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Abstract 1

Human networks of sexual contacts are dynamic by nature, with partnerships forming and breaking 2

continuously over time. Sexual behaviours are also highly heterogeneous, so that the number of partners 3

reported by individuals over a given period of time is typically distributed as a power-law. Both the 4

dynamism and heterogeneity of sexual partnerships are likely to have an effect in the patterns of spread 5

of sexually transmitted diseases. To represent these two fundamental properties of sexual networks, 6

we developed a stochastic process of dynamic partnership formation and dissolution, which results in 7

power-law numbers of partners over time. Model parameters can be set to produce realistic conditions 8

in terms of the exponent of the power-law distribution, of the number of individuals without relationships 9

and of the average duration of relationships. Using an outbreak of antibiotic resistant gonorrhoea 10

amongst men have sex with men as a case study, we show that our realistic dynamic network exhibits 11

different properties compared to the frequently used static networks or homogeneous mixing models. 12

We also consider an approximation to our dynamic network model in terms of a much simpler branching 13

process. We estimate the parameters of the generation time distribution and offspring distribution which 14

can be used for example in the context of outbreak reconstruction based on genomic data. Finally, we 15

investigate the impact of a range of interventions against gonorrhoea, including increased condom use, 16

more frequent screening and immunisation, concluding that the latter shows great promise to reduce the 17

burden of gonorrhoea, even if the vaccine was only partially effective or applied to only a random subset 18

of the population. 19
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Introduction 20

In 2017 the WHO added Neisseria gonorrhoeae to its priority list of bacterial pathogens in response to 21

the global spread of antibiotic resistance [1]. The bacteria have developed resistance to every therapy 22

used against them, from penicillin through to third-generation cephalosporins [2]. At a time when 23

resistance to first line therapies is increasingly observed [3], it is more important than ever to understand 24

the transmission dynamics of the infection, and how interventions might be used to reduce the burden 25

on antibiotic treatment [4]. 26

It has been well documented that heterogeneity in sexual activity levels has an impact on disease 27

transmission, with individuals who have many partners bearing much of the burden of disease [5–8]. 28

However, the risk of acquiring and passing on a sexually transmitted infection (STI) depends not only 29

on an individual’s sexual risk profile, but also on their position in the wider sexual network [9, 10]. 30

Furthermore the structure of an underlying network affects the probability that an infection that is 31

introduced to the network leads to an outbreak, as well as the size and longevity of any outbreaks that 32

occur [11,12]. As such, it is important to take into account the structure of the underlying sexual network 33

when modelling STI outbreaks. 34

The distribution of the number of sexual contacts within a network is known as its degree distribution. 35

Several studies have shown that real world sexual networks often have degree distributions that obey a 36

power-law [13–15], where the probability of having k partners over a given period of time is proportional 37

to k−γ . The constant γ is usually between 1 and 4, and different values have been observed in 38

heterosexual and same-sex networks, as well as between genders [14]. Power-law networks exhibit high 39

levels of heterogeneity, with the majority of individuals having a relatively small number of contacts, while 40

a few have many. The standard method to simulate power-law networks is to use a system of preferential 41

attachment, in which individuals are added one by one, connecting with a higher probability with existing 42

individuals who already have a large number of partners [16]. Once all individuals have been added, the 43

network thus created is guaranteed to have a static power-law distribution. It is important to note that 44

even though the preferential attachment algorithm is dynamic in nature, the dynamic method used is 45

purely a technique for generating a static network and does not in any way reflect the dynamics known 46

to occur in real world sexual networks. Furthermore, transmission of infection occurs only once the 47

network has been generated, with all partnerships being in place constantly from the beginning of the 48
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simulation of infection transmission until the end. 49

An alternative method of producing static networks with a power-law degree distribution has been 50

proposed based on each network node having an intrinsic fitness parameter, and a function that 51

determines the probability that a network connection exists between any two nodes depending on 52

their fitness [17,18]. In a sexual network, this can be thought of as each individual having an inherent 53

propensity to seek new partnerships, with the probability of occurrence of each possible partnership 54

depending on the mutual attraction of two individuals. 55

In a sexual network model, the rate of transmission to an uninfected individual depends on the infection 56

status of their sexual partners, rather than on the prevalence of infection in the pool of potential partners, 57

as in compartmental models. Compartmental models that do not explicitly represent partnerships 58

have been shown to underestimate the importance of core groups of highly sexually active individuals 59

in sustaining STI transmission, while overestimating the contribution of long-term partnerships and 60

low-activity individuals [19]. Furthermore, several studies have shown that, in order to explain observed 61

patterns of infection, it is important to take into account not only the network structure but also the 62

duration of partnerships, and the gaps between them [20,21]. It may therefore be necessary to use a 63

dynamically evolving network to correctly simulate the spread of STI outbreaks. However, no algorithm 64

has yet been proposed to simulate a dynamic sexual network with the correct real-world properties such 65

as a power-law distribution of number of sexual partners, so that the difference between such a realistic 66

dynamic network and a more approximate static network has not been assessed. 67

Here we present a novel approach to dynamic network simulation using stochastic partnership formation 68

and breakdown based on individuals’ intrinsic properties. We demonstrate that our method produces 69

power-law networks, and that it can simulate a population reflecting the observed network characteristics 70

in UK men who have sex with men (MSM). We then simulate an outbreak of gonorrhoea in three types of 71

network: a fully-connected static network, a heterogeneous static network, and our novel heterogeneous 72

dynamic network, showing important differences between all three models in terms of the resulting 73

patterns of transmission. We estimate the resulting offspring distribution (the number of secondary 74

cases caused by each primary case) and generation time distribution (time between infection of a 75

primary case and infection of a secondary case) to assess the likelihood of super-spreading events 76

predicted by each network structure, as well as the predicted duration of infection. We also compare the 77

impact of the number of sexual partnerships on the probability of infection and transmission under each 78
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network structure, providing a basis for risk assessment. Finally, using the dynamic network model we 79

investigate the impact of a range of interventions against gonorrhoea, including increased condom use, 80

more frequent screening and a hypothetical vaccine. 81

Results 82

Analysis of survey data on number of partners 83

We first analysed the number of partners reported by MSM in the third National Survey of Sexual 84

