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ABSTRACT     Biofilms are defined as layers of cells of microorganisms 17 

adhered to the surface of a substrate and embedded in an extracellular matrix 18 

and provide an appropriate environment for increased genetic exchange. 19 

Extracellular DNA (eDNA) is an essential component of the extracellular matrix 20 

of microbial biofilms, but the pathway(s) responsible for DNA release are largely 21 

unknown. Autolysis (either spontaneous or phage-induced) has been proposed 22 

the major event leading to the appearance of eDNA. The 'suicidal tendency' of 23 

Streptococcus pneumoniae is well-known, with lysis mainly caused by the 24 

triggering of LytA, the major autolytic amidase. However, the LytC lysozyme 25 

and CbpD (a possible murein hydrolase) have also been shown involved. The 26 

present work examines the relationship between eDNA, autolysins, and the 27 

formation and maintenance of in vitro pneumococcal biofilms, via fluorescent 28 

labelling combined with confocal laser scanning microscopy, plus genetic 29 

transformation experiments. Bacterial DNA release mechanisms other than 30 

those entailing lytic enzymes were shown to be involved by demonstrating that 31 

horizontal gene transfer in biofilms takes place even in the absence of 32 

detectable autolytic activity. It had been previously suggested that the quorum 33 

sensing systems ComABCDE and LuxS/AI-2 are involved in the production of 34 

eDNA as a response to the accumulation of quorum sensing signals, although 35 

our immunofluorescence results do not support this hypothesis. Evidence that 36 

the release of DNA is somehow linked to the production of extracellular vesicles 37 

by S. pneumoniae is provided. 38 

IMPORTANCE     Most human bacterial infections are caused by 39 

microorganisms growing as biofilms. Bacteria in biofilms are less susceptible to 40 

antimicrobials and to killing by the host immune system, are very difficult to 41 

eliminate and cause recalcitrant and persistent diseases. Extracellular DNA is 42 

one of the major components of the bacterial biofilm matrix. In the present 43 

study, we provide direct evidence of the existence of biologically active 44 

(transforming), extracellular DNA in Streptococcus pneumoniae biofilms. In 45 
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previous studies, the involvement of three pneumococcal choline-binding 46 

proteins with autolytic activity (LytA, LytC and CbpD) in DNA release had been 47 

reported. In contrast, we demonstrate here that pneumococcal in vitro biofilms 48 

do contain eDNA, even in the absence of these enzymes. Moreover, our results 49 

suggest that DNA release in S. pneumoniae biofilms is connected with the 50 

production of extracellular vesicles and that this DNA is associated to the outer 51 

part of the vesicles. 52 

53 
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The human pathogen Streptococcus pneumoniae is a leading cause of 54 

pneumonia, meningitis and bloodstream infections in the elderly, and one of the 55 

main pathogens responsible for middle ear infections in children. It is carried 56 

asymptomatically in the nasopharynx of many healthy adults, and in as many as 57 

20–40% of healthy children (colonization begins shortly after birth) (1). 58 

Pneumococcal biofilms appear on adenoid and mucosal epithelium in children 59 

with recurrent middle-ear infections and otitis media with effusion, and on the 60 

sinus mucosa of patients with chronic rhinosinusitis, and they can be also 61 

formed in vitro (2, 3). Biofilm formation in S. pneumoniae is an efficient way of 62 

evading both the classical and the PspC-dependent alternative complement 63 

pathways (4). 64 

Over 60% of all human bacterial infections, and up to 80% of those that 65 

become chronic, are thought to involve growth in biofilms. A biofilm is defined 66 

as an accumulation of microorganisms embedded in a self-produced 67 

extracellular matrix (ECM) adhered to an abiotic or living surface (5). The ECM 68 

is composed of different polymers, mainly polysaccharides, proteins, and 69 

nucleic acids. The requirement of extracellular deoxyribonucleic acid (eDNA) in 70 

ECM formation and maintenance has been documented in a variety of Gram-71 

positive and Gram-negative bacteria (6). eDNA binds to polysaccharides and/or 72 

proteins, protecting bacterial cells from physical and/or chemical challenges, as 73 

well as providing biofilms with structural integrity. It is a major component of the 74 

S. pneumoniae ECM (7-11). Various pneumococcal surface proteins, e.g., 75 

several members of the choline-binding family of proteins (CBPs) (11, 12) and 76 

the pneumococcal serine-rich repeat protein (PsrP) (13), form tight complexes 77 

with eDNA via electrostatic interactions, a mechanism proposed widespread 78 

among microorganisms (14). It should be noted that PsrP appears in ≈ 60% of 79 

clinical pneumococcal isolates, whereas the main CBPs — LytA 80 

(SPD_1737/SPD_RS09190), LytB (SPD_0853/SPD_RS04550), LytC 81 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 16, 2018. ; https://doi.org/10.1101/322818doi: bioRxiv preprint 

https://doi.org/10.1101/322818


5 
 

(SPD_1403/SPD_RS07385) or CbpD (SPD_2028/SPD_RS10645) among 82 

others — are present in all S. pneumoniae strains. 83 

The source of eDNA may vary across microorganisms and in part appears 84 

because of autolysis, phage-induced lysis, and/or active secretion systems, as 85 

well as through association with extracellular vesicles (EV). In S. pneumoniae, 86 

the release of DNA during limited lysis of the culture, i.e., by controlled autolysis 87 

directed by the main CBP autolysins (LytA N-acetylmuramoyl-L-alanine 88 

amidase [EC 3.5.1.28; NAM-amidase] and LytC lysozyme [EC 3.2.1.17; 89 

muramidase]), as well as prophage-mediated lysis, have been proposed as 90 

biofilm-promoting in part of the bacterial population (9, 11). The NAM-amidase 91 

