to-vacuole targeting (Cvt) pathway. 222 

None of the proteins involved in vesicle breakdown and permease efflux have been 223 

detected in the present experiment. 224 

Another gene found to be relevant in autophagy and whose product was 225 

observed in the present analysis under FC, is the AAA-type ATPase VPS4/CSC1 226 

(Supplemental material 1). Vps4p is an AAA-type ATPase involved in multivesicular 227 

body protein sorting. Null mutant displays decreased autophagy while a gain-of-228 

function mutant induces autophagy in rich medium [50, 51].  229 

2. Autolysis 230 

Hydrolytic enzymes as glucanases, proteases as well as nucleases play a major 231 

role in autolysis. Of all the enzymes involved, the activities of proteases have been the 232 

most extensively studied. According to Babayan et al. (1981) [52] yeast autolysis can be 233 

regarded as a four step process (Fig. 1): i) cell endostructures degradation and releasing 234 

vacuolar proteases in the cytoplasm, ii) inhibition of proteases and then activation due 235 
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to the inhibitors degradation, iii) polymer hydrolysis and hydrolysis products 236 

accumulation in the cell, and iv) cell wall degradation and hydrolysis products 237 

releasing. Under both conditions, high frequencies of autolysis proteins were involved 238 

specifically in “protein catabolic process in the vacuole” GO Term (Supplemental 239 

material 2).  240 

Among the 12 vacuolar proteases in S. cerevisiae, 4 were reported under BFC 241 

and 5 under FC; nevertheless, contents were much higher under BFC: 1.97 vs. 0.63 242 

mol% being only 0.13 under nutrient-rich conditions (Table 1). Vacuolar proteases 243 

catalyze the non-specific degradation of cytoplasmic proteins, delocalized proteins from 244 

the secretory system, proteins delivered via autophagy, or plasma membrane proteins 245 

turned over via endocytosis [53-56]. Pep4p, the protein that most contributed to the 246 

mol% value in the BFC case, was quantified in 1.20 mol% which is over seven times 247 

higher than in FC, (0.16 mol%) (Fig. 3). Among the different types of proteases 248 

involved, Pep4p or Protease A is the main enzyme responsible for autolysis [57]. Lurton 249 

et al. (1989) [58] used specific proteases inhibitors to show that in acidic conditions, 250 

Pep4p was the principal enzyme involved in proteolysis during autolysis in a model 251 

wine system, despite numerous proteolytic enzymes present in yeast. This protein is 252 

required for posttranslational precursor maturation of other vacuolar proteinases, 253 

important for protein turnover after oxidative damage that may be occurring in BFC 254 

(flor yeast oxidative metabolism) and plays a protective role in acetic acid induced 255 

apoptosis [59-66]. Pep4p proteolytic activity is most efficient at acidic pH, as is the case 256 

of wines [67]. Some authors concluded that this protein is essential under conditions of 257 

nutrient starvation [60, 68]. Alexandre et al. (2001) [57] support the idea that although 258 

protease A activity appeared to be responsible for peptides release, there is no clear 259 

correlation among protease A activity, cell death, and autolysis. It was suggested that 260 
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protease A activity may be responsible for 80% of the nitrogen released during autolysis 261 

under optimum conditions. Using a ∆pep4 mutant, Alexandre et al. (2001) [57] showed 262 

that protease A was responsible for 60% of the nitrogen released during autolysis in 263 

wine. These results suggest that other acidic proteases may also be involved in the 264 

proteolytic process. Consistent with this, Komano et al. (1999) and Olsen et al. (1999) 265 

[69, 70] have identified other acidic proteases (Yapsin proteases Mkc7p, Yps1p, Yps3p, 266 

Yps6p and Yps7p) but none of them were reported in this proteomic approach. 267 

However, other proteins such as the vacuolar peptidases Ape3p (amino-) and Prc1p 268 

(carboxy-) were identified under BFC over the value quantified in FC, catalyzing the 269 

vacuole degradation that removes amino acids from the carboxy termini of non-specific 270 

proteins and small peptides [71, 72].  271 

Alexandre et al. 2001 [57] showed that the proteolytic activity of yeast increases 272 

up to six-fold after sugar exhaustion, which is the case of BFC, but decreases when 273 

yeast cell autolysis starts. Also, temperature, pH and the yeast strain affect proteolytic 274 

activity during aging [11, 73]. 275 

The released vacuolar proteases are initially inhibited by specific cytoplasmic 276 

inhibitors and are then activated due to their degradation. These inhibitors were only 277 

detected under BFC: Rfu1p with 0.06 mol% and Tfs1p with 0.26 mol% (Fig. 3). The 278 

first is the inhibitor of the Doa4p deubiquitinase (not reported) while Tfs1p is a specific 279 

and potent inhibitor of the vacuolar carboxypeptidase Y or Prc1p (quantified under 280 

