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Given the recent controversies in some neuroimaging statistical methods, we compare

the most frequently used functional Magnetic Resonance Imaging (fMRI) analysis

packages: AFNI, FSL and SPM, with regard to temporal autocorrelation modeling.

This process, sometimes known as pre-whitening, is conducted in virtually all task

fMRI studies. We employ eleven datasets containing 980 scans corresponding to

different fMRI protocols and subject populations. Though autocorrelation modeling

in AFNI is not perfect, its performance is much higher than the performance of

autocorrelation modeling in FSL and SPM. The residual autocorrelated noise in FSL

and SPM leads to heavily confounded first level results, particularly for low-frequency

experimental designs. Our results show superior performance of SPM’s alternative

pre-whitening: FAST, over SPM’s default. The reliability of task fMRI studies would

increase with more accurate autocorrelation modeling. Furthermore, reliability could

increase if the packages provided diagnostic plots. This way the investigator would

be aware of pre-whitening problems.
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Functional Magnetic Resonance Imaging (fMRI) data is
known to be positively autocorrelated in time1. It results
from neural sources, but also from scanner-induced low-
frequency drifts, respiration and cardiac pulsation, as well
as from movement artefacts not accounted for by motion
correction2. If this autocorrelation is not accounted for,
spuriously high fMRI signal at one time point can be pro-
longed to the subsequent time points, which increases the
likelihood of obtaining false positives in task studies3. As a
result, parts of the brain might erroneously appear active
during an experiment. The degree of temporal autocorrela-
tion is different across the brain4. In particular, autocorre-
lation in gray matter is stronger than in white matter and
cerebrospinal fluid, but it also varies within gray matter.

AFNI5, FSL6 and SPM7, the most popular packages used
in fMRI research, first remove the signal at very low fre-
quencies (for example using a high-pass filter), after which
they estimate the residual temporal autocorrelation and re-
move it in a process called pre-whitening. In AFNI tem-
poral autocorrelation is modeled voxel-wise. For each voxel,
an autoregressive-moving-average ARMA(1,1) model is esti-
mated. The two ARMA(1,1) parameters are estimated only
on a discrete grid and are not spatially smoothed. For FSL, a
Tukey taper is used to smooth the spectral density estimates
voxel-wise. These smoothed estimates are then additionally
smoothed within tissue type. Woolrich et al.8 has shown the
applicability of the FSL’s method in two fMRI protocols:
with repetition time (TR) of 1.5s and of 3s, and with voxel
size 4x4x7 mm3. By default, SPM estimates temporal auto-
correlation globally as an autoregressive AR(1) plus white
noise process9. SPM has an alternative approach: FAST, but
we know of only three studies which have used it10–12. FAST
uses a dictionary of covariance components based on expo-
nential covariance functions12. More specifically, the dictio-
nary is of length 3p and is composed of p different exponen-
tial time constants along their first and second derivatives.
By default, FAST employs 18 components. Like SPM’s de-
fault pre-whitening method, FAST is based on a global noise
model.

Lenoski et al.13 compared several fMRI autocorrelation
modeling approaches for one fMRI protocol (TR=3s, voxel
size 3.75x3.75x4 mm3). The authors found that the use
of the global AR(1), of the spatially smoothed AR(1) and
of the spatially smoothed FSL-like noise models resulted
in worse whitening performance than the use of the non-
spatially smoothed noise models. Eklund et al.14 showed
that in SPM the shorter the TR, the more likely it is to
get false positive results in first level (also known as single
subject) analyses. It was argued that SPM often does not
remove a substantial part of the autocorrelated noise. The
relationship between shorter TR and increased false posi-
tive rates was also shown for the case when autocorrelation
is not accounted3.

In this study we investigate the whitening performance
of AFNI, FSL and SPM for a wide variety of fMRI proto-
cols. We analyze both the default SPM’s method and the
alternative one: FAST. Furthermore, we analyze the result-
ing specificity-sensitivity trade-offs in first level fMRI re-
sults, and investigate the impact of pre-whitening on second

level analyses. We observe better whitening performance for
AFNI and SPM tested with option FAST than for FSL and
SPM. Imperfect pre-whitening heavily confounds first level
analyses.

Methods
Data. In order to explore a range of parameters that may
affect autocorrelation, we investigated 11 fMRI datasets
(Table 1). These included resting state and task studies,
healthy subjects and a patient population, different TRs,
magnetic field strengths and voxel sizes. We also used
anatomical MRI scans, as they were needed for the regis-
tration of brains to the MNI (Montreal Neurological Insti-
tute) atlas space. FCP15, NKI16 and CamCAN data17 are
publicly shared anonymized data. Data collection at the
respective sites was subject to their local institutional re-
view boards (IRBs), who approved the experiments and the
dissemination of the anonymized data. For the 1,000 Func-
tional Connectomes Project (FCP), collection of the Beijing
data was approved by the IRB of State Key Laboratory
for Cognitive Neuroscience and Learning, Beijing Normal
University; collection of the Cambridge data was approved
by the Massachusetts General Hospital partners IRB. For
the Enhanced NKI Rockland Sample, collection and dis-
semination of the data was approved by the NYU School
of Medicine IRB. For the analysis of an event-related design
dataset, we used the CamCAN dataset (Cambridge Cen-
tre for Ageing and Neuroscience, www.cam-can.org). Eth-
ical approval for the study was obtained from the Cam-
bridgeshire 2 (now East of England - Cambridge Central)
Research Ethics Committee. The study from Magdeburg,
“BMMR checkerboard”18, was approved by the IRB of the
Otto von Guericke University. The study of Cambridge Re-
search into Impaired Consciousness (CRIC) was approved by
the Cambridge Local Research Ethics Committee (99/391).
In all studies all subjects or their consultees gave informed
written consent after the experimental procedures were ex-
plained. One rest dataset consisted of simulated data gener-
ated with the neuRosim package in R19. Simulation details
can be found in Supplementary Information.