Attitudes and Lifestyles (Natsal-3), a population-based survey conducted in 2010-2012 [22,23]. 15.4% 85

individuals reported zero partners, and amongst the remainder the distribution of number of partners 86

approximately followed a power-law distribution (Fig 1A). We used Bayesian inference to estimate the 87

exponent γ of this power-law distribution, and found a posterior mean of γ = 1.81 (95% credible interval: 88

[1.69, 1.96]). This is comparable to estimates calculated based on the previous Natsal data, collected in 89

2000 and 1990, and the London Gay Men’s Sexual Health Survey [24], which were 1.57 (95% CI: [1.43, 90

1.72]), 1.75 (95% CI: [1.57, 1.95]) and 1.87 (95% CI: [1.80, 1.94]) respectively [14].
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Fig 1. Double logarithmic plot of cumulative degree distribution of number of partners for UK MSM A:
reported over 1 year by Natsal-3 respondents. B: reported over 3 months in GRASP data from London.
Inset histograms show posterior distributions of γ for each dataset with mean and 95% credible intervals
in red

91

We performed the same analysis based on data collected in 2004 as part of the national Gonococcal 92
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Resistance to Antimicrobials Surveillance Programme (GRASP) run by Public Health England (PHE) 93

from individuals diagnosed with gonorrhoea in London [25,26]. Fewer individuals had only one partner 94

in the last three months than would be expected under a power-law distribution, however a power-law tail 95

was observed for MSM having more than one partner. The inferred scale-parameter γ for gonorrhoea 96

infected individuals was significantly lower than that in the Natsal-3 data at 1.60 (95% credible interval: 97

[1.56, 1.65]) with non-overlapping credible intervals (Fig 1B). 98

Simulation of dynamic network model 99

We developed a new algorithm to simulate dynamic sexual networks in which relationships are being 100

formed and broken down over time. To incorporate sexual behaviour heterogeneity, each individual 101

in the network is characterised by a parameter λ that represents the propensity to make and break 102

relationships. This λ parameter is analogous to the fitness property used in a previously published 103

method to generate static power-law networks [17,18]. The mathematical properties of our method (see 104

Methods section) imply that the number of partnerships in which individuals were involved over one year 105

is power-law distributed. 106

To demonstrate the ability of our algorithm to simulate realistic networks, we generated dynamic sexual 107

networks of size N =10,000 over one year using a power-law exponent γ equal to 1.7, 1.8 and 1.9 108

(Fig 2, Fig S1). The network size was chosen to represent MSM aged between 15 and 65 in a UK city 109

such as Brighton or central Manchester [27,28]. Our algorithm also requires to set the parameter k0 110

which determines the proportion of individuals that do not have a sexual partnership during the year. 111

Using values of k0 equal to 0.4, 0.5 and 0.6 respectively, we were able to produce networks exhibiting a 112

power-law distribution of partnerships and proportion of individuals with zero partners over one year that 113

were comparable to the 15.4% proportion in the Natsal-3 data (Fig 2). Finally, a third parameter φ in our 114

method determines the rate of partnership breakdown, which in turn decreases the level of partnership 115

concurrency in the network without affecting the distributions of partner numbers. 116
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Fig 2. Double logarithmic plot of degree distributions of partners in last year generated with differing
parameters γ and k0. The orange lines represent the desired degree distribution p(k) = ck−γ . The
proportion of individuals having no partners in the last year is shown in the title of each plot as p(k = 0).

Effect of network model on simulated gonorrhoea outbreaks 117

To assess the importance the underlying sexual network structure and dynamism in the way gonorrhoea 118

outbreaks spread, we performed a comparison of simulated gonorrhoea outbreaks on three types 119

of networks (Fig 3A): a fully connected network, a static power-law network and our new dynamic 120

power-law network. On each type of network we used the same model of gonorrhoea outbreak, adapted 121

from a recent study [29] as illustrated in Fig 3B and described in the Methods section. 122

The flow parameters were calibrated for each of the three types of network in order to produce for each 123

type of network outbreaks of the same realistic size over a year (cf Methods section). The resulting 124

parameter values are summarised in Table 1 with no significant difference between the three models for 125

any parameter except the rate of transmission per partnership β, which takes widely different values as 126

expected. From the resulting simulations we analysed the offspring distribution, defined as the number 127

of onward transmissions attributable to each case infected in the first year (Fig 4A) and we extracted 128

the generation times, defined as the length of time from initial infection to onward transmission (Fig 129

4B). Both the offspring distribution and the generation time distribution exhibited important differences 130

depending on the underlying type of sexual network considered (Fig 4). 131

The basic reproduction number is defined as the mean of the offspring distribution in a fully uninfected 132

population. For all three network structures (fully connected, static, and dynamic) the basic reproduction 133

numbers were around 1.2 with overlapping 95% ranges (Fig 4A, X axis). This equality is due to the 134

calibration of the models, which required outbreaks to be of similar sizes. However, we found that the 135

variance in the simulated offspring distributions differed depending on network structure (Fig 4A, Y 136

axis). Simulated outbreaks in both static and dynamic power-law networks had greater variance in the 137
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Table 1. Parameter notations, input range (cf Appendix S3) and range of parameters that resulted in
outbreaks persisting at least one year in at least 20% of simulations with at most 400 total diagnoses
per year on average for each network structure

Parameter description Unit Input range Source
β rate of transmission within each partnership year−1 [0, 60] fitting
ψ infections that become symptomatic % [40, 95] [30–32]

1/σ duration incubation period days [2, 10] [33–37]
1/ν duration of carriage days [60, 550] [38–42]
η rate of screening when asymptomatic year−1 [0.5, 4] [43–45]

1/µ time to symptomatics seeking treatment days [1, 30] [46]
1/ρ time to recovery following treatment days [5, 10] [47]

accepted parameter mean [95% range]
fully connected static dynamic

β 1.8 [1.1, 3.9] x10−3 0.11 [0.08, 0.15] 24.0 [11.0, 53.9]
ψ 55 [40, 83] 63 [41, 88] 71 [41, 94]

1/σ 4.8 [3.0, 8.0] 4.7 [3.0, 7.8] 4.6 [2.9, 7.8]
1/ν 223 [113, 459] 167 [93, 392] 166 [96, 385]
η 1.6 [0.8, 2.8] 2.2 [1.0, 3.7] 2.1 [1.0, 3.6]