LytA, the main autolytic enzyme of S. pneumoniae, is kept under control by 92 

lipoteichoic acid — a membrane-bound teichoic acid that contains choline — 93 

during exponential growth (15), and regulated at the level of substrate 94 

recognition (16). LytC also acts as an autolysin when pneumococci are 95 

incubated at about 30C, a temperature close to that of the upper respiratory 96 

tract (17); this lysozyme might be post-transcriptionally inhibited by CbpF 97 

(SPD_0345/SPD_RS01835) (18). 98 

Studies in different microorganisms suggest that the appearance of eDNA in 99 

biofilms may also be a response to the accumulation of quorum sensing (QS - a 100 

cell density-dependent communication system that regulates cooperative 101 

behavior) signals (for a recent review, see reference 19). Two early studies on 102 

genetic transformation in planktonic cultures showed S. pneumoniae to release 103 

measurable amounts of DNA in the absence of detectable autolysis (20). 104 

Although these pioneering studies were forgotten for years, more recent 105 

investigations have shown that LytA, LytC and CbpD (a putative cell wall-106 

degrading enzyme) are directly responsible for autolytic DNA release from only 107 

a subset of cells in competent pneumococcal planktonic cultures (21, 22). In 108 

fact, the killing of non-competent sister cells by competent pneumococci — a 109 

phenomenon named fratricide — promotes allolysis and DNA release (23). 110 
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It is well known that competence induction in S. pneumoniae depends on a QS 111 

mechanism (24). LytA, LytC and CbpD are all required for allolysis (and for the 112 

concomitant DNA release) when pneumococci grow under planktonic conditions 113 

(25). It is currently believed that the limited damage caused by CbpD activates 114 

LytA and LytC, resulting in the more extensive lysis of target cells than that 115 

achieved by CbpD alone. LytA and LytC are constitutively synthesized by non-116 

competent cells. However, while the expression of LytA increases during 117 

competence, LytC is not part of the competence regulon in S. pneumoniae (26). 118 

A slightly different situation has been proposed to occur in biofilms. The lysis of 119 

target (non-competent) cells in biofilms requires CbpD to act in conjunction with 120 

LytC, whereas LytA is not required for efficient fratricide-mediated gene 121 

exchange (26). In these experiments, however, a direct visualization of eDNA in 122 

the ECM was not reported. Interestingly, the transcription of both lytA and cbpD 123 

also appears to be regulated by the LusX/autoinducer-2 (AI-2) QS (27). 124 

Via the use of an in vitro biofilm model system, the present work provides 125 

evidence that a small (but significant) proportion of biologically active, eDNA in 126 

pneumococcal biofilms is released into the medium by an alternative (or 127 

complementary) pathway to cell autolysis. It would appear that this occurs 128 

independent of the activity of LytA, LytC and CbpD and the QS systems 129 

(ComABCDE and LuxS/AI). 130 

RESULTS 131 

Visualization of eDNA in the pneumococcal biofilm. S. pneumoniae R6 132 

biofilms grown for 5 h at 34C in C+Y medium were stained with a combination 133 

of SYTO 59, DDAO (7-hydroxy-9H-[1,3-dichloro-9,9-dimethylacridin-2-one]) and 134 

anti-double-stranded (ds) DNA monoclonal antibodies (-dsDNA). When 135 

examined under the confocal laser scanning microscope (CLSM), abundant, 136 

mostly cell-associated eDNA was observed (Fig. 1). However, when scanned at 137 

488 nm (green), immunostained eDNA appeared as a lattice-like array 138 
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consisting of long DNA fibers, mainly at the top of the biofilm (Fig. 1C). Only 139 

seldomly they were associated with the cocci (marked with yellow arrows in Fig. 140 

1I). At the bottom of the biofilm, small areas of what appeared to be compacted 141 

eDNA (but no fibers) were seen (data not shown). 142 

Notably, DNA fibers were not observed when DDAO was employed. Many 143 

reports have used DDAO for staining eDNA in biofilms (28). However, a recent 144 

evaluation of eDNA stains in biofilms of various species has shown that this 145 

compound was neither completely cell impermeant nor capable to reveal DNA-146 

containing fibrilar structures (29). As our results were in agreement with these 147 

data, DDAO was not used in additional experiments. 148 

To study the dynamics of eDNA release, strain R6 was incubated under 149 

biofilm-forming conditions for up to 5 h at 34C. Immunostaining with -dsDNA 150 

of sessile (adherent) cells revealed the existence of eDNA even at early 151 

incubation times (Fig. 2). At 3 h, eDNA filaments were visible, although the 152 

majority of eDNA appeared as dots and patches, which may represent different 153 

stages of condensation of DNA–protein aggregates, as previously suggested 154 

(12). In 5 h-old biofilms, eDNA threads were infrequent and mainly located at 155 

