
  

  

Abstract— To alleviate the over-diagnosis and over-
treatment of premalignant conditions we need to predict their 
progression to cancer, and therefore, the dynamics of an 
evolutionary process. However, monitoring evolutionary 
processes in vivo is extremely challenging. Computer 
simulations constitute an attractive alternative, allowing us to 
study these dynamics based on a set of evolutionary 
parameters. 

 We introduce CryptSim, a simulator of crypt evolution 
inspired by Barrett’s esophagus. We detail the most relevant 
computational strategies it implements, and perform a 
simulation study showing that the interaction between 
neighboring crypts may play a crucial role in carcinogenesis.   
 

I. INTRODUCTION TO THE TYPE OF PROBLEM IN CANCER  

Pre-malignant conditions are changes in the normal tissue 
structure–usually characterized by dysplasia or benign 
neoplasia–that increase the risk of developing a specific kind 
of cancer. These conditions are generally detected via 
screening, and their association with cancer fosters their 
surveillance and aggressive treatment. However, their 
probability of progression to invasive cancer is often low 
(e.g., 0.12% of patients with Barrett’s esophagus (BE) 
without dysplasia progress to esophageal adenocarcinoma 
every year [1]), and therefore most actions carried out on 
patients with these conditions constitute over-treatment. To 
reduce over-treatment we need to improve our risk 
stratification procedures, which means we must improve our 
ability to predict the progression of pre-malignant conditions 
to invasive cancers. Cancer is a disease of the somatic 
genome in which somatic cells mutate and evolve. Therefore, 
predicting cancer progression implies predicting evolution. 
While rough estimates of somatic evolutionary parameters 
are available (see [3] for a summary), these are not enough to 
fully understand or predict cancer progression. Studying 
evolutionary processes in vivo is extremely difficult due to 
economic, ethical, temporal and sampling-related limitations. 
Moreover, because somatic evolution is a stochastic process, 
we may require impractically large sample sizes to detect 
regularities. Computer simulations are an attractive 
alternative and complementary approach to surveillance of 

 
Research supported in part by NIH grants P01 CA91955, R01 

CA149566, R01 CA170595, R01 CA185138 and R01 CA140657 as well as 
CDMRP Breast Cancer Research Program Award BC132057. 

D. M. and C. C. Maley are with the Arizona State University, Tempe, 
AZ 85287, USA (corresponding author phone: +1-480-727-7320, emails: 
dmalload@asu.edu, maley@asu.edu). R. Kostadinov is with the Johns 
Hopkins University, Baltimore, MD 21218, USA (email: rumen@jhu.edu). 
L. Cisneros is with NantOmics, LLC (email: 
luis.cisneros@nantomics.com). M. K. Kuhner is with the University of 
Washington, Seattle, WA 98195-5065, USA (email: 
mkkuhner@u.washington.edu).   

 

patient cohorts. Simulations allow us to perform as many 
replicates as are needed and eliminate sampling limitations. 
There is, however, a combinatorial explosion in the number 
and combinations of parameters, and so we restrict the 
investigation of the model to a set of a priori most relevant 
parameters. 

Barrett’s esophagus (BE) is a pre-malignant condition 
that increases the risk of progression to esophageal 
adenocarcinoma [4]. The BE epithelium is divided into 
crypts, well-like structures with a few stem cells near the 
bottom. Crypts are relatively homogeneous units of selection 
that accumulate mutations, divide and die. High genetic 
diversity among crypts at initial endoscopy is associated with 
progression [5,6], and clonal expansions via crypt divisions 
have been observed [7,8]. However, little is known about the 
dynamics of this process or the relative importance and role 
of the different evolutionary parameters that drive 
progression.  

In this highlight, we introduce CryptSim [9]–a simulator 
of crypt evolution inspired by BE. Using it, we show that the 
interaction between neighboring crypts plays a key role in 
carcinogenesis of neoplasms that occur in crypt-based two-
dimensional tissues, constituting a promising target for 
cancer prevention.  

II. ILLUSTRATIVE RESULTS OF APPLICATION OF METHODS 

We performed a series of simulation studies to assess the 
effect of different evolutionary and crypt-biology parameters 
in carcinogenesis (see Table 1 for a list of simulation 
parameters). It is unclear if a dividing crypt can replace a 
neighbor or if it must wait for a neighbor to die before it can 
divide. We model this with a parameter for the probability of 
replacing a neighbor crypt. The value of this parameter 
dramatically affected progression to cancer. Reducing the 
probability that a crypt could replace a neighbor reduced the 
probability of progression, and zero probability of replacing a 
neighbor completely stopped progression (Fig. 1).  

The implications of this finding are twofold. On the one 
hand, it shows the need for a better understanding of basic 
crypt biology to better model and predict cancer progression. 
Specifically, little is known about the process and dynamics 
of tissue homeostasis at the crypt level (e.g., control of 
replication, replication rate, and death rate). On the other 
hand, it highlights the key role of spatial competition in 
cancer progression. Progression to cancer requires the 
acquisition of a few advantageous mutations (i.e., driver 
mutations) in (at least) one clone in order to acquire the 
hallmarks of cancer [10]. Large population sizes increase the 
rate of fitness increases by mutations and natural selection. 
However, in most tissues population sizes are limited by 
spatial competition.  
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TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

N. selective loci, m 5 reproductive selection loci 

Mutation rate, µ 10-5 mutations/locus/replication 

Selective coefficients, r 0.3,0.66,1.13,1.79,2.92 

Mutation model, a Time-dependent 

Crypt division time, b 50 days 

Tissue size, h x w 300 x 300 crypts 

 

The replacement of neighboring crypts included in our 
model facilitates somatic evolution and constitutes a 
promising target for cancer prevention. Although high tissue 
renewal rates (i.e., high replication and death rates) and 
reductions in crypt size are additional mechanisms that could 
provide additional space for evolution to act, they would 
require unrealistic parameter values to allow cancer 
progression. 

