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Abstract 

Background 

Modification of attentional biases (ABM) may lead to more adaptive emotion perception 

and emotion regulation. Understanding the neural basis of these effects may lead to 

greater precision for future treatment development. Task-related fMRI following ABM 

training has so far not been investigated in depression. The main aim of the RCT was to 

explore differences in brain activity after ABM training in response to emotional stimuli.  

 

Methods  

A total of 134 previously depressed individuals were randomized into 14 days of ABM- or 

a placebo training followed by an fMRI emotion regulation task. Depression symptoms 

and subjective ratings of perceived negativity during fMRI was examined between the 

training groups. Brain activation was explored within predefined areas (SVC) and across 

the whole brain. Activation in areas associated with changes in attentional biases (AB) 

and degree of depression was explored.  

 

Results 

The ABM group showed reduced activation within the amygdala and within the anterior 

cingulate cortex (ACC) when passively viewing negative images compared to the placebo 

group. No group differences were found within predefined SVC’s associated with 

emotion regulation strategies. Response within the temporal cortices was associated 

with degree of change in AB and with degree of depressive symptoms in ABM versus 

placebo.   

 

Limitations 

The findings should be replicated in other samples of depressed patients and in studies 

using designs that allow analyses of within-group variability from baseline to follow-up.  

 

Conclusions  

ABM training has an effect on brain function within circuitry associated with emotional 

appraisal and the generation of affective states.  

 

Clinicaltrials.gov identifier: NCT02931487 
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Introduction 

A number of effective treatments exist for major depressive disorder. However, following 

successful treatment relapse is common with 50-70% of patients relapsing within 5 

years.1,2 Residual symptoms are among the strongest predictors for relapse in recurrent 

depression.3 Cognitive theories of depression posit that biased information processing 

for emotional stimuli plays a key role in development and relapse in depression.4 Despite 

mixed findings, clinically depressed subjects, as well as currently euthymic previously 

depressed subjects, have repeatedly been reported to orient their attention toward 

negative faces rather than neutral or positive faces.5-10 Attentional biases (AB) and 

deficits in cognitive control may interfere with emotion regulation and mood state. 

Negative cognitive biases in depression are thought to be facilitated by increased 

influence from subcortical emotion processing regions combined with attenuated top-

down cognitive control.4,11  

 

Computerized ABM procedures aim to implicitly retrain biased attentional patterns.12 

Although there is debate about the true effect size of ABM in depression13,14 some studies 

have reported reduced depressive symptoms after successful modification of AB.15-18 The 

neural basis of changes in AB, which is believed to be the mechanism of change behind 

symptom improvement after ABM training, has so far not been investigated. The 

functional neurobiology of emotion perception distinguishes between structures critical 

for appraisal, generation of affective states and emotion regulation. The amygdala and 

insular cortex are particularly important within a ventral system linked to the emotional 

significance of stimuli, and the production of affective states. The ventral ACC plays a 

main role in automatic regulation of emotional responses. A dorsal system includes the 

dorsal ACC and prefrontal regions and is argued to be involved in effortful regulation of 

affective states and subsequent behavior.19,20  

 

The neural effects of a single session ABM in healthy individuals include lateral 

prefrontal cortex reactivity towards emotional stimuli21 indicating moderation of the 

dorsal neurocircuitry in emotion perception. One fMRI study in young women with sub-

threshold depression found differences between ABM and placebo in measures of 

spontaneous fluctuations within the right anterior insula and right middle frontal 
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gyrus,22 areas critical for emotion generation and automatic emotion regulation of 

emotional responses. In a study with clinically depressed participants differences in 

resting state connectivity between ABM and placebo was found within the middle frontal 

gyrus and dorsal ACC, a neural system important for cognitive control over emotions, 

along with changes in a network associated with sustained attention to visual 

information in the placebo group.23 Overall, these early results provide some evidence 

that ABM modifies function in emotional regulatory systems although the small study 

sample sizes and variety of approaches used may underpin the absence of  consistent 

effects across studies.24 

 