Analysis pipeline. For AFNI, FSL and SPM analyses,
the preprocessing, brain masks, brain registrations to the
2 mm isotropic MNI atlas space, and multiple comparison
corrections were kept consistent (Fig. 1). This way we lim-
ited the influence of possible confounders on the results. In
order to investigate whether our results are an artefact of
the comparison approach used for assessment, we compared
AFNI, FSL and SPM by investigating (1) the power spectra
of the GLM residuals, (2) the spatial distribution of signifi-
cant clusters, (3) the average percentage of significant voxels
within the brain mask, and (4) the positive rate: propor-
tion of subjects with at least one significant cluster. The
power spectrum represents the variance of a signal that is
attributable to an oscillation of a given frequency. When
calculating the power spectra of the GLM residuals, we con-
sidered voxels in native space using the same brain mask
for AFNI, FSL and SPM. For each voxel, we normalized the
time series to have variance 1 and calculated the power spec-
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Table 1: Overview of the employed datasets.

Study Experiment Place Design No. Field TR Voxel No. Time
subjects [T] [s] size [mm] voxels points

FCP resting state Beijing N/A 198 3 2 3.1x3.1x3.6 64x64x33 225
resting state Cambridge, US N/A 198 3 3 3x3x3 72x72x47 119

NKI resting state Orangeburg, US N/A 30 3 1.4 2x2x2 112x112x64 404
resting state Orangeburg, US N/A 30 3 0.645 3x3x3 74x74x40 900

CRIC resting state Cambridge, UK N/A 73 3 2 3x3x3.8 64x64x32 300
neuRosim resting state (simulated) N/A 100 NA 2 3.1x3.1x3.6 64x64x33 225

NKI checkerboard Orangeburg, US 20s off+20s on 30 3 1.4 2x2x2 112x112x64 98
checkerboard Orangeburg, US 20s off+20s on 30 3 0.645 3x3x3 74x74x40 240

BMMR checkerboard Magdeburg 12s off+12s on 21 7 3 1x1x1 182x140x45 80
CRIC checkerboard Cambridge, UK 16s off+16s on 70 3 2 3x3x3.8 64x64x32 160

CamCAN sensorimotor Cambridge, UK event-related 200 3 1.97 3x3x4.44 64x64x32 261

FCP = Functional Connectomes Project. NKI = Nathan Kline Institute. BMMR = Biomedical Magnetic Resonance. CRIC = Cambridge
Research into Impaired Consciousness. CamCAN = Cambridge Centre for Ageing and Neuroscience. For the Enhanced NKI data, only scans
from release 3 were used. Out of the 46 subjects in release 3, scans of 30 subjects were taken. For the rest, at least one scan was missing. For
the BMMR data, there were 7 subjects at 3 sessions, resulting in 21 scans. For the CamCAN data, 200 subjects were considered only.

tra as the square of the discrete Fourier transform. Without
variance normalization, different signal scaling across vox-
els and subjects would make it difficult to interpret power
spectra averaged across voxels and subjects.

Apart from assuming dummy designs for resting state
data as in recent studies14;20;21, we also assumed wrong
(dummy) designs for task data, and we used resting state
scans simulated using the neuRosim package in R19. We
treated such data as null data. For null data, the positive
rate is the familywise error rate, which was investigated in
a number of recent studies14;20;21. We use the term “signif-
icant voxel” to denote a voxel that is covered by one of the
clusters returned by the multiple comparison correction.

All the processing scripts needed to fully replicate our
study are at https://github.com/wiktorolszowy/fMRI_

temporal_autocorrelation. We used AFNI 16.2.02, FSL
5.0.10 and SPM 12 (v7219).