the top of the biofilm (see above). Previous studies have revealed the existence 156 

of a mature ECM (consisting of DNA, proteins and polysaccharides) at this time 157 

point (11). Immunostaining planktonic cultures (i.e., non-adherent cells) 158 

revealed the existence of eDNA filaments that were more abundant in younger 159 

than in older cultures (Fig. 2). 160 

Evidence of the presence of eDNA in biofilms formed by different 161 

pneumococcal mutants. The involvement of eDNA in biofilm formation and 162 

maintenance was ascertained using strain P046, which lacks the two main 163 

autolytic CBPs. Strain P234 was employed as a control; this has a point 164 

mutation in the pspC (= cbpA) gene (SPD_2017/SPD_RS10590), which 165 

encodes a CBP important in virulence (30). PspC, which lacks any autolytic 166 

activity and is partly involved in biofilm formation in vitro (on polystyrene 167 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 16, 2018. ; https://doi.org/10.1101/322818doi: bioRxiv preprint 

https://doi.org/10.1101/322818


8 
 

microtiter plates) (7) and in vivo (in a murine nasopharynx colonization model) 168 

(3), also forms complexes with the eDNA (12). Compared to the parental R6 169 

strain, both mutants showed reduced biofilm-forming capacity, in agreement 170 

with previous findings (7). Interestingly, biofilm formation, but not culture growth, 171 

was greatly impaired when pneumococci were grown in the presence of DNase 172 

I (Fig. 3). Moreover, the incubation of preformed biofilms with DNase I 173 

drastically diminished the number of biofilm-associated sessile cells. As a 174 

whole, however, preformed biofilms were less reduced by DNase I treatment 175 

than growing biofilms, strongly suggesting that eDNA is more important and/or 176 

more exposed during the early stages of biofilm formation. Alternatively, eDNA 177 

may become resistant to DNase enzymes during biofilm maturation by forming 178 

complexes with other macromolecules such as CBPs. 179 

The presence of eDNA in the biofilms of comC (SPD_2066/SPD_RS10845) 180 

or luxS (SPD_0309/SPD_RS1650) mutants was also analyzed. These genes 181 

are essential for the functioning of two QS systems documented as being 182 

involved in biofilm formation (see above). The comC gene codes for the pre-183 

CSP (competence-stimulating peptide), which is matured and exported by the 184 

ComA–ComB complex as an unmodified 17-residue-long peptide pheromone. 185 

LuxS is an S-ribosylhomocysteine lyase, and is responsible for the production of 186 

the QS molecule homoserine lactone autoinducer 2 (AI-2). It has been reported 187 

that transcription of competence genes (including lytA and cbpD) is reduced in a 188 

luxS strain (27). As shown above for two CBP mutants, the comC and luxS 189 

mutants produced only ≈50% of the biofilm formed by the R6 strain (Fig. 3). 190 

Positive evidence for the involvement of eDNA in formation and maintenance of 191 

these biofilms was also obtained by treatment with DNase I (Fig. 3). 192 

Contribution of lytic CBPs to eDNA release. The presence of eDNA in the 193 

ECM of biofilms formed by strain P046 — a double LytA– LytC– mutant — was 194 

unexpected since it is generally believed that at least one of the autolysins is 195 

required for DNA release (see above). To gain further insight, the existence of 196 
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eDNA in the biofilm formed by a mutant deficient in CbpD (or its combination 197 

with the lytA and lytC mutations) was analyzed. A pspC mutant (strain P234) 198 

was included as a control. Notably, eDNA was present even in the ECM of 199 

strain P204, a mutant deficient in the three CBPs, i.e., LytA, LytC and CbpD 200 

(Fig. 4). The morphology of the biofilms formed by strain P204 differed from 201 

those of R6, with the former biofilms containing fewer microcolonies and larger 202 

eDNA patches than the wild type. 203 

It is well known that when pneumococcal cells are incubated with 2% choline 204 

chloride, CBPs are released into the medium. Those with enzymatic activity are 205 

completely inhibited (31), but transformability is not altered (32). Under these 206 

conditions, however, the biofilm-forming capacity is severely reduced (7). This 207 

was confirmed in the present work, and might be attributed (at least in part) to 208 

the drastically diminished eDNA content of the biofilm. Quite unexpectedly, R6 209 

biofilms formed in the presence of 2% choline chloride still showed the 210 

presence of eDNA (Fig. 4). 211 

The competence QS system is not involved in eDNA release. The 212 

presence of eDNA in biofilms formed by additional S. pneumoniae strains 213 

possessing combinations of mutations affecting the comA gene and various lytic 214 

genes was studied by CLSM. These strains were R391, P203, P204, and P213. 215 

The P147 strain (ciaHTupelo_VT; SPD_0702/SPD_RS0372) was also included 216 

since in previous work our group has shown that CiaR/H, a two-component 217 

signal transduction system that mediates the stress response, is in some way: 218 

a) implicated in the triggering of the LytA autolysin (33), b) required for efficient 219 

in vitro biofilm formation and nasopharyngeal colonization in a mouse model 220 

(34), and c) involved in the control of competence for genetic transformation 221 