No study has investigated ABM-induced changes in emotion processing using fMRI in a 

large clinical sample after multiple training sessions. In this pre-registered clinical trial 

(NCT02931487) we used a sample of 134 participants previously treated for depression 

and with various degrees of residual symptoms. A main aim was to explore the neural 

effects of ABM within both ventral- and dorsal emotion perception circuitry.  We 

measured BOLD response within well-established emotion regulation circuitry, based on 

previous studies in response to emotionally arousing stimuli when participants 

attempted to actively regulate their emotional response. Brain activation in response to 

passive viewing of negative stimuli was explored across the whole brain and within the 

bilateral amygdala. Furthermore, we examined how changes in AB, the mechanism by 

which ABM is believed to work, and changes in symptoms differed between ABM as 

compared to placebo.  

 

Methods and materials  

Participants and Screening procedures: Patients that had been treated for at least one 

previous episode of MDD were randomized into two treatment conditions with either a 

positive ABM- or a closely matched active placebo training condition. Block 

randomization (1:1) was performed at inclusion to ensure equal numbers of participants 

and similar characteristics for the two groups. Participants were invited to be part of the 

fMRI study immediately after training and preferably within one week after ABM 

training. The current clinical trial (NCT02931487) is an extension of a larger double-

blinded randomized clinical trial (RCT)(NCT02658682) including 321 patients with a 

history of depression. A total of 136 eligible participants between 18-65 years old were 

enrolled for fMRI.  
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The main recruitment site was an outpatient clinic in the Department of Psychiatry, 

Diakonhjemmet Hospital in Oslo. Participants were also recruited from other clinical 

sites and via social media. Individuals diagnosed with current- or former neurological 

disorder, psychosis, bipolar spectrum disorders, substance use disorders, attention 

deficit disorder, or head trauma were excluded via pre-screening. Informed consent was 

obtained before enrolment. The procedure was approved by The Regional Ethical 

Committee for Medical and Health Research for Southern Norway (2014/217/REK sør-

øst D). 

 

Inclusion criteria were individuals that had experienced more than one depressive 

episode fulfilling the Mini International Neuropsychiatric Interview (M.I.N.I 6.0.0) A1a 

(depressed mood) and/or A2a (loss of interest or pleasure) criteria, more than 5 positive 

items on A3 and filling the A5 criterion (DSM 296.30-296.36 Recurrent/ ICD-10 F33.x). 

To assess both clinically- and self-rated of symptoms Beck Depression Inventory (BDI-

II)25 and Hamilton Rating Scale for Depression (HDRS)26 were administered.  

 

Attentional bias modification procedure: The ABM task was a computerized visual dot-

probe procedure developed by Browning and coworkers.15 A fixation cross was initially 

displayed followed by two images (the stimuli) presented concurrently on the top and 

bottom of the computer screen. Following stimulus onset, a probe (one or two dots) 

immediately appeared on the same location as one of the image stimuli and remained on 

the screen until the participant responded. The types of stimuli were pictures of 

emotional faces of three valences; positive (happy), neutral, or negative (angry and 

fearful). A single session of the task involved 96 trials with equal numbers of the three 

stimulus pair types. In addition, equal numbers of trials were randomly presented for 

500- or 1000 ms before the probe was displayed. In each trial of the task, stimuli from 

two valences were displayed, in one of the following pairing types: positive-neutral, 

positive-negative, and negative-neutral. In the ABM condition, probes were located 

behind positive stimuli in 87 % of the trials (valid trials), as opposed to 13% with probes 

located behind the more negative stimuli (invalid trials). Consequently, participants 

should implicitly learn to deploy their attention toward positive stimuli, and in this way 

develop a more positive AB when completing the task. The neutral ABM placebo 

condition was otherwise identical, except the location of the probe, which was located 
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behind the positive (valid trials) stimuli in 50% of the trials. Participants completed two 

sessions (96 trials) of ABM daily during the course of fourteen days (28 sessions in total) 

on identical notebook computers (14" HP EliteBook 840, 1600x900, 8GB, Intel Core i5-

4310U), which were set up and used exclusively for ABM-training.  