1/µ 2.8 [1.2, 21.1] 2.7 [1.1, 15.4] 2.7 [1.1, 13.2]
1/ρ 6.9 [5.7, 8.5] 6.9 [5.7, 8.4] 7.0 [5.8, 8.5]

offspring distribution than the fully connected networks (4.2; 95% range: [1.9, 7.7]), due to the effect 138

of heterogeneity in contact patterns. However, dynamic partnership formation and dissolution partially 139

mitigated the impact of the network structure on the offspring distribution. The sample variance of the 140

offspring distributions in the static power-law network (10.9; 95% range: [5.7, 20.3]) was on average 141

greater than in the dynamic network (6.8; 95% range: [3.4, 12.0]), suggesting that adopting a static 142

power-law network in disease models would overstate the importance of super-spreading events. 143

The distribution of mean generation times in the simulations is also affected by the underlying network 144

structure (Fig 4B, X axis). Outbreaks in the dynamic network structure have a mean generation time 145

of 63 days (95% range: [33, 101]). Generation times are overestimated when partnership dynamics 146

are ignored, as in the case of the static power-law network structure (77 days; 95% range: [49, 124]), 147

an effect which is exacerbated when heterogeneity in sexual activity levels is omitted, as in the fully 148

connected network (109 days; 95% range: [54, 168]). In order to maintain persistence of the outbreak 149

at realistically low prevalence, as is observed in gonorrhoea, outbreaks in the fully connected network 150

overstate the proportion of asymptomatic infections compared to the dynamic network, 44.6% (95% 151
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Fig 4. Scatter plots with overlaid density contours and marginal histograms for the mean and variance
of A: the offspring distributions, and B: the distribution of generation times, for infections contracted in
the first year of the outbreak. Simulations under the fully connected, static, and dynamic network
structures are shown in blue, green and red respectively.

range: [17.2%, 59.7%]) compared to 29.5% (95% range: [6.4%, 58.8%]) [5]. This larger untreated 152

asymptomatic reservoir also serves to increase the variance of the simulated generation times from 153

6,960 (95% range: [2,100, 17,530]) in the dynamic networks to 13,500 (95% range: [3,850, 26,200]) in 154

the fully connected networks (Fig 4B, Y axis). 155

For both the static and dynamic power-law networks we investigated the relationship between the 156

number of sexual partners that an individual has over one year, the probability of becoming infected, and 157

the number of transmission events arising from those individuals who become infected. Fig 5 shows the 158

proportion of infected individuals, the probability of an individual becoming infected in first year and the 159

mean onward transmissions for infected individuals, split by the number of partners over one year. The 160

proportion of infected individuals having fewer than three partners per year was lower than would be 161

expected under a power-law distribution for both static and dynamic networks, however the distribution 162

exhibited power-law behaviour for more highly active infectees (Fig 5A). This is similar to the pattern 163

exhibited in the GRASP London data (Fig 1B). Compared to the dynamic network the static network 164

structure appears to overestimate the burden of infection in individuals with more than 11 partners per 165

year, while underestimating the burden in individuals with fewer partners. 166

Under the static network structure an individual’s probability of infection increases linearly with their 167

annual number of partners (Fig 5B). When we allow for partnership dynamics, the probability of infection 168
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Fig 5. A: Proportion of infected individuals split by number of partners over one year B: Probability of an
individual becoming infected in first year given their total number of partnerships. C: Basic reproduction
number - mean onward transmissions for infected individuals with a given number of partnerships.

increases linearly at first, albeit at a slower rate than the static network, then levels off in individuals 169

having more than five partners per year, eventually approximating the probability of infection observed in 170

a fully connected network. This suggests that a static network structure may underestimate the risk of 171

infection for individuals with few sexual partners. 172

There is a similar relationship between the expected number of onward transmission events from 173

individuals and their number of partners over the year in the static and dynamic network structures (Fig 174

5C). An infected individual’s expected number of transmissions in the static network increases linearly 175

with their total number of partnerships. For individuals with up to five partners per year, the dynamic 176

network also shows a strong linear relationship between the expected offspring and number of partners. 177

However, for individuals with more than five partners per year the relationship is less strong with a much 178

greater variance in mean number of offspring. In the dynamic network the expected number of offspring 179

is greater than one in individuals with at least three partners, whereas the mean offspring per person in 180

the static network only becomes greater than one in individuals having more than 90 partners. The static 181

network therefore likely overestimates the importance of very highly active individuals in maintaining 182

transmission. 183

Impact of interventions 184

Using the dynamic network model we investigated the impact of a range of interventions and preventative 185

measures against gonorrhoea, including: 20% increased condom use (resulting in a reduction in the 186

transmission rate β), 20% increased sexual health screening (an increase in parameter η), and the 187
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impact of a hypothetical gonorrhoea vaccine, deployed either at random to 20% of the network or targeted 188

to the 20% of individuals with the highest propensity to form partnerships (λ). Recent estimates suggest 189

that the meningococcal B vaccine may be 31% [21%, 39%] effective against gonorrhoea [48]. The 190

impact of vaccinating 20% of individuals at random with a vaccine that is 100% effective is comparable 191

to vaccinating 65% [51%, 95%] of individuals with a vaccine of similar effectiveness. We assessed 192

the one-year impact of these four measures on the probability of a outbreak stemming from a single 193

introduction of gonorrhoea into a dynamic sexual network (Fig 6A), the total number of gonorrhoea 194

diagnoses (Fig 6B), and the number of sexual health clinic visits from both screening and symptomatic 195

treatment-seeking (Fig 6C). 196
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Fig 6. A: Proportion of outbreaks persisting for at least one year. B: Mean number of gonorrhoea
diagnoses in first year. C: Mean number of clinic visits in first year.