BFC) [74, 75]. During log phase growth, Tfs1p is found in the cytoplasm; it is re-281 

localized to the vacuole in stationary phase [76, 77]. Thus, as sampling was made at the 282 

middle of the log phase in both conditions, Tfs1p might be present in the cytoplasm 283 

exhibiting its inhibition function over the Prc1p released from the vacuole. 284 
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Besides proteases, glucanases and nucleases hydrolyze substrates under wine 285 

conditions [78-80]. In this approach, glucanases frequency was found higher under BFC 286 

(0.48 vs. 0.33%) but the difference was much bigger in terms of mol% content (1.48 vs. 287 

0.67 mol%). Nucleases, on the other hand, showed the opposite trend: 0.48 vs. 0.82% at 288 

FC and BFC, respectively; and 0.07 and 0.36 mol% (Table 1). More FC nucleases 289 

(DNases and RNases) are explained since the yeasts have a higher cell division rate 290 

under FC where conditions are more favorable than under BFC for reproduction. As 291 

expected, under nutrient rich condition at log phase where yeasts are not subjected to 292 

any stress, nucleases frequency and mol% values were higher than under BFC or FC 293 

[29]. 294 

Among BFC glucanases, cell wall enzyme endoglucanase Bgl2p reached a 295 

content of 1.01 mol% (not detected in FC) (Fig. 3), involved in beta-glucan degradation 296 

and also function biosynthetically as a transglycosylase [80]. It catalyzes the successive 297 

hydrolysis of beta-D-glucose units from the non-reducing ends of (1->3)-beta-D-298 

glucans, releasing alpha-glucose [82]. It is also involved in incorporation of newly 299 

synthesized mannoprotein molecules into the cell wall and it introduces intrachain 1,6-300 

beta linkages into 1,3-beta glucan, contributing to the rigid structure of the cell wall [81-301 

83]. Another glucanase quantified in high values under both conditions was the cell wall 302 

exoglucanase Exg1p (0.48 and 0.51 mol% in BFC and FC, respectively). This enzyme 303 

hydrolyzes both 1,3-beta- and 1,6-beta-linkages and even has beta-glucosidase activity. 304 

It could also function biosynthetically as a transglycosylase. This enzyme releases 305 

alpha-glucose. The endo-1,3-beta-D-glucosidase Scw11p was only identified under FC 306 

which is involved in the cell separation and may play a role in conjugation during 307 

mating based on its regulation by Ste12p (not detected) [84, 85]. 308 
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It should be mentioned that hydrolytic products start to be released when their 309 

molecular masses are low enough to cross pores in the cell wall and that the cell wall 310 

degradation is not a requirement. During autolysis, the yeast cell wall degrades. 311 

Charpentier and Freyssinet (1989) [78] showed that cell wall degradation could be 312 

summarized as follows: first, glucans are hydrolysed by glucanases, thus releasing 313 

mannoproteins trapped or covalently linked to the glucans; second, the glucans are 314 

released due to either residual activities of cell wall glucanases or solubilized glucanases 315 

in the medium and finally, the protein fraction of the mannoproteins is degraded by 316 

proteolysis. Further, we looked for mannosidases in the proteome data set trying to find 317 

some differences among conditions. Only one was reported under BFC and none under 318 

FC.  The one reported is Dcw1p that is localized in the cell membrane and may 319 

contribute to the mannose residues releasing from cell wall mannoproteins. Although 320 

proteases and glucanases degrade the cell wall, there is no breakdown of the cell wall 321 

[86]. The cell wall remains unbroken, with many ridges and folds, nevertheless the 322 

yeast cells have lost most of their cytoplasmic content.  323 

With regards to the plasma membrane, its fate during this process is not 324 

clarified, however lipid release has been reported in sparkling wine aging [1]. In this 325 

study, only two lipases (more specifically lysophospholipases) have been quantified: 326 

Plb1p (0.12 mol%) under BFC and Nte1p under FC with only 0.01 mol%. 327 

3. Apoptosis 328 

Since the first description of apoptosis in yeasts [87], several yeast orthologues 329 

of crucial mammalian apoptotic proteins have been discovered [88-93], and conserved 330 

proteasomal, mitochondrial, and histone-regulated apoptotic pathways have been 331 

delineated (Fig. 1) [94-100]. Apoptosis involves three main steps: the perception of an 332 
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external or internal signal, the signaling pathway phase and the execution phase that 333 

ends with the cell death. Apoptosis proteome in S. cerevisiae consists in 39 proteins. 334 