(35). CLSM observations of in vitro biofilms showed eDNA to be also present in 222 

the biofilms of every mutant tested (Fig. 5). 223 

Transforming capacity of eDNA in pneumococcal biofilms. The above 224 

results indicate that in vitro pneumococcal biofilms are capable of releasing 225 
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eDNA in a manner apparently independent of the activity of the three 226 

pneumococcal autolysins LytA, LytC and CbpD  even though these were 227 

generally believed necessary for DNA release in planktonic cultures. To 228 

investigate whether the eDNA in the biofilms formed by pneumococci 229 

simultaneously deficient in these three lytic enzymes has transforming activity, 230 

the efficacy of gene transfer in mixed biofilms was determined. For this, the 231 

reciprocal (donor and recipient) transforming capacity of two strain pairs was 232 

measured: in addition to being autolysin proficient (or not), one pair harbored 233 

the well-known low efficiency (LE) nov1 marker (a C:G to T:A transition 234 

mutation conferring novobiocin resistance) (36), and the other the high 235 

efficiency (HE) marker str41 (an A:T to C:G transversion), which bestows 236 

streptomycin resistance (37). To allow for further characterization of the 237 

direction of DNA transfer, the latter pair of strains used was also resistant to 238 

optochin. In pneumococcal transformation, the LE markers return 510% as 239 

many transformed cells as do HE markers (which are little degraded, or not at 240 

all). Table 1 shows that, in the biofilms, the spontaneous transformation of 241 

autolysin-proficient strains (P233 and P273) took place at levels typically 242 

observed in planktonic cultures when using naked chromosomal DNA (between 243 

0.1 and 1% of total viable cells). Moreover, the heteroduplex DNA base 244 

mismatch repair system (Hex), which is responsible for marker-specific 245 

variations in transforming efficiency in planktonic cultures (38), was functional in 246 

the pneumococcal biofilms, as deduced from the relative transfer efficiency of 247 

the LE nov1 and HE str41 mutations (Table 1). In agreement with that reported 248 

by other authors (26), the transformation frequency was reduced by more than 249 

100-fold in mixed biofilms formed by the mutants deficient in the three lytic 250 

enzymes. On average, however, one among 105 pneumococci showed 251 

transformation to streptomycin resistance, demonstrating that a small amount of 252 

biologically active eDNA was still present in the ECM of the biofilms formed by 253 

the triple deficient mutant. 254 
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Previous studies performed with different bacteria have suggested that, in 255 

addition to autolytic phenomena, eDNA might be associated with EV. Recent 256 

evidence indicates that S. pneumoniae, actively sheds extracellular nano-sized 257 

EV, as do many other microorganisms (39-41). Whether pneumococcal EV 258 

contains DNA, however, was never examined. Here, high-speed sediments of 259 

biofilm filtrates — a crude preparation of EV with associated DNA (see Fig. S2 260 

in the supplemental material)— were used to perform additional transformation 261 

experiments. The results confirmed a measurable amount of transforming DNA 262 

to be present in these crude preparations, and that this DNA could be destroyed 263 

by treatment with DNase I (Table 2). Comparable results were obtained when 264 

strain P271 was incubated under planktonic conditions. 265 

DISCUSSION 266 

It has been known for decades that biofilm ECM contains eDNA, but its 267 

active role in biofilm appearance and maintenance was not recognized until 268 

Whitchurch et al. added DNase I to a Pseudomonas aeruginosa biofilm and 269 

watched the biofilm disappear (42). Since then, many reports have confirmed 270 

that a plethora of bacteria require eDNA to establish and maintain biofilms (6). 271 

The destruction of this eDNA provides a way of fighting biofilm-producing 272 

pathogens. Indeed, numerous clinical studies have shown that aerosolized 273 

DNase I (dornase alpha, a recombinant DNase I from the human pancreas) is 274 

highly effective in this respect, improving the lung function of patients with cystic 275 

fibrosis (43). 276 

In vivo studies have shown that eDNA is a major element of biofilms. 277 

However, whether it is of bacterial or environmental (including host) origin (or 278 

both) is controversial; certainly it is difficult to determine which is the case under 279 

in vivo conditions. Studies using in vitro biofilm models (grown on plastic, glass, 280 

or other abiotic surfaces) provide a convenient way to screen large sets of 281 

strains, treatments, or growing conditions (44). 282 
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Among the possible origins of eDNA in pneumococcal biofilms (14), 283 

autolysins (either from bacterial or phage origin) have been proposed to have 284 

critical role. Previous studies performed at our own and other laboratories have 285 

employed indirect (e.g., DNase I treatment and/or intrabiofilm transformation 286 

experiments) and direct methods (e.g., staining with a variety of DNA-specific 287 

fluorophores) to disclose the presence of eDNA in pneumococcal biofilms (7-9, 288 