The baseline proportion of simulated outbreaks persisting for at least one year from a single introduction 197

of gonorrhoea was 31% (95% range: [15%, 49%]). All of the interventions we considered reduced 198

the probability of an outbreak, with vaccination having the greatest impact; a fully effective vaccine 199

administered to 20% of individuals in a randomised strategy reduced the probability of an outbreak 200

by around a third to 21% (95% range: [7%, 40%]), a targeted strategy had a greater effect, reducing 201

the probability to 19% (95% range: [5%, 36%]). The non-vaccine interventions had less of an impact. 202

Increasing condom usage by 20% reduced the probability of an outbreak by around 10% to 28% (95% 203

range: [13%, 47%]); A 20% increase in the rate of screening for asymptomatic cases had a similar 204

effect, reducing the probability of an outbreak to 29% (95% range: [11%, 49%]). 205

The expected size of the visible outbreak in a population of 10,000, as measured by the total number 206

of infected individuals diagnosed and receiving treatment, was reduced by a fifth from 98 (95% range: 207

[25, 269]) to 79 (95% range: [19, 217]) with a 20% increase in condom-use, and could be halved using 208
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vaccination: down to 47 cases (95% range: [14, 114]) using the randomised strategy and 45 cases 209

(95% range: [14, 105]) by targeting the most sexually-active individuals. However, a 20% increase in 210

the screening rate resulted in a 5% increase in the visible outbreak size to 103 cases (95% range: [25, 211

295]), due to more asymptomatic cases receiving treatment. 212

There was a similar pattern in the burden of sexual health services, while increased condom use 213

decreased the total number of clinic visits by 11% from 16,939 (95% range: [7,950, 28,810]) to 214

15,053 (95% range: [7,064, 25,602]). A 20% increase in the rate of screening, both of uninfected and 215

asymptomatically infected individuals increased the total clinic visits by 20%, because the majority of 216

testing is prompted by screening rather than symptomatic treatment seeking. The number of sexual 217

health clinic visits remained stable in the vaccine scenarios, however the financial and administrative 218

cost of initiating either a targeted or randomised vaccination programme must be considered once a 219

vaccine candidate has been developed. It is important to note that while the targeted strategy is more 220

effective, requires the ability to identify and vaccinate the 20% most sexually active individuals in a given 221

population. It is unclear how effectively this could be done in practice, but could perhaps be offered at 222

the GUM clinic at the same time as testing. 223
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Discussion 224

Real-world sexual networks are dynamic by nature, and we have developed a method that can reproduce 225

observed power-law distributions of numbers of sexual partners in the last year in a dynamic network, 226

which accounts for heterogeneity of individual behaviour in the way relationships form and break down. 227

Our model allows the user to specify the power-law distribution via the exponent γ, to vary the proportion 228

of individuals having no partners via the parameter k0, and to set the average length of partnerships, via 229

the parameter φ. Varying the length of partnerships for a given degree distribution impacts the pattern 230

of partnership concurrency in the network. The longer the average partnership, the higher the degree 231

of concurrency. We implemented this dynamic simulation algorithm into a R package called simdynet 232

which is freely available at https://github.com/lwhittles/simdynet. 233

Taking an outbreak of gonorrhoea as a case study, we found that failing to allow for sexual network 234

structure (i.e. using the fully-connected network)resulted in an overestimation of the duration of carriage 235

and asymptomatic reservoir. When network structure, but not dynamics of sexual partnership formation 236

and breakage, was accounted for (i.e. using the static network) the model overstated the likelihood of 237

super-spreading events and the burden of disease among individuals with high numbers of partners, 238

compared to a dynamic model. While it is important to take heterogeneity into account, the traditional 239

formulation of a core group [5,20] might approximate the true transmission dynamics of gonorrhoea 240

better than using a static power-law network. Our findings add support to previous modelling work that 241

suggested that having more sexual partners does not greatly impact the rate at which antibiotic resistant 242

gonorrhoea can spread [8]. 243

We used our realistic dynamic power-law network model to investigate the impact of a range of 244

interventions against gonorrhoea, including increased condom use, more frequent screening and 245

immunisation. Our results confirm that vaccination shows great potential to reduce the burden of 246

gonorrhoea [49]: if a random 20% of individuals were immune, then the probability of outbreaks 247

persisting at least a year would be reduced by 16% with the outbreak size reduced on average by 31%. 248

(Fig 6). Such a level of protection could be achieved either through vaccination of a small portion of the 249

population with a highly effective vaccine, or by widespread use a less effective vaccine. For example, 250

a recent retrospective case-control study has shown that the MeNZB vaccine against meningitis is 251

cross-protective against gonorrhoea, with an estimated effectiveness between 20% and 40% [50,51]. 252
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The dynamic sexual network we implemented is highly realistic, but also too computationally expensive 253

to be used in many applications. For example if the population under study is very large, keeping 254

track of every partnership formation and break down is clearly inefficient, especially for the study of 255

the early stages of an outbreak of a new resistant strain in which only a small subset of individuals are 256

being affected. However, we have computed from the full dynamic model the offspring distribution and 257

distribution of generation time (Fig 4). These estimates allow for our model to be approximated as a 258

stochastic branching process [52,53], where infected individuals transmit to a number of secondary cases 259

drawn from the offspring distribution, and the intervals of time between each primary and secondary 260

cases are drawn from the generation time distribution. The advantage of such a model formulation 261

is that it is much simpler than the full dynamic sexual network we described in this paper, but retains 262

the same basic properties in terms of the transmission process. Furthermore, a branching model is at 263

the basis of several recently developed methods to reconstruct transmission trees from genomic data, 264

such as outbreaker [54], TransPhylo [55,56] and phybreak [57]. Our estimates of the generation time 265

distribution and offspring distribution therefore pave the way for these genomic epidemiology methods 266

to be applied to the reconstruction of transmission in gonorrhoea outbreaks [38,58–60]. 267

We estimated that on average the mean and variance of the generation time distribution were equal to 268

63 days and 6980 days2, respectively (Fig 4B), which can be emulated using a Gamma distribution with 269

shape and scale parameters equal to 0.57 and 110.48, respectively. The resulting 95% quantile range of 270

the generation time stretches up to 298 days, which is in good agreement with an analysis of genomes 271

from pairs of known sexual contact, in which the greatest observed time to most recent common ancestor 272

was 8 months [38]. Since gonorrhoea can often remain asymptomatic, any outbreak reconstruction 273

would need to account for the possibility of unsampled cases acting as intermediates in the transmission 274

chains [38,54,56]. Accurate inference of unsampled cases requires in turn a good prior knowledge of 275

the generation time distribution like the one we estimated here based on a dynamic power-law network. 276

Both the mean and variance of the generation time distribution are overestimated when considering 277

a fully-connected or static network (Fig 4B) which would likely result in an underestimation of the role 278

played by unsampled cases. 279

The offspring distribution was estimated to have a mean and variance equal to 1.2 and 6.8, respectively 280