Bir1p, Cpr3p, Kex1p, Mca1p, Pet9p, Por1p and Tdh2p were quantified under 335 

BFC 2-folding the FC content (Fig. 4). Por1p was the one showing highest difference 336 

among both conditions: 0.28 vs. none, under BFC and FC, respectively. This is the 337 

mitochondrial outer membrane protein porin 1 which gene deletion (yeast voltage-338 

dependent anion channel) enhances apoptosis triggered by acetic acid, H2O2 and 339 

diamide [101]. However, Liang and Zhou (2007) [102] proposed that this membrane 340 

protein enhances apoptosis in yeasts increasing resistance to apoptosis induced by Cu
2+

. 341 

Another protein showing significant differences in mol% that plays a central role in 342 

apoptosis, is Mca1p (see Fig. 4), reported under BFC with a content of 0.13 mol% while 343 

not identified under FC. It mediates apoptosis triggered by oxygen stress, salt stress or 344 

chronological aging or toxins and promotes the removal of insoluble protein aggregates 345 

during normal growth [88, 103]. MCA1 plays a central role in yeast apoptosis, its 346 

deletion of the enhances the resistance against oxidative stress and delays age-induced 347 

cell death [88], although caspase-independent apoptosis occurs in yeast as well [104, 348 

105]. 349 

Although with less content, another protein identified under BFC (0.08 mol%) 350 

and not under FC was Pet9p (Fig. 4). It catalyzes the exchange of ADP and ATP across 351 

the mitochondrial inner membrane. Genetic evidence indicates a possible role of the 352 

ADP/ATP carriers (AAC): Aac1p, Aac3p and Pet9p (Aac2p); in apoptosis [101]. 353 

Among them Pet9p is the major isoform of the translocator [106]. Pereira et al. (2007) 354 

[101] specifically pointed to a crucial role of AAC in yeast apoptosis as it is required for 355 

mitochondrial outer membrane permeabilization and cytochrome c release through the 356 

process (Fig. 1). 357 
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Two other proteins detected only under BFC but with less content were Bir1p 358 

and Kex1p. The first is an antiapoptotic protein that contains three Baculovirus IAP 359 

repeat domains, a protein motif which is usually found in inhibitor-of-apoptosis proteins 360 

[107] and appears to play independent roles in chromosome stability and apoptosis [93]. 361 

Kex1p, on the other hand, is a protease with a carboxypeptidase B-like function, 362 

involved in the C-terminal processing of the lysine and arginine residues from the 363 

precursors of K1, K2 and K28 killer toxins and a-factor (mating pheromone), in the 364 

programmed cell death caused by defective N-glycosylation and contributes to the 365 

active cell death program induced by acetic acid stress or during chronological aging 366 

[108]. 367 

Cpr3p, a yeast cyclophilin D homologue, was quantified under both conditions 368 

although in significantly higher content under BFC (0.52 vs. 0.12 mol%). Liang and 369 

Zhou (2007) [102] performed a genetic screen in which identified Cpr3p as activating 370 

the Cu
2+

-induced apoptotic program. Other protein folding the content under BFC is 371 

Tdh2p. Almeida et al. (2007) [4] by combining proteomic, genetic and biochemical 372 

approaches demonstrated that Nitric oxide (NO) and glyceraldehyde-3-phosphate 373 

dehydrogenase (GAPDH) as Tdh2p are crucial mediators of yeast H2O2-induced 374 

apoptosis, concluding that NO signaling and GAPDH S-nitrosation are linked with 375 

H2O2-induced apoptotic cell death. Evidence is presented showing that NO and GAPDH 376 

S-nitrosation also mediate cell death during chronological life span pointing to a 377 

physiological role of NO in yeast apoptosis. Further another GAPDH, Tdh3p was 378 

detected in very high amounts under both conditions (0.98 vs. 1.03 mol% under BFC 379 

and FC, respectively). The high presence of these proteins under FC could be explained 380 

since this protein is highly relevant in glycolysis which is essential under a typical 381 

fermentative condition. 382 
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Under FC, proteins like Oye2p and Ras2p were found specifically under this 383 

condition. The multifunctional protein Cdc48p doubled the content at this condition. 384 