11, 26, 27). Immunostaining with -dsDNA combined with CLSM also revealed 289 

the existence of long filaments of eDNA in biofilms formed either by 290 

Enterococcus faecalis (45) or Haemophilus influenzae ECM (46). Moreover, the 291 

presence of eDNA-containing fibrous structures in the ECM of Staphylococcus 292 

aureus and Propionibacterium acnes biofilms has also been reported using -293 

dsDNA and atmospheric scanning electron microscopy (47, 48). The use of 294 

different technical approaches reinforces the idea that the fibrous assemblies of 295 

eDNA observed in some bacterial biofilms actually exist and also offers a novel 296 

perspective of the ECM structure of pneumococcal biofilms. Since most of the 297 

DNA filaments were found at the top of the mature biofilm (where actively 298 

growing cells reside) within 3 h of growth (Fig. 1), it is unlikely that these eDNA 299 

fibers were formed exclusively via autolysis. The same conclusion might be 300 

drawn from the CLSM images of immunostained planktonic cultures (Fig. 2). 301 

In agreement with previous results, pneumococcal mutants either lacking the 302 

major autolysins or deficient in Com or LuxS/AI2 QSs showed limited biofilm-303 

forming capacity. However, the results obtained following DNase I treatment of 304 

growing or pre-formed biofilms strongly suggest that those biofilms still contain 305 

eDNA. Direct CLSM visualization of the corresponding immunostained biofilms 306 

fully confirmed the presence of eDNA, even when the pneumococci were 307 

incubated in the presence of 2% choline chloride; this is known to induce the 308 

complete non-competitive inhibition of CBPs with enzyme activity, and to 309 

release all CBPs, whether enzymatic or not, from their bacterial surface 310 

attachments. It should be noted, however, that even at this high concentration, 311 
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choline does not separate the CBP−DNA complexes that form part of the ECM 312 

of S. pneumoniae biofilms (11, 12). Nevertheless, since the complete inhibition 313 

of the enzymatic activity of autolysins takes place under these conditions, an 314 

exclusive, direct role for such enzymes in eDNA release appears to be unlikely. 315 

More direct evidence was obtained using biofilms formed by strain P204, a triple 316 

lytA lytC cbpD mutant, in which the presence of eDNA was also verified 317 

(Fig. 4). The release of eDNA was also observed in biofilms formed by comA 318 

mutants or combined comA/autolysin-deficient mutations. Most notably, the 319 

existence of biologically active eDNA in pneumococcal biofilms — even when 320 

autolysin-deficient strains were used —was fully confirmed by in situ reciprocal 321 

transformation experiments (Table 1). Deletion of either lytA, lytC and/or cbpD 322 

does not alter the transformability of the mutants compared to their parental 323 

strains when chromosomal DNA or plasmid(s) is used as donor material (17, 324 

49). Wei and Håvarstein studied the impact of LytA, LytC and CbpD on 325 

transformation efficiency in biofilm-grown pneumococci using an approach with 326 

some similarity to that employed here (26). The authors made use of in vitro 327 

mixed biofilms containing spectinomycin-resistant (Spcr) comA ‘attacker cells’ 328 

— harboring concomitant deletions in the three autolysin genes (strain 329 

SPH149), or not (strain RH1) — and Novr non-competent (comA comE) 330 

‘target cells’ (strain RH401). Upon the addition of CSP, the attackers (but not 331 

the targets, due to their being comE) acquired competence and were 332 

transformed by the DNA released from the target cells through the fratricidal 333 

killing caused by the lytic enzymes induced by the attackers. A ca. 40-fold 334 

reduction in transformation efficiency was observed in biofilms composed of 335 

SPH149 attackers (autolysin-deficient) and RH401 cells (0.009%) with respect 336 

to that seen in biofilms containing the same target cells but involving a lysis-337 

proficient strain (RH1) as the attacker (0.34%). Moreover, a further near 40-fold 338 

reduction in gene transfer frequency (0.00026%) was seen when SPH149 339 

attackers were incubated with lytA lytC targets cells (strain SPH148) (26). 340 
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Target cells containing a cbpD mutation were not tested, possibly because, as 341 

previously reported for mixed planktonic cultures, CbpD-proficient attacker cells 342 

(RH1) were 1000-fold more efficient in transformations involving cbpD+ target 343 

cells than were CbpD-deficient attacker cells (49). 344 

Pneumococcal biofilms that form during nasopharyngeal colonization may 345 

provide an optimal environment for increased genetic exchange with enhanced 346 

natural transformation in vivo (3). The presence of eDNA in the biofilm matrix 347 

has generally been attributed to the autolysis of a subpopulation of cells via 348 

fratricidal killing, suicidal killing, and/or the controlled release of DNA via signal 349 

transduction (19). Autolysis-independent eDNA release has been documented 350 

in some Gram-positive bacteria including Bacillus subtilis (50), enterococci (45, 351 

51), and staphylococci (52, 53). Taking the present results together, it is clear 352 

that mechanisms involved in active eDNA release (perhaps associated with the 353 

production of EV), other than those directly dependent on autolysins, are at 354 

work in S. pneumoniae. This is important since an important feature of biofilms 355 

is the development of chemical gradients (i.e., pH, redox potential, and ions) 356 