 

MRI Scan acquisition: Scanning was conducted on a 3T Philips Ingenia whole-body 

scanner, with a 32 channel Philips SENSE head coil (Philips Medical Systems). 

Functional images were obtained with a single-shot T2* weighted echo planar imaging 

sequence (repetition time (TR): 2000 ms; slice echo time (TE): 30 ms; field of view 

(FOV): 240x240x117; imaging matrix: 80x80; flip angle 90°, 39 axial slices, interleaved 

at 3 mm thickness, no gap, voxel size 3x3x3 mm). The scanning session consisted of 340 

volumes, synchronized to the onset of the experiment. Slice orientation was adjusted to 

the line running from the anterior to posterior commissure. A T1-weighted anatomical 

image with a voxel size of 1x1x1 mm was recorded for registration of the functional 

images (TR: 8.5 ms; TE: 2.3 ms; FOV: 256x256x184; flip angle: 7°;184 sagittal slices).  

 

fMRI Experimental procedure: The study used a modified emotion regulation 

experiment. Participants were scanned as they were viewing sequences of negative and 

neutral images while carrying out instructions either to down-regulate their emotional 

responses using a reappraisal strategy, or to simply allow themselves to attend to the 

pictures without trying to influence their emotional reactions. After each image the 

participants provided a rating of the intensity of their emotional state using a visual 

analogue scale (VAS) ranging from neutral to negative. Stimuli were selected from the 

International Affective Picture System 27 and the Emotional Picture Set.28 Negative and 

positive pictures were counterbalanced concerning their normative valence and arousal 

ratings (see Supplemental information for more detail). Each trial started with a fixation 

cross followed by a written instruction, (“Attend” or “Regulate”). The instruction was 

presented for 2000 ms. A negative or neutral image was presented for 6000 ms, 

followed by a rating screen time-locked to 6000 ms. Between stimuli there was a 

temporal jitter randomized from 2000-8000 ms (mean ISI; 3,700 ms) to optimize 

statistical efficiency in the event related design.29 The task consisted of blocks of 18 trials 

with a 20 second null-trial between the two blocks. The procedure was completed in two 

independent runs during the scanning session, 72 trials in total. In each block 12 items 

were neutral and 24 items were negative, giving three counterbalanced experimental 
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conditions; AttendNeutral, AttendNegative, RegulateNegative. The stimulus-order in 

each block was interspersed pseudo-randomly from 12 unique lists. The total duration of 

one single functional scanning run was ∼11 minutes, and total scan time~22 minutes. 

Stimuli were presented using E-Prime 2.0 software (Psychology Software Tools). An 

MRI compatible monitor for fMRI was placed at the end of the scanner behind the 

participants’ head. Participants watched the monitor using a mirror placed at the head 

coil. Responses were collected with a response grip with two response buttons. 

Physiological data (heart and respiration curves) were recorded at 1000 Hz using a 

clinical monitoring unit digitized together with scanner pulses.  

 

Training and instruction procedures: A written protocol with detailed instructions was 

used to introduce the emotion regulation experiment. The protocol was dictated for each 

participant by the researcher outside the MRI- scanner in order to standardize the verbal 

instructions. The fMRI experiment had three in-scanner exercise trials before scan start 

in order to make participants familiar with the instructions, timing, response buttons 

and VAS scale. The training procedure was repeated before the second run of the 

experiment.  