(Fig 4A). The mean corresponds to the basic reproduction number and its value results from the 281

conditions we imposed on the frequency and size of outbreaks. Since the variance is greater than the 282
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mean, the offspring distribution is over-dispersed compared to a Poisson process, which indicates the 283

presence of super-spreaders [61–63], although this transmission heterogeneity is not as pronounced 284

as would be implied by an unstructured or static network model (Fig 4A). In a branching model, over- 285

dispersion can be implemented using a Negative-Binomial distribution for the number of offspring, which 286

in this context is often parametrised in terms of its mean and dispersion parameter k, with lower values 287

of k indicating more over-dispersion [56,61,64,65]. Here we estimated that k = 0.257, which with an 288

offspring mean number of 1.2 gives a 95% quantile ranging up to 9 secondary cases, compared to 289

only 4 cases for a Poisson distribution with the same mean. These estimates of the generation time 290

distribution and offspring dispersion parameter pave the way for future studies of genomic epidemiology 291

in gonorrhoea outbreaks. 292
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Materials and methods 293

Estimation of power-law exponents from real data 294

The third National Survey of Sexual Attitudes and lifestyles in the UK (Natsal-3), was conducted between 295

September 2010 and August 2012 in 15,000 adults aged between 16 and 74 [22,23]. We extracted the 296

number of same-sex partners over one year for the 188 men who reported sexual contact with another 297

man within the past five years. 15.4% of MSM reported having no same sex partners over the past year. 298

In addition to the Natsal data we examined the number of partners reported by 691 MSM diagnosed with 299

gonorrhoea in a collection of 2,045 isolates sampled between June and November 2004 from 13 major 300

sexual health clinics throughout London as part of the national Gonococcal Resistance to Antimicrobials 301

Surveillance Programme (GRASP), run by Public Health England (PHE) [25]. PHE has produced a 302

GRASP report annually since 2000 to monitor trends in resistance and susceptibility to the drugs used 303

to treat gonorrhoea in England and Wales, which is used to inform national treatment guidelines and 304

strategy. The GRASP data from London represent 54% of the 3,754 cases reported across the city at 305

that time [26,38,66]. 306

We fitted the power-law distribution using Bayesian inference, implemented via a Monte Carlo Markov 307

Chain, to obtain obtained posterior estimates of γ based on the Natsal-3 and GRASP London datasets, 308

using an uninformative γ ∼ U [1, 10] prior. Five chains with over-dispersed starting points were run 309

for 100,000 iterations after a 10,000 iterations burn-in period and thinned by a factor of 100. The 310

convergence of the MCMC was assessed by visual inspection of the trace plots, and confirmed to have 311

a Gelman-Rubin criterion of < 1.1 [67,68]. 312

Simulating a dynamic power-law network using vertex intrinsic fitness 313

Network dynamics. We consider a population of N sexually active men who have sex with men 314

(MSM). Each individual j = 1, . . . , N has a propensity λj to form new partnerships which is randomly 315

drawn from a probability distribution with density f(λ), and cumulative density function F (λ) =
∫ λ
0
f(x)dx. 316

The events that can occur with regard to the network composition are: a new partnership forming (event 317
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a) or a partnership breakup (event d). These events occur as Poisson processes: the (time invariant) 318

rate of individual j forming a partnership with individual l (given they are not already in a partnership 319

together) is given by the function a(λj , λl). The rate of individuals j and l breaking up, given they are in 320

a partnership, is denoted d(λj , λl). 321

The state of each possible partnership is independent from all others, with no limit on the number of 322

concurrent partners. Each possible partnership {j, l} can be thought of as being ’on’ or ’off’ (i.e. is in 323

existence at a particular point in time or not). We can then derive a stationary distribution of the network, 324

and use this to derive the probability at time t that each possible partnership exists. By considering the 325

average time spent in each state (on or off) we find that the probability of pair of individuals {j, l} being 326

in a partnership at time t is: 327

q0(λj , λl) =

1
d(λj ,λl)

1
d(λj ,λl)

+ 1
a(λj ,λl)

=
(

1 +
d(λj , λl)

a(λj , λl)

)−1
(1)

Conversely the probability they are not in a partnership at t is simply: 328

1− q0(λj , λl) =

1
a(λj ,λl)

1
d(λj ,λl)

+ 1
a(λj ,λl)

=
(

1 +
a(λj , λl)

d(λj , λl)

)−1
(2)

Given that two individuals are not in a partnership at time t the time to forming a partnership,

is distributed Exp(a(λj , λl)), so the probability of them forming a partnership in the next year is

P[t∗ ≤ 1] = 1 − e−a(λj ,λl). Combining these two cases, we can calculate the probability that two

individuals have been in a partnership over the last year:

q(λj , λl) = q0(λj , λl) +
(
1− q0(λj , λl)

)(
1− e−a(λj ,λl)

)
= 1−

(
1− q0(λj , λl)

)
e−a(λj ,λl)

= 1− e−a(λj ,λl)

1 +
a(λj ,λl)
d(λj ,λl)

(3)

Analytical expression of the degree distribution. Let kj denote the degree distribution of individual 329

j, that is the number of partnerships involving j that have been active at some point over the past year. 330

The probability that individual j was in partnership at some point with an individual l of unknown λl is 331
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equal to: 332

P(λj) =

∫ ∞
0

q(λj , λl)f(λl)dλl (4)

The distribution of kj given λj is therefore kj |λj ∼ Bin(N − 1,P(λj)), and its expectation is:

κ(λj) = E[kj |λj ] = (N − 1)P(λj) = (N − 1)

∫ ∞
0

q(λj , λl)f(λl)dλl (5)

Since κ(.) is a continuous, monotonically increasing function of λ, we can use the method of 333

transformations to find the degree distribution p(κ): 334

p(κ) = f(λ)
dλ

dκ
=

f(λ)

κ′(λ)
(6)

Power-law distribution of partners over a year. We require the network of partnerships over the

last year to have a power-law degree distribution, so:

p(κ) = cκ−γ (7)

The constant c is determined by the fact that
∫ k∞
k0

p(κ)dκ = 1, where k0 = limλ→0 κ(λ) and

k∞ = limλ→∞ κ(λ). For γ 6= 1 (in accordance with observations from real-world networks) we have:

∫ k∞

k0

p(κ)dκ =

∫ k∞

k0

cκ−γdκ = c

(
k∞

1−γ − k01−γ

1− γ

)
= 1

So 335

c =
1− γ

k∞
1−γ − k01−γ

(8)