(reviewed in reference 28). For example, in P. aeruginosa biofilms the pH value 357 

towards the center of a microcolony (≈ 6.0) is lower than that at the edge of the 358 

biofilm or in the growth medium (≈ 6.8) (54). Although not directly tested, a 359 

similar situation might be relevant in pneumococcal biofilms because it is well 360 

known that S. pneumoniae autolysis is inhibited at low pH values (≤ 6.0) (55). In 361 

this case, autolysin-independent DNA release would allow the maintenance of 362 

horizontal gene transfer events within the biofilm. Although the amount of 363 

biologically active DNA released in the absence of detectable autolytic activity is 364 

limited, it appears to be sufficient to partially promote a biofilm lifestyle and, 365 

importantly, to allow horizontal gene transfer. It is also possible that, as 366 

suggested by the CLSM observations, a substantial amount of eDNA may be 367 

present in biofilms, although lacking most transforming activity. It is tempting to 368 

speculate that the DNA–protein complexes present in the ECM may hinder the 369 
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biological activity of eDNA as a transforming agent while contributing to the 370 

formation and preservation of the biofilm. 371 

As reported for Streptococcus mutans, lysis-independent EV can transport 372 

DNA, contributing to horizontal gene transfer (56). Recent results also suggest 373 

that signal transduction mechanisms may be involved in the regulation of EV 374 

production in some Gram-positive bacteria (57, 58), but evidence for this is 375 

lacking in S. pneumoniae. As strongly suggested by the inhibitory effect of 376 

DNase I treatment in transforming efficiency, the biologically active eDNA 377 

released independent of detectable autolysis in S. pneumoniae appears to be 378 

located outside the EV. Although the loading of DNA into EV is thought to be 379 

widespread, experimental evidence showing that most EV-associated genomic 380 

DNA is present externally has been recently shown in P. aeruginosa (59, 60). 381 

However, other possibilities are also conceivable. For example, the stability of 382 

EV under various conditions may vary and a vesicle that loses membrane 383 

integrity may ‘leak’ its constituents into the supernatant (vesicle destabilization), 384 

rather than break up, as reported in Bacillus anthracis, S. aureus and other 385 

microorganisms (61). Interestingly, a very recent study has reported that the 386 

LytA NAM-amidase is not needed for production of EV, although the presence 387 

of EV-associated DNA was not analyzed (41). 388 

An alternative (or complementary) mechanism for eDNA release may be 389 

bacterial type IV secretion systems (T4SS) that selectively deliver 390 

macromolecules to other cells or to the extracellular medium. An outstanding 391 

feature of these secretion systems is their ability to secrete both proteins and 392 

DNA molecules, a particularity that distinguishes them from other types of 393 

secretion system. The existence of a type IV secretion-like system involved in 394 

eDNA secretion was first described in Neisseria gonorrhoeae (62). More 395 

recently, it has been found that the release of eDNA from the cytoplasm of H. 396 

influenzae into the ECM requires the expression of an inner-membrane complex 397 

with homology to type IV secretion-like systems, plus the ComE outer-398 
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membrane pore through which the type IV pilus is extruded (63). Type IV pili are 399 

surface-exposed fibers that mediate many functions in bacteria, including 400 

locomotion, adherence to eukaryotic cells, biofilm formation, DNA uptake 401 

(competence), and protein secretion. Although initially considered to be 402 

exclusive to Gram-negative bacteria, they are also present in Gram-positive, 403 

although their role(s) is just beginning to emerge (64). Recently, several studies 404 

have revealed the existence of type IV competence-induced pili — 405 

predominantly composed of the ComGC pilin (SPD_1861; SPD_RS09815) — 406 

on the surface of S. pneumoniae cells (65). Since these pili bind DNA, it has 407 

been proposed that the transformation pilus is the primary DNA receptor on the 408 

bacterial cell during transformation in S. pneumoniae. It is tempting to speculate 409 

that, during competence, intracellular DNA may also be secreted into the ECM 410 

with the participation of the type IV pili, perhaps involving the aqueous pore 411 

formed by ComEC (SPD_0844; SPD_RS0450) in the cytoplasmic membrane 412 

(66). Further studies are required to test this hypothesis. 413 

MATERIALS AND METHODS 414 

Strains, media and growth conditions. Table 3 lists the pneumococcal 415 

strains used in this study; all were grown in pH 8-adjusted C medium (CpH8) 416 

supplemented with 0.08% yeast extract (C+Y) medium, or not, as required (7). 417 

Cells were incubated at 37C without shaking, and growth monitored by 418 

measuring absorbance at 550 nm (A550). When used, antibiotics were added at 419 

the following concentrations: erythromycin 0.5 μg ml–1, kanamycin 250 μg ml–1, 420 

novobiocin 10 g ml–1, optochin 5 μg ml–1, tetracycline 1 μg ml–1, spectinomycin 421 