 

Symptom change and subjective ratings of negativity: Changes in self-rated and 

clinician rated symptoms were analyzed in PASW 25.0 (IBM) using a repeated measures 

ANOVA with intervention (ABM versus placebo training) as a fixed factor. Symptoms at 

baseline and at two weeks follow-up (time) were the dependent variable. To investigate 

self-reported emotional reactivity (VAS scores) during fMRI a factor based on the three 

experimental conditions AttendNeutral, AttendNegative, RegulateNegative was added as 

factor and analyzed in a repeated measures ANOVA.  

 

fMRI analyses: Whole brain analysis used the AttendNegative > AttendNeutral contrast 

to tests whether ABM influences overall brain activity in response passive viewing of 

emotional stimuli. Clinician-rated (HRSD) symptoms at baseline was demeaned and 

used as covariate. Spatial smoothing FWHM was set to 5 mm. Featquery was used for 

FEAT result interrogation. Mean local percent signal change was extracted to explore 

individual distribution within significant clusters from FEAT. Interaction analysis was 

performed in order to test whether areas within the brain respond differently in ABM 

versus placebo in relation to AB and symptom change.  
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Small volume correction (SVC’s) used regions from a recent meta-analysis on 

neuroimaging and emotion regulation.30 This meta-analysis is comprised of 48 

neuroimaging studies of reappraisal where the majority of studies involved 

downregulation of negative affect. Buhle et al30 reported seven clusters related to 

emotion regulation consistently found within prefrontal cognitive control areas when 

contrasted to passive viewing of negative images. The clusters were situated in left and 

right middle frontal gyrus, right inferior frontal gyrus, right medial frontal gyrus, left 

and right superior temporal lobe, and left middle temporal gyrus (See Supplemental). 

The bilateral amygdala, but no other brain regions was reported for the opposite 

contrast comparing negative viewing to emotion regulation. Brain activation derived 

from passive viewing of negative images as compared to passive viewing of neutral 

images was not included in the results from the meta-analysis.30  

 

Binary spheres with a 5 mm radius based on MNI coordinates of peak voxels were used 

for the predefined regions. Two single masks were created for the emotion regulation 

contrast (RegulateNegative > AttendNegative, AttendNegative > RegulateNegative). The 

seven cortical spheres and the two subcortical spheres respectively were combined into 

two single binary SVC’s. Z- threshold was set to 2.3 and cluster p-threshold was .05. 

Mean local percent signal change was extracted from the two SVC’s to explore individual 

distribution within significant clusters from FEAT. Again, clinician-rated (HRSD) 

symptoms at baseline was demeaned and used as covariate also in the SVC analysis.  

 

fMRI data preprocessing and noise reduction: The FMRIB Software Library version 

(FSL version 6.00) (www.fmrib.ox.ac.uk/fsl)31,32 was used to pre-process and analyze 

fMRI data. FMRI data processing was carried out using FEAT (FMRI Expert Analysis 

Tool) Version 6.00, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). In 

conjunction with FEAT FSL-PNM, 34 EVs were applied to regress out physiological 

noise from pulse and respiration.33 Registration to high resolution structural and/or 

standard space images was carried out using FLIRT.34,35 Registration from high 

resolution structural to standard space was then further refined using FNIRT nonlinear 

registration.36 All registrations were manually inspected to ensure proper alignment. 

Time-series statistical analysis was carried out using FILM with local autocorrelation 

correction.37 Linear registration was conducted with 12 DOF. Z (Gaussianised T/F) 
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statistic images were thresholded using clusters determined by Z>2.3 and a (corrected) 

cluster significance threshold of P=0.05.38 Two participants were excluded from the 

analyses due to signal loss caused by a technical problem with the head coil. Time series 

from each subjects’ two first level runs were combined using an intermediate fixed effect 

model in FEAT before submission to second level analysis. A total of 134 participants, 64 

from the ABM group and 70 from the placebo group were included in the intermediate - 

and the higher level FEAT analysis at group level.   
 