While k0 is an input of the model, k∞ is chosen to be as large as possible, subject to the condition that 336

limλj ,λl→∞ q(λj , λl) ≤ 1. We equate Eqs 6 and 7 and rearrange to obtain an expression for the density 337

of λ in terms of the degree distribution: 338

f(λ) = cκ(λ)−γκ′(λ) (9)
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Integrating both sides between 0 and λ we obtain:

F (λ) = c

∫ λ

0

κ(x)−γκ′(x)dx =

[
cκ(x)1−γ

1− γ

]λ
0

=
c
(
κ(λ)1−γ − k01−γ

)
1− γ

And after rearrangement: 339

κ(λ) =

(
1− γ
c

F (λ) + k0
1−γ
) 1

1−γ

(10)

Following [18], we consider the special case where: 340

q(λj , λl) = g(λj)g(λl) (11)

Substituting Eq 11 into 5 we obtain:

κ(λj) = (N − 1)g(λj)

∫ ∞
0

g(λ)f(λ)dλ = (N − 1)g(λj)ḡ (12)

where ḡ = Eλ[g(λ)] 341

Equating Eqs 10 and 12, then multiplying by f(λ) and integrating between 0 and∞ we obtain:

(N − 1)ḡ

∫ ∞
0

g(λ)f(λ)dλ =

∫ ∞
0

(
1− γ
c

F (λ) + k0
1−γ
) 1

1−γ

f(λ)dλ

(N − 1)ḡ2 =

∫ 1

0

(
1− γ
c

F (λ) + k0
1−γ
) 1

1−γ

dF (λ)

(N − 1)ḡ2 =

(
ck0

1−γ + 1− γ
)(
k0

1−γ + 1−γ
c

) 1
1−γ − ck02−γ

2− γ

So

ḡ =

√ (
1− γ

)(
k∞

2−γ − k02−γ
)

(2− γ)(N − 1)
(
k∞

1−γ − k01−γ
) (13)

Rearranging 12 we obtain:

g(λ) =
κ(λ)

(N − 1)ḡ
(14)
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Substituting Eqs 10 and 13 into 14 we obtain:

g(λ) =

√
(2− γ)

(
k∞

1−γ − k01−γ
)

(N − 1)(1− γ)
(
k∞

2−γ − k02−γ
)((k∞1−γ − k01−γ

)
F (λ) + k0

1−γ
) 1

1−γ
(15)

Combining Eqs 15 and 11 we deduce the function q(λj , λl) required to the network to follow a power-law

distribution. The functions governing partnership formation and dissolution can then be inferred by

considering the simple case where d(λj , λl) = φa(λj , λl) where φ is a constant so Eq 3 becomes

q(λj , λl) = 1− e−a(λj ,λl)

1 + 1
φ

(16)

We set the minimum rate of partnership breakup d(λj , λl) = 1
50 , so that the longest partnerships in the

network are Exponentially distributed with a mean of 50 years. Applying this constraint and rearranging

Eq. 16 we obtain:

a(λj , λl) = min

{
− ln

((
1− q(λj , λl)

)(
1 +

1

φ

))
,

1

50φ

}
(17)

We deduce an algorithm for the simulation of a static snapshot of the network over a year 342

(Appendix S1) and an algorithm for the simulation of the dynamic network (Appendix S2). 343

Both algorithms were implemented in a R package called simdynet which is freely available at 344

https://github.com/lwhittles/simdynet. 345

Simulation of gonorrhoea outbreaks 346

In order to investigate the patterns of transmission under different network structures, we consider a 347

stochastic individual-based model of gonorrhoea, adapted from [29]. Individuals are initially uninfected 348

(U ) and become infected probabilistically at rate β due to sexual contact with an contagious individual 349

as dictated by the underlying sexual network structure. Infected individuals initially pass through an 350

incubation period (I) which they leave at rate σ. A proportion ψ of those infected then develop symptoms 351

(S), whereas the remainder enters an asymptomatic stage (A). In men, gonococcal infection can occur 352

in the rectum, pharynx and/or urethra, resulting in different rates of onward transmission and probabilities 353

of developing symptoms [69]. We do not explicitly model separate anatomical sites of infection, therefore 354
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the rate of transmission, β, and the likelihood of developing symptoms, ψ, should be seen as an average 355

for any infection site. Asymptomatic individuals (A) undergo screening and receive treatment at rate 356

η, otherwise recovery from asymptomatic infection happens (either naturally or following unrelated 357

antibiotic treatment) at rate ν. The symptomatic individuals (S) seek treatment at rate µ. Individuals who 358

have been treated recover from the infection and become uninfected again at rate ρ. The contagious 359

population is denoted C = I + S +A, since individuals in treatment are assumed either to no longer be 360

contagious or to abstain from sexual activity in accordance with treatment guidelines [47]. 361

Model calibration 362

Using the Gillespie algorithm described in Appendix S2 we generated dynamic sexual networks exhibiting 363

a power-law distribution of partnerships and proportion of individuals with zero partners over one year 364

that were comparable to the Natsal-3 data. A thousand sets of parameters were sampled by Latin 365

Hypercube Sampling from input ranges selected based on published sources (cf Table 1 and Appendix 366

S3). For each underlying network structure (fully connected, static and dynamic) we seeded infection 100 367

times and simulated over three years for each parameter set. Parameter sets that produced outbreaks 368

persisting at least one year in fewer than 20% of simulations were discarded, as were parameter sets 369

that resulted in total diagnoses exceeding 400 cases per year on average. Thus only parameter sets 370

that resulted in realistic gonorrhoea outbreaks were retained. 371

We considered a suite of interventions and preventative measures against gonorrhoea, including: 372

increased condom use (resulting in a reduction in the transmission rate β), increased sexual health 373

screening (an increase in η), and the impact of a hypothetical gonorrhoea vaccine, deployed either 374

at random or targeted to the individuals with the highest propensity to form new partnerships (λ). 375

We assessed the one-year impact on the probability of a outbreak stemming from the introduction of 376

gonorrhoea into a dynamic sexual network, the number of sexual health clinic visits from both screening 377

and symptomatic treatment-seeking, and the total number of gonorrhoea diagnoses. 378
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18. Servedio VDP, Caldarelli G, Buttà P. Vertex intrinsic fitness: How to produce arbitrary scale-free

networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 2004;70:1–4.