100 μg ml–1, and streptomycin 100 μg ml–1. DNase I (from bovine pancreas, 422 

DN25) was purchased from Sigma-Aldrich. For the construction of mutants 423 

(Table 3), the appropriate S. pneumoniae strains were transformed with 424 

chromosomal or plasmid DNA in C medium supplemented with 0.08% bovine 425 

serum albumin after treating cells with 250 ng ml–1 synthetic CSP-1 at 37C for 426 
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10 min to induce competence, followed by incubation at 30C during DNA 427 

uptake. 428 

Biofilm formation was determined by the ability of cells to adhere to the walls 429 

and base of 96-well (flat-bottomed) polystyrene microtiter dishes (Costar 3595; 430 

Corning Incorporated), using a modification of a previously reported protocol 431 

(67). Unless stated otherwise, cells grown in C+Y medium to an A550 of ≈ 0.5–432 

0.6, sedimented by centrifugation, resuspended in an equal volume of the 433 

indicated pre-warmed medium, diluted 1/10 or 1/100, and then dispensed at a 434 

concentration of 200 l per well. Plates were incubated at 34C for 3, 4.5 and 5 435 

h and bacterial growth determined by measuring the A595 using a VersaMax 436 

microplate absorbance reader (Molecular Devices). The biofilm formed was 437 

stained with 1% crystal violet (67). 438 

Intrabiofilm gene transfer. Exponentially growing cultures of donor strains 439 

(see above) were seeded together in a 1:1 ratio in polystyrene microtiter plates 440 

and incubated in C+Y medium at 34C. Previous results have indicated that 441 

biofilm-grown pneumococcal cells must be actively growing to become 442 

competent (26). Hence, biofilms formation was allowed for only 4.5 h; non-443 

adherent cells were removed and adherent cells were washed with PBS, 444 

disaggregated by gentle pipetting and slow vortexing (4). The latter were then 445 

serially diluted and plated on blood agar plates containing Nov plus Str. Novr 446 

Strr transformants were then picked from plates containing Opt to ascertain their 447 

parental strain. For each donor strain the total number of viable cells was 448 

determined using blood agar plates containing either Nov or Opt plus Str. 449 

Preparation of extracellular vesicles and microscopical examination. 450 

EV-enriched centrifugation fractions were prepared from S. pneumoniae 451 

following standard procedures (61). Briefly, for biofilms, one liter of C+Y medium 452 

was inoculated with 10 ml of an exponentially growing culture of strain P271, 453 

distributed in 50 Petri dishes (10 cm diameter), and incubated at 34C for 4.5 h. 454 

The non-adherent cells in the dishes were pipetted off and the biofilm-growing 455 
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cells (6–7  109 CFU) suspended in 75 ml of fresh C+Y medium. After 456 

centrifugation (9500  g, 20 min, 4C) the supernatant was filtered through a 0.2 457 

m pore-size filter (Millipore). The filtrate was centrifuged at 100,000  g for 1 h 458 

at 4C to sediment the vesicular fraction into a pellet. The supernatant was then 459 

discarded and the pellet suspended in a small volume of C+Y medium (EV 460 

fraction) and stored in aliquots at –20C. Aliquots of the EV fraction were also 461 

treated with DNase I (10 g ml–1) for 1 h at 37C. EDTA (50 mM), SDS (1%) 462 

and proteinase K (100 g ml–1) were then added and the mixtures incubated for 463 

2 h at 37C. Extraction was performed with phenol, and precipitation with 464 

ethanol, following standard procedures. Finally, the pellet was dissolved in a 465 

small volume of 10 mM Tris-HCl, pH 8.0 containing 1 mM EDTA. Cultures of the 466 

same pneumococcal strain were also grown under planktonic conditions until 467 

late exponential phase (≈ 3  108 CFU ml–1) at 37C without agitation, and 468 

processed as biofilm-grown pneumococci for EV preparation. 469 

EV preparations (7 l) were spotted on a glass slide, air dried, stained with 470 

the red fluorescence, membrane dye FM 4-64 (Molecular Probes), and 471 

incubated with -dsDNA (ab27156, Abcam) followed by incubation with Alexa 472 

fluor 488-labeled goat anti-mouse IgG (A-11001, Invitrogen) (see below). 473 

Specimens were observed under a Leica DM4000B fluorescence microscope 474 

and viewed under a Leica HC PL APO63×/1.40–0.60 oil objective. S. 475 

pneumoniae P271 biofilms formed on glass surfaces were prepared for low-476 

temperature scanning electron microscopy (LTSEM) as previously described 477 

(7), and the samples observed at –135C using a DSM 960 Zeiss scanning 478 

electron microscope. For transmision electron microscopy (TEM) analysis, 5 μl 479 

of EV were placed for 5 min at room temperature on carbon-reinforced, 480 

Formvar-coated copper grids (300 mesh), which had been rendered hydrophilic 481 

by glow-discharge using a Quorum GloQube apparatus (Quorum 482 

Technologies). The sample was quickly washed with ultrapure water and 483 

negative staining was performed using 1% sodium phosphotungstate for 5 min. 484 
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The excess stain was removed, and the sample was allowed to dry. 485 

Micrographs were taken on a JEOL JEM 1230 working at 80 kV. 486 

Quantification of eDNA. DNA quantification was performed by 487 

spectrophotometry (with concentrated samples) and/or using genetic 488 

transformation experiments (68). It is well known that a first-order concentration 489 

dependence (near unity) exists in chromosomal DNA transformation in 490 

pneumococci and other bacteria. This was confirmed in this study (see Fig. S1 491 

in the supplemental material). It should be underlined that, since the size of the 492 