Preprocessing. Slice timing correction was not performed
as part of our main analysis pipeline, since for some datasets
the slice timing information was not available. In each of
the three packages we performed motion correction, which
resulted in 6 parameters that we considered as confounders
in the consecutive statistical analysis. As the 7T scans from
the “BMMR checkerboard” dataset were prospectively mo-
tion corrected22, we did not perform motion correction on
them. The “BMMR checkerboard” scans were also prospec-
tively distortion corrected23. For all the datasets, in each
of the three packages we conducted high-pass filtering with
frequency cut-off of 1/100 Hz. We performed registration to
MNI space only within FSL. For AFNI and SPM, the results
of the multiple comparison correction were registered to
MNI space using transformations generated by FSL. First,
anatomical scans were brain extracted with FSL’s brain ex-
traction tool (BET)24. Then, FSL’s boundary based regis-
tration (BBR) was used for registration of the fMRI volumes
to the anatomical scans. The anatomical scans were aligned
to 2 mm isotropic MNI space using affine registration with
12 degrees of freedom. The two transformations were then
combined for each subject and saved for later use in all anal-

yses, including in those started in AFNI and SPM. Gaussian
spatial smoothing was performed in each of the packages
separately.

Statistical analysis. For analyses in each package, we
used the canonical hemodynamic response function (HRF)
model, also known as the double gamma model. It is imple-
mented the same way in AFNI, FSL and SPM: the response
peak is set at 5 seconds after stimulus onset, while the post-
stimulus undershoot is set at around 15 seconds after onset.
This function was combined with each of the assumed de-
signs using the convolution function. To account for possi-
ble response delays and different slice acquisition times, we
used in the three packages the first derivative of the double
gamma model, also known as the temporal derivative. We
did not incorporate physiological recordings to the analysis
pipeline, as these were not available for most of the datasets
used.

We estimated the statistical maps in each package sepa-
rately. AFNI, FSL and SPM use Restricted Maximum Like-
lihood (ReML), where autocorrelation is estimated given
the residuals from an initial Ordinary Least Squares (OLS)
model estimation. The ReML procedure then pre-whitens
both the data and the design matrix, and estimates the
model. We continued the analysis with the statistic maps
corresponding to the t-test with null hypothesis being that
the full regression model without the canonical HRF ex-
plains as much variance as the full regression model with the
canonical HRF. All three packages produced brain masks.
The statistic maps in FSL and SPM were produced within
the brain mask only, while in AFNI the statistic maps were
produced for the entire volume. We masked the statistic
maps from AFNI, FSL and SPM using the intersected brain
masks from FSL and SPM. We did not confine the anal-
yses to a gray matter mask, because autocorrelation is at
strongest in gray matter4. In other words, false positives
caused by imperfect pre-whitening can be expected to oc-
cur mainly in gray matter. By default, AFNI and SPM
produced t-statistic maps, while FSL produced both t- and
z-statistic maps. In order to transform the t-statistic maps
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Fig. 1: The employed analyses pipelines. For SPM, we investigated both the default noise model and the alternative noise model: FAST. The
noise models used by AFNI, FSL and SPM were the only relevant difference (marked in a red box).

to z-statistic maps, we extracted the degrees of freedom from
each analysis output.

Next, we performed multiple comparison correction in
FSL for all the analyses, including for those started in AFNI
and SPM. First, we estimated the smoothness of the brain-
masked 4-dimensional residual maps using the smoothest

function in FSL. Knowing the DLH parameter, which de-
scribes image roughness, and the number of voxels within

the brain mask (VOLUME), we then ran the cluster func-
tion in FSL on the z-statistic maps using a cluster defining
threshold of 3.09 and significance level of 5%. This is the
default multiple comparison correction in FSL. Finally, we
applied previously saved MNI transformations to the binary
maps which were showing the location of the significant clus-
ters.
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Results

Whitening performance of AFNI, FSL and SPM. To
investigate the whitening performance resulting from the use
of noise models in AFNI, FSL and SPM, we plotted the
power spectra of the GLM residuals. Figure 2 shows the
power spectra averaged across all brain voxels and subjects
for smoothing of 8 mm and assumed boxcar design of 10s of
rest followed by 10s of stimulus presentation. The statistical
inference in AFNI, FSL and SPM relies on the assumption
that the residuals after pre-whitening are white. For white
residuals, the power spectra should be flat. However, for
all the datasets and all the packages, there was some visible
structure. The strongest artefacts were visible for FSL and
SPM at low frequencies. At high frequencies, power spectra
from FAST were closer to 1 than power spectra from the
other methods. Figure 2 does not show respiratory spikes
which one could expect to see. This is because the figure
refers to averages across subjects. We observed respiratory
spikes when analyzing power spectra for single subjects (not
shown).