19. Johnson LF, Geffen N. A Comparison of Two Mathematical Modeling Frameworks for Evaluating

Sexually Transmitted Infection Epidemiology. Sexually transmitted diseases. 2016;43:139–46.

20. Chen MI, Ghani AC, Edmunds J. Mind the gap: the role of time between sex with two consecutive

partners on the transmission dynamics of gonorrhea. Sexually transmitted diseases. 2008;35:435–

444.

21. Ong JBS, Fu X, Lee GKK, Chen MIC. Comparability of results from pair and classical model

formulations for different sexually transmitted infections. PLoS ONE. 2012;7:e39575.

22. Erens B, Phelps A, Clifton S, Hussey D, Mercer CH, Tanton C, et al. National Survey of Sexual

Attitudes and Lifestyles 3 Technical Report Volume 1 : Methodology. London: National Centre for

Social Research; 2013.

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/322875doi: bioRxiv preprint 

https://doi.org/10.1101/322875
http://creativecommons.org/licenses/by/4.0/


23. Erens B, Phelps A, Clifton S, Mercer CH, Tanton C, Hussey D, et al. Methodology of the

third British National Survey of Sexual Attitudes and Lifestyles (Natsal-3). Sexually transmitted

infections. 2014;90:84–9.

24. Dodds JP, Nardone A, Mercey DE, Johnson AM. Increase in high risk sexual behaviour among

homosexual men, London 1996-8: cross sectional, questionnaire study. British Medical Journal.

2000;320:1510–1511.

25. GRASP Steering Group. The Gonococcal Resistance to Antimicrobials Surveillance Programme

(GRASP) Year 2004 report. London: Health Protection Agency; 2005.

26. Choudhury B, Risley CL, Ghani AC, Bishop CJ, Ward H, Fenton KA, et al. Identification

of individuals with gonorrhoea within sexual networks: a population-based study. Lancet.

2006;368:139–146.

27. Park N. Revised population estimates for England and Wales : mid-2012 to mid-2016. ONS;

2018.

28. Van Kampen S, Fornasiero M, Lee W. Producing modelled estimates of the size of the lesbian,

gay and bisexual (LGB) population of England: Technical Report 1: Review of LGB measures.

ONS; 2017. Available from: www.gov.uk/phe{%}5Cnwww.gov.uk/phe{%}0Awww.gov.uk/phe.

29. Whittles LK, White PJ, Didelot X. Estimating the fitness cost and benefit of cefixime resistance

in Neisseria gonorrhoeae to inform prescription policy: A modelling study. PLoS Medicine.

2017;14:e1002416.

30. Bissessor M, Tabrizi SN, Fairley CK, Danielewski J, Whitton B, Bird S, et al. Differing Neisseria

gonorrhoeae bacterial loads in the pharynx and rectum in men who have sex with men:

Implications for gonococcal detection, transmission, and control. Journal of Clinical Microbiology.

2011;49:4304–4306.

31. Kent CK, Chaw JK, Wonq W, Liska S, Gibson S, Hubbard G, et al. Prevalence of rectal, urethral,

and pharyngeal chlamydia and gonorrhea detected in 2 clinical settings among men who have

sex with men: San Francisco, California, 2003. Clinical Infectious Diseases. 2005;41:67–74.

32. Norris Turner A, Carr Reese P, Ervin M, Davis JA, Fields KS, Bazan JA. HIV, rectal chlamydia

and rectal gonorrhea in men who have sex with men attending an STD clinic in a midwestern US

city. Sexually Transmitted Diseases. 2013;40.

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/322875doi: bioRxiv preprint 

www.gov.uk/phe{%}5Cnwww.gov.uk/phe{%}0Awww.gov.uk/phe
https://doi.org/10.1101/322875
http://creativecommons.org/licenses/by/4.0/


33. Harrison WO, Hooper RR, Wiesner PJ, Campbell AF, Karney WW, Reynolds GH, et al. A trial

of minocycline given after exposure to prevent gonorrhea. New England Journal of Medicine.

1979;300:1074–1078.

34. McCutchan JA. Epidemiology of venereal urethritis: comparison of gonorrhea and nongonococcal

urethritis. Reviews of Infectious Diseases. 1984;6:669–688.

35. Lodin A. Has the incubation period of gonorrhoea undergone a change? Acta dermato-

venereologica. 1955;35:457–462.

36. Sherrard J, Barlow D. Gonorrhoea in men: clinical and diagnostic aspects. Genitourinary medicine.

1996;72:422–6.

37. Korenromp EL, Sudaryo MK, de Vlas SJ, Gray RH, Sewankambo NK, Serwadda D, et al. What

proportion of episodes of gonorrhoea and chlamydia becomes symptomatic? International

Journal of STD and AIDS. 2002;13:91–101.

38. Didelot X, Dordel J, Whittles LK, Collins C, Bilek N, Bishop CJ, et al. Genomic analysis and

comparison of two gonorrhoea outbreaks. mBio. 2016;7:e00525–16.

39. Hazel A, Marino S, Simon C. An anthropologically based model of the impact of asymptomatic

cases on the spread of Neisseria gonorrhoeae. Journal Of The Royal Society Interface.

2015;12:20150067.

40. Handsfield HH, Lipman TO, Harnisch JP, Tronca E, Holmes KK. Asymptomatic Gonorrhea in Men.

New England Journal of Medicine. 1974;290:117–123.

41. Fairley CK, Chen MY, Bradshaw CS, Tabrizi SN. Is it time to move to nucleic acid amplification

tests screening for pharyngeal and rectal gonorrhoea in men who have sex with men to improve

gonorrhoea control? Sexual Health. 2011;8:9–11.

42. Jin F, Prestage GP, Mao L, Kippax SC, Pell CM, Donovan B, et al. Incidence and risk factors for

urethral and anal gonorrhoea and chlamydia in a cohort of HIV-negative homosexual men: the

Health in Men Study. Sexually Transmitted Infections. 2007;83:113–119.

43. Clutterbuck D, Flowers P, Barber T, Wilson H, Nelson M, Hedge B, et al. The 2010

UK national guidelines on safer sex advice. The Clinical Effectiveness Group of the

British Association for Sexual Health and HIV (BASHH) and the British HIV Association

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/322875doi: bioRxiv preprint 

https://doi.org/10.1101/322875
http://creativecommons.org/licenses/by/4.0/


(BHIVA); 2010. Available from: http://www.bhiva.org/documents/Guidelines/SaferSex/

Guideline{_}on{_}Safer{_}Sex{_}Advice.pdf.