Full length OYE2 overexpression lowers endogenous reactive oxygen species (ROS), 385 

increases resistance to H2O2-induced programmed cell death (PCD) and significantly 386 

lowers ROS levels generated by organic prooxidants [109]. Reciprocally, oye2 yeast 387 

strains are sensitive to prooxidant-induced PCD.  Odat O, et al. (2007) [110] firmly 388 

placed OYE proteins in the signaling network connecting ROS generation, PCD 389 

modulation and cytoskeletal dynamics in yeast (Fig. 1). Ras2p induces the production 390 

on ROS while Cdc48p is an antiapoptotic protein [110]. 391 

Discussion 392 

The scarce proteins related to the autophagy process in both studied conditions 393 

(lower at BFC) along with the presence reported of the several autophagy inhibitors, 394 

points out a down-regulation of the autophagy genome in flor yeasts under BFC or FC. 395 

Further, the presence of Atg8p, an autophagy key protein that has been used as an 396 

experimental marker for autophagosomes, was neither quantified. The depletion of 397 

Ald6p is used as a as a marker for the autophagy process as it is specifically targeted to 398 

the vacuole by autophagosomes. The lower amount in BFC compared with FC and log 399 

phase under rich-medium,  represents an isolated fact that may indicate a progress in the 400 

autophagy process under BFC or, on the other hand, that the yeast stopped its synthesis 401 

at a certain point probably because its function is not relevant or is substituted by other 402 

Aldps such as Ald2p and Ald3p, which genes are both induced in response to ethanol or 403 

stress and repressed by glucose [111].  404 

Flor yeasts under fermentative condition (FC) show higher values in frequency 405 

and content of autophagy proteins. Under a nutrient-rich condition such as FC, the 406 

autophagy role may be the reorganization of organelles, typical in growing cells, rather 407 
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than material degradation that occurs in starving yeasts. The presence of Vps4p 408 

(relevant in autophagy) at this condition may indicate that autophagy is being induced at 409 

some extent. Piggot et al. (2011) [16] demonstrated that autophagy is induced early in 410 

wine fermentation in a nitrogen-replete environment, suggesting that autophagy may be 411 

triggered by other forms of stress that arise during fermentation. These authors also 412 

stated that autophagy genes are required for optimal survival throughout fermentation.  413 

Autolysis and apoptosis proteome showed the opposite tendency of the 414 

autophagy in terms of frequency and protein content values, both higher under BFC. 415 

BFC vacuolar proteases triplicated those at FC in abundance while Pep4p, considered as 416 

the main responsible protein of the nitrogen release in wine autolysis [57], was the 417 

protein that most contributed to the content value in the autolysis BFC proteome, thus 418 

supporting other references that reported autolysis at biological aging. Moreover, this 419 

protease may be active under BFC as the pH is acidic and there are no sugars [21, 57]. 420 

Glucanases possibly play a role in cell expansion during growth, in cell-cell fusion 421 

during mating, and in spore release during sporulation. For this reason, these hydrolases 422 

might also be important under a condition with high growth rate, however, more 423 

glucanases in higher contents were reported under BFC pointing out that there is 424 

another process or are other processes that also requires this function (like autolysis). 425 

The high amounts of the cell wall glucanases Bgl2p and Exg1p in BFC can lead to cell 426 

wall glucans degradation. 427 

Apoptosis proteins, as expected, were found more abundant under BFC than 428 

under FC, showing Cpr3p, Mca1p, Por1p, Tdh2/3p with very high values. Under BFC, 429 

flor yeasts are subjected to a carbon starvation in which they are able to form a biofilm 430 

community. The self-destruction of damaged and old yeast cells, which consume 431 

dwindling nutrients, may contribute to the viability and reproductive success of 432 
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healthier members of the community. The fact that high amounts of apoptosis activators 433 

as Mca1p or Cpr3p were quantified while none or very little amounts under FC, may 434 

point out that apoptosis is happening when the flor yeast is forming flor, which has 435 

never been reported before to our knowledge. Apoptotic death in yeast is suggested to 436 

be accompanied, at least under certain cases, by transfer of genetic material between 437 

cells [112]. This may be considered as a reason to explain why flor yeasts and 438 

fermentative yeasts differ genetically. 439 

 This study provides evidences about the autophagy, autolysis and apoptosis 440 

biological processes in flor yeasts when subjected to biofilm and fermentative 441 

conditions. However, besides proteomics, further works dealing with genetic 442 

approaches, deeper metabolomic analyses (including amino acids), transmission 443 

electron microscopy imaging, protein enzymatic activity and utilization of different flor 444 

yeast strains are required in order to achieve more solid conclusions. All said techniques 445 

could be considered and aimed to improve the knowledge of yeast behavior under 446 

different enological conditions and further improve quality of wines. Moreover, 447 

detecting apoptosis proteins in flor yeast biofilms highlights the potential use of these 448 

strains as unicellular eukaryotic models to study apoptosis for medical purposes. 449 
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TABLE 1. Frequency and content of proteins related with autophagy, autolysis and 1 

apoptosis identified in flor yeast cells under biological forming (BFC) and under 2 

fermentative conditions (FC). Frequency of related proteins in S. cerevisiae whole 3 

proteome has been included. Protein content at log phase under rich-medium conditions 4 