Resulting specificity-sensitivity trade-offs. In order to
investigate the impact of the whitening performance on first
level results, we analyzed the spatial distribution of signifi-
cant clusters in AFNI, FSL and SPM. Figure 3 shows an ex-
emplary axial slice in the MNI space for 8 mm smoothing. It
was made through the imposition of subjects’ binarized sig-
nificance masks on each other. Scale refers to the percentage
of subjects within a dataset where significant activation was
detected at the given voxel. The x-axis corresponds to four
assumed designs. Resting state data was used as null data.
Thus, low numbers of significant voxels were a desirable out-
come, as this was suggesting high specificity. Task data with
assumed wrong designs was used as null data too. Thus,
clear differences between the true design (indicated with
red boxes) and the wrong designs were a desirable outcome.
For FSL and SPM, often the relationship between lower as-
sumed design frequency (“boxcar40” vs. “boxcar12”) and
an increased number of significant voxels was visible, in par-
ticular for the resting state datasets: “FCP Beijing”, “FCP
Cambridge” and “CRIC”. For null data, significant clus-
ters in AFNI were scattered primarily within gray matter.
For FSL and SPM, many significant clusters were found in
the posterior cingulate cortex, while most of the remain-
ing significant clusters were scattered within gray matter
across the brain. False positives in gray matter occur due
to the stronger positive autocorrelation in this tissue type
compared to white matter4. For the task datasets: “NKI
checkerboard TR=1.4s”, “NKI checkerboard TR=0.645s”,
“BMMR checkerboard” and “CRIC checkerboard” tested
with the true designs, the majority of significant clusters
were located in the visual cortex. This resulted from the
use of visual experimental designs for the fMRI task. For
the impaired consciousness patients (“CRIC”), the registra-
tions to MNI space were imperfect, as the brains were often
deformed.

Additional comparison approaches. The above analysis
referred to the spatial distribution of significant clusters on

an exemplary axial slice. As the results can be confounded
by the comparison approach, we additionally investigated
two other comparison approaches: the percentage of sig-
nificant voxels and the positive rate. Supplementary Fig. 1
shows the average percentage of significant voxels across sub-
jects in 10 datasets for smoothing of 8 mm and for 16 as-
sumed boxcar experimental designs. As more designs were
considered, the relationship between lower assumed design
frequency and an increased percentage of significant voxels
in FSL and SPM (discussed before for Fig. 3) was even more
apparent. This relationship was particularly interesting for
the “CRIC checkerboard” dataset. When tested with the
true design, the percentage of significant voxels for AFNI,
FSL, SPM and FAST was similar: 1.2%, 1.2%, 1.5% and
1.3%, respectively. However, AFNI and FAST returned much
lower percentages of significant voxels for the assumed wrong
designs. For the assumed wrong design “40”, FSL and SPM
returned on average a higher percentage of significant vox-
els than for the true design: 1.4% and 2.2%, respectively.
Results for AFNI and FAST for the same design showed only
0.3% and 0.4% of significantly active voxels.

Overall, at an 8 mm smoothing level, AFNI and FAST

outperformed FSL and SPM showing a lower average per-
centage of significant voxels in tests with the wrong designs:
on average across 10 datasets and across the wrong designs,
the average percentage of significant voxels was 0.4% for
AFNI, 0.9% for FSL, 1.9% for SPM and 0.4% for FAST.

As multiple comparison correction depends on the
smoothness level of the residual maps, we also checked the
corresponding differences between AFNI, FSL and SPM.
The residual maps seemed to be similarly smooth. At an
8 mm smoothing level, the average geometric mean of the
estimated FWHMs of the Gaussian distribution in x-, y-,
and z-dimensions across the 10 datasets and across the 16
assumed designs was 10.9 mm for AFNI, 10.3 mm for FSL,
12.0 mm for SPM and 11.8 mm for FAST. Moreover, we inves-
tigated the percentage of voxels with z-statistic above 3.09.
This value is the 99.9% quantile of the standard normal dis-
tribution and is often used as the cluster defining threshold.
For null data, this percentage should be 0.1%. The average
percentage across the 10 datasets and across the wrong de-
signs was 0.6% for AFNI, 1.2% for FSL, 2.1% for SPM and
0.4% for FAST.

Supplementary Figs. 2-3 show the positive rate for
smoothing of 4 and 8 mm. The general patterns resem-
ble those already discussed for the percentage of significant
voxels, with AFNI and FAST consistently returning lowest
positive rates (familywise error rates) for resting state scans
and task scans tested with wrong designs. For task scans
tested with the true designs, the positive rates for the dif-
ferent pre-whitening methods were similar. The black hor-
izontal lines show the 5% false positive rate, which is the
expected proportion of scans with at least one significant
cluster if in reality there was no experimentally-induced sig-
nal in any of the subjects’ brains. The dashed horizontal
lines are the confidence intervals for the proportion of false
positives. These were calculated knowing that variance of a
Bernoulli(p) distributed random variable is p(1 − p). Thus,
the confidence intervals were 0.05 ±

√
0.05 · 0.95/n, with n
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Fig. 2: Power spectra of the GLM residuals in native space averaged across brain voxels and across subjects for the assumed boxcar design
of 10s of rest followed by 10s of stimulus presentation (“boxcar10”). The dips at 0.05 Hz are due to the assumed design period being 20s
(10s + 10s). For some datasets, the dip is not seen as the assumed design frequency was not covered by one of the sampled frequencies. The
frequencies on the x-axis go up to the Nyquist frequency, which is 0.5/TR. If after pre-whitening the residuals were white (as it is assumed),
the power spectra would be flat. AFNI and SPM’s alternative method: FAST, led to best whitening performance (most flat spectra). For FSL
and SPM, there was substantial autocorrelated noise left after pre-whitening, particularly at low frequencies.
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denoting the number of subjects in the dataset.