Results 
 
Sample characteristics 
  

Table 1 shows means, standard deviations (SD) or numbers (%).ISCED= International Standard Classification of 
Education. SSRI= any current usage of an antidepressant belonging to the Selective Serotonin Reuptake Inhibitors 
MDE=Major Depressive Episodes according to M.I.N.I.   

 
Symptom change after ABM: There was a statistically significant effect of the 

intervention (time) for rater-evaluated depression as measured by the change in HRSD, 

with lower symptoms of depression in the ABM group [F (1,132) = 4.277, η ²= .03, 

p = .041]. The means and standard deviations at baseline in ABM was (9.56 (6.38)) and 

 Placebo (n=70) ABM (n=64) 

Age 39,2 (13.4) 39,0 (12.8) 

Gender (females) 44 (62) 47 (73) 

Education Level (ISCED) 5,9 (1.2) 5,8 (1.2) 

Medication (SSRI) 23 (33) 22 (34) 

Number of previous MDE 4,4 (5.3) 4,4 (7.6) 

Days between ABM and fMRI 6.9 (8.7) 6.6 (7.2) 

Baseline symptoms: 

HRSD 

BDI-II       

 

7,6 (4.7) 

12,1 (8.7) 

 

9,3 (6.1) 

17,12 (11.6)  
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placebo (7.53 (4.69)) and changed to (7.93 (5.90)) and (7.77 (5.76)) at two weeks follow-

up.  No statistically significant effect was found for self-reported symptoms as measured 

by the BDI-II [F (1,132) = 2.048, p = .155]. The means and standard deviations at 

baseline in ABM was (17.12 (11.62)) and placebo (12.09 (8.66)) and changed to (13.25 

(12.04)) and (9.82 (8.72)) at two weeks follow-up. There was a general symptom 

improvement in both the ABM and placebo group as measured by the BDI-II from 

baseline to post training [F (1,132) = 29.775, η²= .18, p < .001].  This is in accordance 

with the results from the sample in which this smaller cohort of subjects is drawn (41). 

 

Subjective ratings of perceived negativity: We found a statistically significant difference 

between self-reported emotional reactivity measured by VAS scores during the fMRI 

experiment between task conditions. The repeated measures ANOVA showed that mean 

VAS scores were lowest when viewing neutral images (M=8.2(7.8)) followed by when 

patients were encouraged to regulate negative experience towards negative images 

(M=40.8 (16.9)), and highest for the passive viewing of negative images (62.0(15.3)) [F= 

(1,133) = .074, η²= .93, p < .001]. A post hoc test showed that the differences between the 

passive and regulate viewing conditions for negative stimuli was large and statistically 

significant F (1,133) = 202.81, η²= .60, p < .001]. VAS ratings did not differ between 

ABM and placebo [F= (1,133) = .993, p < .646].  

 

Effects of ABM from whole brain analyses: Passive viewing of negative images revealed 

greater placebo activation in a cluster within the pregenual ACC, the paracingulate – and 

the medial cortex bilaterally, extending to the right frontal orbital cortex and the frontal 

pole compared to ABM. The peak activation for the cluster was found in the left frontal 

medial cortex (MNI coordinates x y z =-16 36 -10, Z=3.86, p=.001) (Figure 1.) 
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Figure 1 shows cluster activation (Z>2.3) for Placebo over ABM for negative images (left), together with 
distribution of individual percentage signal changes over significant clusters (right). 
 
Effects of ABM within predefined SVCs: Analyses masked across predefined emotion 

regulation circuitry revealed more activation placebo as compared to ABM within the 

right- (MNI x y z = -18 -6 -20, size=8, Z=2.89, p=.032) and left amygdala (MNI x y z = 

28 0 -16, size= 3, Z = 2.55, p= .040) for the passive viewing contrast (AttendNegative > 

AttendNeutral) (Figure 2.).  