[29] was included as reference material. 5 

Process 

S. cerevisiae proteome [33] FC BFC 

Protein frequency 

Protein 

content 

(mol%) [29] 

Protein 

frequency 

Protein 

content 

(mol%) 

Protein 

frequency 

Protein 

content 

(mol%) 

Total Proteins 6721 611 413 

A
u
to

p
h
ag

y
 

Total proteins 95 (1.41%) 0.83 11 (1.64%) 1.25 6 (1.45%) 0.40 

Regulation of induction: regulators 26 (0.39%) 0.20 4 (0.65%) 0.18 2 (0.73%) 0.17 

Regulation of induction: 

autophagosome-generating machinery 
24 (0.36%) 0.12 1 (0.16%) 0.09 0 (0%) 0 

Cargo packaging 8 (0.12%) 0.32 2 (0.33%) 0.57 2 (0.48%) 0.04 

Vesicle nucleation 5 (0.07%) 0.01 0 (0%) 0 0 (0%) 0 

Vesicle expansion and completion 26 (0.39%) 0.15 1 (0.16%) 0.32 1 (0.24%) 0.19 

Retrieval 7 (0.1%) 0.03 1 (0.16%) 0.01 1 (0.24%) 0.01 

Docking and fusion 14 (0.21%) 0.04 2 (0.33%) 0.07 0 (0%) 0 

Vesicle breakdown 1 (0.01%) 0.01 0 (0%) 0 0 (0%) 0 

Permease efflux 1 (0.01%) 0 0 (0%) 0 0 (0%) 0 

A
u
to

ly
si

s 

Total proteins 128 (1.90%) 1.17 12 (1.96%) 1.66 12 (2.91%) 4.20 

Vacuolar proteases 12 (0.18%) 0.13 5 (0.82%) 0.63 4 (0.97%) 1.97 

Protease inhibitors 4 (0.06%) 0.003 0 (0%) 0 2 (0.48%) 0.32 

Glucanases 12 (0.18%) 0.19 2 (0.33%) 0.67 2 (0.48%) 1.48 

Nucleases 108 (1.61%) 0.65 5 (0.82%) 0.36 2 (0.48%) 0.07 

Mannosidases 8 (0.12%) 0.04 0 (0%) 0 1 (0.24%) 0.23 

Lipases 32 (0.48%) 0.16 1 (0.16%) 0.01 1 (0.24%) 0.12 

A
p
o
p
to

si
s 

 

Total proteins 
39 (0.58%) 2.03 8 (1.31%) 1.98 10 (2.42%) 2.96 

 6 
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Figure 1 1 

2 

FIG 1. Illustration showing main steps in yeast autophagy, autolysis and apoptosis. 3 

PAS: pre-autophagosomal structure/phagophore assembly site; IM: isolation membrane 4 

for the formation of the sequestering vesicle; Cvt: cytoplasm to vacuole targeting; ROS: 5 
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reactive oxygen species; AMID: AIF-homologous mitochondrion-associated inducer of 6 

death. 7 
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Figure 2 1 

 2 

      3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

FIG 2. Content (mol%) of proteins related to autophagy detected in the flor yeast 17 

subjected to biofilm forming (BFC) in orange, fermentative conditions (FC) in blue and 18 

under nutrient rich conditions at log phase [29] in grey. 19 
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FIG 3. Content (mol%) of proteins related to autolysis detected 

in the flor yeast subjected to biofilm forming (BFC) in orange, 

fermentative conditions (FC) in blue and under nutrient rich 

conditions at log phase [29] in grey. 
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Figure 4 1 

 2 

 3 

 4 

 5 

FIG 4. Content (mol%) of proteins related to apoptosis detected in the flor yeast 6 

subjected to biofilm forming (BFC) in orange, fermentative conditions (FC) in blue and 7 

under nutrient rich conditions at log phase [29] in grey. 8 
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