Since smoothing implicitly affects the voxel size, we con-
sidered different smoothing kernel sizes. We chose 4, 5
and 8 mm, as these are the defaults in AFNI, FSL and
SPM. No smoothing was also considered, as for 7T data
this preprocessing step is sometimes avoided25;26. With a
wider smoothing kernel, the percentage of significant vox-
els increased (not shown), while the positive rate decreased.
Differences between AFNI, FSL, SPM and FAST discussed
above for the four comparison approaches and smoothing of
8 mm were consistent across the four smoothing levels.

Further results are available from https://github.com/

wiktorolszowy/fMRI_temporal_autocorrelation/tree/

master/figures

Event-related design studies. In order to check if differ-
ences in autocorrelation modeling in AFNI, FSL and SPM
lead to different first level results for event-related design
studies, we analyzed the CamCAN dataset. The task was a
sensorimotor one with visual and audio stimuli, to which the
participants responded by pressing a button. The design was
based on an m-sequence27. Supplementary Fig. 4 shows (1)
power spectra of the GLM residuals in native space averaged
across brain voxels and across subjects for the assumed true
design (“E1”), (2) average percentage of significant voxels
for three wrong designs and the true design, (3) positive rate
for the same four designs, and (4) spatial distribution of sig-
nificant clusters for the assumed true design (“E1”). Only
smoothing of 8 mm was considered. The dummy event-
related design (“E2”) consisted of relative stimulus onset
times generated from a uniform distribution with limits 3s
and 6s. The stimulus duration times were 0.1s.

For the assumed low-frequency design (“B2”), AFNI’s au-
tocorrelation modeling led to the lowest familywise error
rate as residuals from FSL and SPM again showed a lot
of signal at low frequencies. However, residuals from SPM
tested with option FAST were similar at low frequencies to
AFNI’s residuals. As a result, the familywise error rate
was similar to AFNI. For high frequencies, power spectra
from SPM tested with option FAST were more closely around
1 than power spectra corresponding to the standard three
approaches (AFNI/FSL/SPM). For an event-related design
with very short stimulus duration times (around zero), resid-
ual positive autocorrelation at high frequencies makes it
difficult to distinguish the activation blocks from the rest
blocks, as part of the experimentally-induced signal is in
the assumed rest blocks. This is what happened with AFNI
and SPM. As their power spectra at high frequencies were
above 1, we observed for the true design a lower percentage
of significant voxels compared to SPM tested with option
FAST. On the other hand, FSL’s power spectra at high fre-
quencies were below 1. As a result, FSL decorrelated acti-
vation blocks from rest blocks possibly introducing negative
autocorrelations at high frequencies, leading to a higher per-
centage of significant voxels than SPM tested with option
FAST. Though we do not know the ground truth, we might
expect that AFNI and SPM led for this event-related de-
sign dataset to more false negatives than SPM with option
FAST, while FSL led to more false positives. Alternatively,

FSL might have increased the statistic values above their
nominal values for the truly but little active voxels.

Slice timing correction. As slice timing correction is
an established preprocessing step, which often increases
sensitivity28, we analyzed its impact on pre-whitening
for two datasets for which we knew the acquisition or-
der: “CRIC checkerboard” and “CamCAN sensorimotor”.
“CRIC checkerboard” scans were acquired with an inter-
leave acquisition starting with the second axial slice from the
bottom (followed with fourth slice, etc.), while “CamCAN
sensorimotor” scans were acquired with a descending acqui-
sition with the most upper axial slice being scanned first.
We considered only the true designs. For the two datasets
and for the four pre-whitening methods, slice timing cor-
rection changed the power spectra of the GLM residuals in
a very limited way (Supplementary Fig. 5). Regardless of
whether slice timing correction was performed or not, pre-
whitening approaches from FSL and SPM left substantial
positive autocorrelated noise at low frequencies, while FAST

led to even more flat power spectra than AFNI. We also in-
vestigated the average percentage of significant voxels (Sup-
plementary Table 1). Slice timing correction changed the
amount of significant activation only negligibly, with the
exception of AFNI’s pre-whitening in the “CamCAN senso-
rimotor” scans. In the latter case, the apparent sensitivity
increase (from 7.64% to 13.45% of the brain covered by sig-
nificant clusters) was accompanied by power spectra of the
GLM residuals falling below 1 for the highest frequencies.
This suggests negative autocorrelations were introduced at
these frequencies, which could have led to statistic values
being on average above their nominal values.

Group studies. To investigate the impact of pre-whitening
on the group level, we performed via SPM random effects
analyses and via AFNI’s 3dMEMA29 we performed mixed ef-
fects analyses. To be consistent with a previous study on
group analyses21, we considered one-sample t-test with sam-
ple size 20. For each dataset, we considered the first 20
subjects. We exported coefficient maps and t-statistic maps
(from which standard errors can be derived) following 8 mm
spatial smoothing and pre-whitening from AFNI, FSL, SPM
and FAST. Both for the random effects analyses and for the
mixed effects analyses, we employed cluster inference with
cluster defining threshold of 0.001 and significance level of
5%. Altogether, we performed 1312 group analyses: 2 (for
random/mixed) × 4 (for pre-whitening) × (10×16 + 4) (for
the first 10 datasets tested with 16 boxcar designs each and
for the 11th dataset tested with four designs). We found
significant activation for 236 analyses, which we listed in
Supplementary Table 2.