44. Ross J, Brady M, Clutterbuck D, Doyle T, Hart G, Hughes G, et al. BASHH Recommendations

for Testing for Sexually Transmitted infections in Men who have Sex with Men. British

Association of Sexual Health and HIV; 2014. Available from: http://www.bashh.org/documents/

BASHHRecommendationsfortestingforSTIsinMSM-FINAL.pdf.

45. Frankis J, Goodall L, Clutterbuck D, Abubakari R, Flowers P. Regular STI testing amongst men

who have sex with men and use social media is suboptimal – a cross-sectional study. International

Journal of STD & AIDS. 2017;28:573–583.

46. Mercer CH, Aicken CRH, Estcourt CS, Keane F, Brook G, Rait G, et al. Building the bypass–

implications of improved access to sexual healthcare: evidence from surveys of patients attending

contrasting genitourinary medicine clinics across England in 2004/2005 and 2009. Sexually

transmitted infections. 2012;88:9–15.

47. Bignell C, FitzGerald M. UK national guideline for the management of gonorrhoea in adults, 2011.

International Journal of STD & AIDS. 2011;22:541–547.

48. Petousis-Harris H, Paynter J, Morgan J, Saxton P, McArdle B, Goodyear-Smith F, et al.

Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea

in New Zealand: a retrospective case-control study. The Lancet. 2017;390:1603–1610.

49. Craig AP, Gray RT, Edwards JL, Apicella MA, Jennings MP, Wilson DP, et al. The potential impact

of vaccination on the prevalence of gonorrhea. Vaccine. 2015;33:4520–4525.

50. Petousis-Harris H, Paynter J, Morgan J, Saxton P, Sherwood J, McArdle B, et al. Effectiveness of

a group B OMV meningococcal vaccine on gonorrhoea in New Zealand - a case control study.

Lancet Infect Dis. 2017;0:1–8.

51. Seib KL. Gonorrhoea vaccines: a step in the right direction. Lancet. 2017;6736:10–11.

52. Becker N. Estimation for discrete time branching processes with application to epidemics.

Biometrics. 1977;33:515–22.

53. Farrington CP, Kanaan MN, Gay NJ. Branching process models for surveillance of infectious

diseases controlled by mass vaccination. Biostatistics. 2003;4:279–295.

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/322875doi: bioRxiv preprint 

http://www.bhiva.org/documents/Guidelines/SaferSex/Guideline{_}on{_}Safer{_}Sex{_}Advice.pdf
http://www.bhiva.org/documents/Guidelines/SaferSex/Guideline{_}on{_}Safer{_}Sex{_}Advice.pdf
http://www.bashh.org/documents/BASHH Recommendations for testing for STIs in MSM - FINAL.pdf
http://www.bashh.org/documents/BASHH Recommendations for testing for STIs in MSM - FINAL.pdf
https://doi.org/10.1101/322875
http://creativecommons.org/licenses/by/4.0/


54. Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C, Ferguson N. Bayesian reconstruction of

disease outbreaks by combining epidemiologic and genomic data. PLoS Computational Biology.

2014;10:e1003457.

55. Didelot X, Gardy J, Colijn C. Bayesian inference of infectious disease transmission from whole-

genome sequence data. Molecular Biology and Evolution. 2014;31:1869–1879.

56. Didelot X, Fraser C, Gardy J, Colijn C. Genomic infectious disease epidemiology in partially

sampled and ongoing outbreaks. Molecular Biology and Evolution. 2017;34:msw075.

57. Klinkenberg D, Backer JA, Didelot X, Colijn C, Wallinga J. Simultaneous inference of

phylogenetic and transmission trees in infectious disease outbreaks. PLoS Computational

Biology. 2017;13:e1005495.

58. De Silva D, Peters J, Cole K, Cole MJ, Cresswell F, Dean G, et al. Whole-genome sequencing

to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect Dis.

2016;16:1295–1303.

59. Fifer H, Cole M, Hughes G, Padfield S, Smolarchuk C, Woodford N, et al. Sustained transmission

of high-level azithromycin-resistant Neisseria gonorrhoeae in England : an observational study.

Lancet Infect Dis. 2018;3099:1–9.

60. Peters J, Cresswell F, Amor L, Cole K, Dean G, Didelot X, et al. Whole genome sequencing of

Neisseria gonorrhoeae reveals transmission clusters involving patients of mixed HIV serostatus.

Sex Transm Infect. 2018;94:138–143.

61. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual

variation on disease emergence. Nature. 2005;438:355–9.

62. Galvani AP, May RM. Epidemiology: Dimensions of superspreading. Nature. 2005;438:293–295.

63. Garske T, Rhodes C. The effect of superspreading on epidemic outbreak size distributions.

Journal of Theoretical Biology. 2008;253:228–237.

64. Grassly NC, Fraser C. Mathematical models of infectious disease transmission. Nat Rev Microbiol.

2008;6(6):477–87.

65. Li LM, Grassly NC, Fraser C. Quantifying Transmission Heterogeneity Using Both Pathogen

Phylogenies and Incidence Time Series. Mol Biol Evol. 2017;34:2982–2995.

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/322875doi: bioRxiv preprint 

https://doi.org/10.1101/322875
http://creativecommons.org/licenses/by/4.0/


66. Risley CL, Ward H, Choudhury B, Bishop CJ, Fenton KA, Spratt BG, et al. Geographical and

demographic clustering of gonorrhoea in London. Sexually Transmitted Infections. 2007;83:481–

487.

67. Gelman A, Rubin DB. Inference from Iterative Simulation Using Multiple Sequences. Statistical

Science. 1992;7:457–472.

68. Brooks SPB, Gelman AG. General methods for monitoring convergence of iterative simulations.

Journal of Computational and Graphical Statistics. 1998;7:434–455.

69. Platt R, Rice P, McCormack W. Risk of acquiring gonorrhea and prevalence of abnormal adnexal

findings among women recently exposed to gonorrhea. JAMA. 1983;250:3205–3209.

29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/322875doi: bioRxiv preprint 

https://doi.org/10.1101/322875
http://creativecommons.org/licenses/by/4.0/