III. QUICK GUIDE TO THE METHODS 

Cryptsim’s model is composed of three main 
constituents: an agent-based model, a two-dimensional 
spatial model, and a clone tree. The agent-based model 
describes the evolution of crypts through time. Using crypts 
rather than cells as our basic unit allows us to keep 
computational requirements of realistic tissue sizes within 
reason and is based on the fact that the small number of stem 
cells in a crypt are thought to be rapidly homogenized by 
genetic drift. Each crypt i has associated a genome Xi 
composed of n neutral and m selective loci l=m+n. Crypts 
can undergo four different events, each controlled by a rate: 
replication (b), death (d), mutation of neutral loci (v), and 
mutation of selective loci (µ). All events can act freely 
except replication, which requires free space in the 
neighborhood of the dividing crypt. If there is none, the new 
crypt can replace a neighbor at random with probability p. 
While most simulation parameters are constant and shared 
for all crypts for each simulation run, Xi, bi, and di are private 
to the crypts and change with the accumulation of mutations 
modifying genotype and crypt fitness. Cryptsim assumes an 
irreversible binary model for selective mutations (each Xl Î 
{0 (normal), 1 (mutated)}), and an additive model for the 
neutral mutations. Each selective locus Xl, with l Î {1…m}, 
has associated selective coefficients rl and sl, which modify 
replication rate b and death rate d, respectively (1) and (2). 

 
 𝑏" = 𝑏∏ (1 + 𝑋",*𝑟*)-

*./   (1) 
 𝑑" = 𝑑∏ (1	–𝑋",*𝑠*)-

*./   (2) 
 

Mutation rates (µ and v) per locus can be relative to time or 
replication events, which is determined by the a parameter. 
The first option captures the effect of external mutagens (like 
the acidic environment in BE) while the second models 
errors in the DNA replication and DNA repair machinery. 
Equations (3) and (4) show the effect of a in the calculation 

of crypt selective (µi) and neutral (vi) mutation rates per time 
unit for a given crypt i. 
 

  
Figure 1.  Effect on carcinogenesis of the probability of replacing a 

neighbor crypt (p: 1, 0.5, 0.2, 0.1, 0, indicated by different colors). 

 µ" = 𝑚µ𝑏∏ (1 + 𝑋",*𝑟*)5-
*./   (3) 

 𝑣" = 𝑛𝑣𝑏∏ (1 + 𝑋",*𝑟*)5-
*./   (4)  

 
The two-dimensional spatial model represents the BE 

segment and consists of a hw (height x width) hexagonal 
lattice wrapped along the h dimension. This component 
allows us to consider neighbor interactions and limit the 
carrying capacity (i.e., maximum population size) of the 
simulated neoplasm; and can be either empty or full of 
normal crypts when the simulation starts. 

Finally, a clone tree keeps track of the ancestral 
relationships of the different clones, their genotypes and 
divergence times. 

A. Strategies to overcome computational challenges 
Forward simulation of a BE segment using biologically-

reasonable parameters requires on the order of one billion 
crypt divisions, which makes this problem computationally 
intensive. Cryptsim implements a series of strategies to 
reduce its computational burden, among which we would 
like to highlight the usage of the Gillespie algorithm [11] and 
the calculation of genotypes on-the-fly using the clone tree. 
Rather than checking every crypt every time step for a rare 
event, we calculate the time until the next event and keep an 
ordered queue of events. This algorithm can be summarized 
in the following steps: a) sample the waiting time to the next 
event from an exponential distribution with rate equal to the 
sum of rates of all events, b) sample the event with 
probability proportional to its relative rate, c) choose the 
crypt that carries out the event at random, d) advance the 
sampled waiting time and carry out the event, e) update rates 
and iterate. The clone tree reduces memory requirements and 
operations by not storing genomes of each crypt (Xi). Thus, 
crypts pertain to the spatial model and are linked to clones in 
the clone tree and rate groups in an associative array 
(determined by their selective genome). Mutations generate 
new clones in the clone tree, which also tracks their new 
mutation and rate group. Crypt replacements only change 
crypt information and their linkage with the clone tree, 
avoiding copying Xi for every replication. Clone genotypes 
are obtained with a simple tree traversal when needed. This 
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clone tree is regularly pruned to remove extinct subtrees, 
minimizing memory requirements. 

B. Settings in which these methods are useful 
As-is, this model can be applied to study evolutionary 

dynamics of somatic evolution of two-dimensional 
neoplasms organized in crypts, such as BE or the colon. 
However, most of the computational techniques detailed here 
can be applied to the study of somatic evolution in general.    

C. Availability 
Cryptsim is implemented in Java and will be distributed 

under the GPL v3 license upon publication. In the meantime, 
contact the authors to get access to the source code. 
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