For each combination of group analysis model and pre-
whitening (2 × 4), we ran 164 analyses. As five datasets
were task datasets, 159 analyses ran on null data. Sup-
plementary Table 3 shows FWER for the random effects
and mixed effects null data analyses, and for the four pre-
whitening approaches. On average, FWER for the mixed
effects analyses was almost twice higher than FWER for the
random effects analyses. The use of AFNI’s pre-whitening
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Fig. 3: Spatial distribution of significant clusters in AFNI (left), FSL (middle) and SPM (right) for different assumed experimental designs.
Scale refers to the percentage of subjects where significant activation was detected at the given voxel. The red boxes indicate the true designs
(for task data). Resting state data was used as null data. Thus, low numbers of significant voxels were a desirable outcome, as it was suggesting
high specificity. Task data with assumed wrong designs was used as null data too. Thus, large positive differences between the true design and
the wrong designs were a desirable outcome. The clearest cut between the true and the wrong/dummy designs was obtained with AFNI’s noise
model. FAST performed similarly to AFNI’s noise model (not shown).

led to highest FWER, while FAST led to lower FWER than
the SPM’s default approach.

Figure 4 shows the percentage of significant voxels for four
task datasets with assumed true designs. Results for the
“CRIC checkerboard” dataset are not shown, as no signifi-
cant clusters were found at the group level. This occurred
due to several of the subjects having deformed brains, which

led to the group brain mask not covering the primary visual
cortex. For the “BMMR checkerboard” dataset, the brain
mask was limited mainly to the occipital lobe and the per-
centage relates to the field of view that was used. Both for
the random effects analyses and for the mixed effects analy-
ses, we observed little effect of pre-whitening. For task data
tested with true designs, we found only negligible differences
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Group results for a mixed effects model
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Fig. 4: Group results for four task datasets with assumed true designs. Random effects analyses and mixed effects analyses led to only
negligibly different average percentages of significant voxels.

between the random effects analyses and the mixed effects
analyses.

Noteworthily, for the event-related task dataset “Cam-
CAN sensorimotor” tested with the true design, the use of
FAST led to slightly higher amount of significant activation
compared to the default SPM’s method, while FSL led to
much higher amount of significant activation. This means
that for this event-related design dataset, the sensitivity dif-
ferences from the first level analyses propagated to the sec-
ond level. This happened both for the random effects model
and for the mixed effects model.

As the above results suggest that the use of standard error
maps changes the group results in a very limited way only,
we investigated AFNI’s 3dMEMA by artificially re-scaling the
t-statistic maps for one false positive analysis: “NKI rest
(TR=1.4s)” dataset with assumed design 36s off + 36s on.
For each subject, we multiplied the value of each voxel with
0.01, 0.1, 0.5, 2, 5 and 10. We observed a surprising neg-
ative relationship between the magnitude of the t-statistic
maps and the amount of significant activation (Supplemen-
tary Table 4). Even when the t-statistics were extremely
small (standard errors 100 times bigger compared to the
original values), 3dMEMA found significant activation.

Discussion

In the case of FSL and SPM for the datasets “FCP Beijing”,
“FCP Cambridge”, “CRIC RS” and “CRIC checkerboard”,
there was a clear relationship between lower assumed design
frequency and an increased percentage of significant voxels.
This relationship exists when positive autocorrelation is not
removed from the data3. Autocorrelated processes show
increasing variances at lower frequencies. Thus, when the
frequency of the assumed design decreases, the mismatch
between the true autocorrelated residual variance and the
incorrectly estimated white noise variance grows. In this
mismatch, the variance is underestimated, which results in
a larger number of false positives.

An interesting case was the checkerboard experiment con-
ducted with impaired consciousness patients, where FSL and
SPM found a higher percentage of significant voxels for the
design with the assumed lowest design frequency than for
the true design. As this subject population was unusual,
one might suspect weaker or inconsistent response to the

stimulus. However, positive rates for this experiment for
the true design were all around 50%, substantially above
other assumed designs.

Compared to FSL and SPM, the use of AFNI’s and FAST

noise models for task datasets resulted in larger differences
between the true design and the wrong designs in the first
level results. This occurred because of more accurate auto-
correlation modeling in AFNI and in FAST. In our analyses,
FSL and SPM left a substantial part of the autocorrelated
noise in the data and the statistics were biased. For none of
the pre-whitening approaches were the positive rates around
5%, which was the significance level used in the cluster in-
ference. This is likely due to imperfect cluster inference in
FSL. High familywise error rates in first level FSL analyses
were already reported20. In our study the familywise error
rate following the use of AFNI’s and FAST noise models was
consistently lower than the familywise error rate following
the use of FSL’s and SPM’s noise models. Opposed to the
average percentage of significant voxels, high familywise er-
ror rate directly points to problems in the modeling of many
subjects.