 

 
 
Figure 2 shows amygdala mean activation (left) for placebo and ABM (red) and peak voxels where placebo 
had more activation compared to ABM for negative images (yellow) and distribution of individual 
percentage signal changes over significant clusters (right).  
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No differences between ABM and placebo was found for the emotion regulation 

contrasts. Across both groups the regulate contrast (RegulateNegative > AttendNegative) 

revealed activation within two SVC’s in the left inferior frontal gyrus (MNI x y z = -30 -2 

-54, size=75, Z=10.5, p=.017) and right middle frontal gyrus (MNI x y z = 60 26 6, 

size=29, Z=5.48, p=.048). The opposite contrast (AttendNegative > RegulateNegative) 

revealed increased bilateral amygdala activation in both the ABM- and placebo group. 

The largest cluster was found within the left amygdala (MNI x y z = -18 0 -14, size=75, 

Z=7.93; p=.006) and a smaller cluster was found within the right amygdala (MNI x y z = 

26, -2, -16, size=13, Z=4.05, p=.026) (supplemental Figure1).  

 

Interaction with degree of attentional biases and symptom change: 

 Two distinct clusters were associated with the interaction between the passive viewing 

of negative images (AttendNegative > AttendNeutral), the intervention and degree of AB 

change (MNI x y z = 54 -24 8, size=1061; Z=4.05, p<.001) and (MNI x y z =-50 0 10, 

size=547, Z=3.44; p<.020).  

 

 

Figure 3 shows areas activated in association to the interaction between AB and the intervention (left).  The 
scatter plot (right) shows the regression lines and individual distribution in the ABM and the placebo 
condition. 

 
An interaction between passive viewing (AttendNegative > AttendNeutral), the 

intervention, and degree of symptom change (HRSD) were found within the right 

planum temporale and insular cortex (MNI x y z = 50 -10 18, size=872; Z=5.28, p<.001) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/322842doi: bioRxiv preprint 

https://doi.org/10.1101/322842
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

(Figure 4.).  

 

 
Figure 4 shows areas activated in association to the interaction between HRSD and the intervention (left).  
The scatter plot (right) shows the regression lines and individual distribution in the ABM and the placebo 
condition. 

 
Discussion 

Our results revealed intervention dependent fMRI changes after two weeks of ABM 

within areas consistently associated with emotional appraisal and the generation of 

affective states, areas within a circuitry known to be altered in depression.4,19,20 The 

placebo group showed more pronounced activation for negative images within the 

amygdala, in midline structures, and in the pregenual ACC. Analysis of the mechanism 

of change showed that degree of changes in AB was linearly linked to activity in the 

insular cortex bilaterally. Symptom improvement after ABM was linearly associated with 

activation in the right insular cortex, areas involved in the generation of affective 

states.19  

 

Analyses within predefined areas associated with effortful emotion regulation revealed 

activation within the left inferior frontal gyrus and right middle frontal gyrus across 

groups.30 The amygdala was also more activated during passive viewing versus active 

regulation of negative stimuli, but did not differ between the ABM and placebo group. In 

line with these results, we found no differences between ABM and placebo training as 

measured by subjective ratings (VAS) of perceived negativity. This is consistent with the 

primary outcomes from the clinical trial that found an ABM effect restricted to blinded 
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clinician-rated, but not self-rated symptoms.39 Together, the results may imply that the 

early effects of ABM are restricted to changes in emotion generation and appraisal, as 

opposed to more conscious forms of emotion regulation linked to the dorsal system.  

 

A considerable number of meta-analyses using functional connectivity in depression 

have shown altered activity in areas that distinguished ABM and placebo in the current 

study including the insula and ACC.40-42 In a study by Horn et al43 increased connectivity 

between pregenual ACC and insula was found in severely depressed patients compared 

to mildly depressed patients and healthy controls. Functional connectivity in the insula 

has been associated with abnormal interoceptive activity44 and fronto-insular 

connectivity has been linked to maladaptive rumination45 in depression. Midline brain 

structures including the pregenual ACC has been linked to self-referential processing,46 

hopelessness,47 anhedonia48 and impaired emotion processing49 as well as with in 

studies of functional connectivity  and depression. Notably, the ACC and insula are 

together with the amygdala core areas of the salience network, which determines the 

significance of external stimuli. The salience network has been hypothesized to play a 

role in switching between task positive- and negative networks50,51 and may well play a 

role in symptom improvement after ABM as found in this study.  