The highly significant responses for the NKI datasets are
in line with previous findings14, where it was shown that
for fMRI scans with short TR it is more likely to detect
significant activation. The NKI scans that we considered
had TR of 0.645s and 1.4s, in both cases much shorter than
the usual repetition times. Such short repetition times are
now possible due to multiband sequences30. The shorter
the TR, the higher the correlations between adjacent time
points3. If positive autocorrelation in the data is higher than
the estimated level, then false positive rates will increase.
The former study14 only referred to SPM. In addition to
the previous study, we observed that the familywise error
rate for short TRs was substantially lower in FSL than in
SPM, though still much higher than for resting state scans
at TR=2s (“FCP Beijing” and “CRIC RS”). FSL models
autocorrelation more flexibly than SPM, which seems to be
confirmed by our study. For short TRs, AFNI’s performance
deteriorated too, as autocorrelation spans much more than
one TR and an ARMA(1,1) noise model can only partially
capture it.

Apart from the different TRs, we analyzed the impact of
spatial smoothing. If more smoothing is applied, the signal
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from gray matter will be often mixed with the signal from
white matter. As autocorrelation in white matter is lower
than in gray matter4, autocorrelation in a primarily gray
matter voxel will likely decrease following stronger smooth-
ing. The observed relationships of the percentage of sig-
nificant voxels and of the positive rate from the smoothing
level can be surprising, as random field theory is believed to
account for different levels of data smoothness. The relation-
ship for the positive rate (familywise error rate) was already
known14;20. The impact of smoothing and spatial resolution
was investigated in a number of previous studies31–33. We
considered smoothing only as a confounder. Importantly, for
all four levels of smoothing, AFNI and FAST outperformed
FSL and SPM.

Our results confirm Lenoski et al.13, insofar as our study
also showed problems with SPM’s default pre-whitening. In-
terestingly, Eklund et al.20 already compared AFNI, FSL
and SPM in the context of first level fMRI analyses. AFNI
resulted in substantially lower false positive rates than FSL
and slightly lower false positive rates than SPM. We also ob-
served lowest false positive rates for AFNI. Opposed to that
study20, which compared the packages in their entirety, we
compared the packages only with regard to pre-whitening.
It is possible that pre-whitening is the most crucial single
difference between AFNI, FSL and SPM, and that the rela-
tionships described by Eklund et al.20 would look completely
different if AFNI, FSL and SPM employed the same pre-
whitening. For one dataset, Eklund et al.20 also observed
that SPM led to worst whitening performance.

The differences in first level results between AFNI, FSL
and SPM which we found could have been smaller if physio-
logical recordings had been modeled. The modeling of phys-
iological noise is known to improve whitening performance,
particularly for short TRs2;11;12. Unfortunately, cardiac and
respiratory signals are not always acquired in fMRI studies.
Even less often are the physiological recordings incorporated
to the analysis pipeline. Interestingly, a recent report sug-
gested that the FSL’s tool ICA FIX applied to task data can
successfully remove most of the physiological noise34. This
was shown to lower the familywise error rate.

In our main analysis pipeline we did not perform slice tim-
ing correction. For two datasets, we additionally considered
slice timing correction and observed very similar first level
results compared to the case without slice timing correction.
The observed little effect of slice timing correction is likely a
result of the temporal derivative being modeled within the
GLM framework. This way a large part of the slice tim-
ing variation might have been captured without specifying
the exact slice timing. For the only case where slice timing
correction led to noticeably higher amount of significant ac-
tivation, we observed negative autocorrelations at high fre-
quencies in the GLM residuals. If one did not see the power
spectra of the GLM residuals, slice timing correction in this
case could be thought to directly increase sensitivity, while
in fact pre-whitening confounded the comparison.

FSL is the only package with a benchmarking paper of
its pre-whitening approach8. The study employed data cor-
responding to two fMRI protocols. For one protocol TR
was 1.5s, while for the other protocol TR was 3s. For both

protocols, the voxel size was 4x4x7 mm3. These were large
voxels. We suspect that the FSL’s pre-whitening approach
could have been overfitted to this data. Regarding SPM,
pre-whitening with simple global noise models was found to
result in profound bias in at least two previous studies13;35.
SPM’s default is a simple global noise model. However,
SPM’s problems could be partially related to the estima-
tion procedure. Firstly, the estimation is approximative as
it uses a Taylor expansion9. Secondly, the estimation is
based on a subset of the voxels. Only voxels with p < 0.001
following inference with no pre-whitening are selected. This
means that the estimation strongly depends both on the TR
and on the experimental design3.

If the second level analysis is performed with a random
effects model, the standard error maps are not used. Thus,
random effects models like the summary statistic approach
in SPM should not be affected by imperfect pre-whitening36.
On the other hand, residual positive autocorrelated noise de-
creases the signal differences between the activation blocks
and the rest blocks. This is relevant for event-related de-
signs. Bias from confounded coefficient maps can be ex-
pected to propagate to the group level. We showed that
pre-whitening indeed confounds group analyses performed
with a random effects model. However, more relevant is
the case of mixed effects analyses, for example when using
3dMEMA in AFNI29 or FLAME in FSL37. These approaches
additionally employ standard error maps, which are directly
confounded by imperfect pre-whitening. Bias in mixed ef-
fects fMRI analyses resulting from non-white noise at the
first level was already reported38. Surprisingly, we did not
observe pre-whitening-induced specificity problems for anal-
yses using 3dMEMA, including for very short TRs. While this
means that imperfect pre-whitening does not meaningfully
affect group results when using 3dMEMA, we wonder why the
AFNI’s mixed effects model makes so little use of the stan-
dard error maps. For task datasets tested with true designs,
the results from random effects analyses differed very little
compared to 3dMEMA results. Furthermore, we observed for
3dMEMA a worrying negative relationship between the mag-
nitude of the t-statistic maps and the amount of significant
activation. This is particularly surprising given that subject
heterogeneity in that analysis was kept constant. FLAME was
also shown to have similar sensitivity compared to random
effects analyses39. However, mixed effects models should
be more optimal than random effects models as they em-
ploy more information. Although group analysis modeling
in task fMRI studies needs to be investigated further, it is
beyond the scope of this paper. As mixed effects models em-
ploy standard error maps, bias in them should be avoided.

Problematically, for resting state data treated as task
data, it is possible to observe activation both in the pos-
terior cingulate cortex and in the frontal cortex, since these
regions belong to the default mode network40. In fact, in
Supplementary Fig. 18 in Eklund et al. 201621 the spatial
distribution plots of significant clusters indicate that the sig-
nificant clusters appeared mainly in the posterior cingulate
cortex, even though the assumed design for that analysis was
a randomized event-related design. The rest activity in these
regions can occur at different frequencies and can underlie
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different patterns41. Thus, resting state data is not per-
fect null data for task fMRI analyses, especially if one uses
an approach where a subject with one small cluster in the
posterior cingulate cortex enters an analysis with the same
weight as a subject with a number of large clusters spread
throughout the entire brain. Task fMRI data is not perfect
null data either, as an assumed wrong design might be con-
founded by the underlying true design. For simulated data,
a consensus is needed how to model autocorrelation, spatial
dependencies, physiological noise, scanner-dependent low-
frequency drifts and head motion. Some of the current sim-
ulation toolboxes42 enable the modeling of all these aspects
of fMRI data, but as the later analyses might heavily depend
on the specific choice of parameters, more work is needed to
understand how the different sources of noise influence each
other. In our study, results for simulated resting state data
were substantially different compared to acquired real rest-
ing state scans. In particular, the percentage of significant
voxels for the simulated data was much lower, indicating
that the simulated data did not appropriately correspond to
the underlying brain physiology. Considering resting state
data where the posterior cingulate cortex and the frontal
cortex are masked out could be an alternative null. Because
there is no perfect fMRI null data, we used both resting
state data with assumed dummy designs and task data with
assumed wrong designs. Results for both approaches coin-
cided.

Unfortunately, although the vast majority of task fMRI
analyses is conducted with linear regression, the popular
analysis packages do not provide diagnostic plots. For
old versions of SPM, the external toolbox SPMd generated
them43. It provided a lot of information, which paradox-
ically could have limited its popularity. We believe that
task fMRI analyses would strongly benefit if AFNI, FSL
and SPM provided some basic diagnostic plots. This way
the investigator would be aware, for example, of residual
autocorrelated noise in the GLM residuals. We provide a
simple MATLAB tool (GitHub: plot_power_spectra_of_

GLM_residuals.m) for the fMRI researchers to check if their
analyses might be affected by imperfect pre-whitening.

To conclude, we showed that AFNI and SPM tested with
option FAST had the best whitening performance, followed
by FSL and SPM. Pre-whitening in FSL and SPM left sub-
stantial residual autocorrelated noise in the data, primarily
at low frequencies. Though the problems were most severe
for short repetition times, different fMRI protocols were af-
fected. We showed that the residual autocorrelated noise led
to heavily confounded first level results. Low-frequency box-
car designs were affected the most. Due to better whitening
performance, it was much easier to distinguish the assumed
true experimental design from the assumed wrong exper-
imental designs with AFNI and FAST than with FSL and
SPM. This suggests superior specificity-sensitivity trade-off
resulting from the use of AFNI’s and FAST noise models.
False negatives can occur when the design is event related
and there is residual positive autocorrelated noise at high
frequencies. In our analyses, such false negatives propagated
to the group level both when using a random effects model
and a mixed effects model, although only to a small extent.

Surprisingly, pre-whitening-induced false positives did not
propagate to the group level when using the mixed effects
model 3dMEMA. Our results suggest that 3dMEMA makes very
little use of the standard error maps and does not differ
much from the SPM’s random effects model.

Results derived from FSL could be made more robust if a
different autocorrelation model was applied. However, cur-
rently there is no alternative pre-whitening approach in FSL.
For SPM, our findings support more widespread use of the
FAST method.

Data availability. FCP15, NKI16 and CamCAN data17 are publicly

shared anonymized data. CRIC and BMMR scans can be obtained from

us upon request. The simulated data can be generated again using our

GitHub script simulate 4D.R.
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