 

The insula and the amygdala are among core brain areas that respond preferentially to 

negative stimuli in healthy individuals, and activation in the insula and ACC has 

repeatedly been reported across a range of experiments using emotional tasks with 

cognitive demand and mental imagery.52,53 Neural responses to negative stimuli within 

the amygdala, insula and ACC are found to be more pronounced in depressed patients 

versus healthy controls.54  Ma 55 describes an emotional circuit including the insula, 

bilateral amygdala and ACC affected by antidepressant medication by decreasing activity 

towards negative- and increasing activity towards positive stimuli. Antidepressants have 

been hypothesized to work by remediating negative affective biases, i.e. targeting the 

same mechanism as when applying an ABM procedure.56-58 Similarly, the moderation of 

awareness towards negative stimuli via ABM (the mechanism of change) may alter 

automatic emotional vigilance and arousal towards negative stimuli. These moderations 

may lead to altered parasympathetic responses via circuitry involving the amygdala and 

ACC. The translation of these changes into improved subjective mood may take some 

time as the individual learns to respond to this new and more positive social and 
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emotional perspective of the world. However, neural correlates of early changes in the 

processing of emotional stimuli might be a marker of a process leading to symptom 

improvement. This model is consistent with cognitive theories of depression4,59 which 

the ABM procedure builds on. Accordingly, studies on cognitive behavioral therapy (CBT) 

shows that pregenual ACC is positively correlated with the degree of symptom 

improvement.60-65 Moreover, given that that the pregenual ACC is believed to play an 

important role in downregulation of limbic hyperreactivity20,66,67 the group difference 

found in this study may reflect more adaptive emotion processing after ABM. 

 

Worldwide, there is a pressing demand for evidence-based treatments in mental health. 

It has been argued that psychotherapy research does not provide explanations for how or 

why even the most commonly used interventions produce change.68 In a recent 

statement from the Lancet Psychiatry’s Commission on treatments research in 

tomorrow’s science the authors argue that there is an acute need to improve treatment 

and thus clinical trials should focus not only on efficacy, but also on identification of the 

underlying mechanisms through which treatments operate.69 The current study is 

addressing such mechanisms by targeting changes in AB, which is believed to be the 

mechanism, that translate into symptom improvement after ABM.  

 

The current study is based on an RCT with a larger sample of patients that found an 

ABM effect on clinician-rated symptoms. It uses a well validated emotion perception 

task and follows a stringent pre-registered research protocol which represents a strength. 

This study exploits the link between a psychological mechanism, clinical measures and 

underlying brain function measured by fMRI, thus the results should have translational 

potential. The current trial is the largest study that has investigated changes in emotion 

processing using fMRI after ABM training.   

 

Limitations 

A key limitation related to the research design is that fMRI assessment after ABM does 

not allow statistical modeling of within-individual variance from baseline to follow-up. 

There is an unexpected difference in symptom degrees at baseline that could be 

associated with group differences in brain activation. Adding symptom degree as a 

covariate in the fMRI analysis will regress out variance related to this particular variable. 

The sample consist of patients with previous depression and various degrees of residual 
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symptoms, and needs to be replicated in studies with other patient groups. Brain 

activation related to ABM may also be conditionally mediated by multiple biological- 

and environmental factors outside the scope of this study.  

 

Conclusion 

This study demonstrates alterations in brain circuitry linked to passive viewing, but not 

conscious regulation of emotional stimuli and represent the first experimental evidence 

of an ABM effect using task fMRI.  
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