S. pneumoniae R6 genome is about 2 Mb, the DNA content of a single CFU, 493 

i.e., a diplococcus, equals approximately 4 fg. 494 

Microscopic observation of biofilms. For the observation of S. 495 

pneumoniae biofilms by CLSM, pneumococcal strains were grown on glass-496 

bottomed dishes (WillCo-dish) for 3–5 h at 34C as previously described (11). 497 

Following incubation, the culture medium was removed and the biofilm rinsed 498 

with phosphate-buffered saline (PBS) to remove non-adherent bacteria. The 499 

biofilms were then stained with DDAO (2 μM) (H6482, Invitrogen), -dsDNA (at 500 

2–25 μg ml–1 each) and/or SYTO 59 (10 μM) (S11341, Invitrogen). All staining 501 

procedures involved incubation for 10–20 min at room temperature in the dark, 502 

except when biofilms were incubated with mouse -dsDNA (2 μg ml–1); this 503 

involved a fixation step at room temperature with 3% paraformaldehyde for 10 504 

min. The biofilms were then rinsed with 0.5 ml PBS and incubated for 1 h at 4C 505 

followed by 30 min incubation at room temperature in the dark with Alexa fluor 506 

488-labelled goat anti-mouse IgG (1:500). After staining, the biofilms were 507 

gently rinsed with 0.5 ml PBS. Observations were made at a magnification of 508 

63 using a Leica TCS-SP2-AOBS-UV or TCS-SP5-AOBS-UV CLSM equipped 509 

with an argon ion laser. Laser intensity and gain were kept the same for all 510 

images. Images were analyzed using LCS software from LEICA. Projections 511 

were obtained in the x–y (individual scans at 0.5–1 μm intervals) and x–z 512 

(images at 5–6 μm intervals) planes. 513 
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Statistical analysis. Data comparisons were performed using the two-tailed 514 

Student t-test. 515 
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TABLE 1 Transformation efficiency in S. pneumoniae biofilmsa 825 

 Transformation frequencyb 

Strain Strr Novr 

P233 (Novr) P273 (Optr Strr) 0.45 ± 0.10 0.04 ± 0.02 

P272 (lytA lytC 

cbpD Novr) 

P271 (lytA lytC 

cbpD Optr Strr) 

0.27  10–2 ± 0.05  10–2 0.30  10–3 ± 0.19  10–3 

aExponentially growing cultures of the indicated donor (and recipient) strains 826 

were mixed in polystyrene microtiter plates and incubated in C+Y medium at 827 

34C. After 4.5 h incubation, non-adherent cells were removed and biofilm-828 

grown cells were washed and resuspended with PBS, diluted, and plated on 829 

blood agar plates containing Nov plus Str. Novr Strr transformants were then 830 

picked from plates containing Opt to ascertain their parental strain. Total viable 831 

cells of each strain were determined using plates containing either Nov or Opt 832 

plus Str, and ranged from 1.5  108 to 1.8  108 for P233 + P273 biofilms, and 833 

from 3.2  108 to 3.4  108 CFU ml–1 for P272 + P271 biofilms. 834 

bTransformation frequency is defined as the number of transformants (CFU ml–835 

1) multiplied by 100, divided by the total number of bacteria (CFU ml–1). Values 836 

correspond to the means ± standard errors for four independent experiments. 837 

838 
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TABLE 2 Transforming eDNA in pneumococcal biofilms and planktonic 839 

culturesa 840 

DNA origin Total DNA content (g) Cell equivalents (%) 

Biofilm   

Intracellular 65 1.6  1010 (100) 

EV-associated 7.5  10–5 1.9  104 (0.00012) 

EV-associated + DNase I ND – 

Planktonic culture   

Intracellular 3  103 7.5  1011 (100) 

EV-associated 1.2  10–2 3  106 (0.0004) 

EV-associated + DNase I ND – 

aEV were prepared from biofilms or planktonic cultures of strain P271 (lytA lytC 841 

cbpD Optr; Strr) and DNA was purified as described under Materials and 842 

Methods. Total chromosomal DNA (intracellular) was also purified. Competent 843 

R6 cells were used as recipients in transformation experiments. Transformants 844 

were selected using streptomycin-containing plates. Results are the means for 845 

three independent determinations. ND, not detected. 846 

847 
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TABLE 3 S. pneumoniae strains used 848 

Strain Descriptiona Source or reference 

R6 Nonencapsulated D39 derivative; lytA+ 69 

R6BC R6 lytB::ermC lytC::tet; Eryr Tetr 7 

R800 R6 derivative 70 

M22 A laboratory multi-resistant strain; nov1 str41; 

Novr; Strr  

71 

M222 M22 derivative; M22 transformed with 

Streptococcus oralis NCTC 11427 

chromosomal DNA; Optr; Strr 

72 

SPJV05 D39 derivative luxS null mutant, Eryr 73 

SPJV10 D39 derivative comC null mutant, Eryr 74 

P042 R800 but lytA::aphIII lytC::tet; Kanr Tetr 7 

P046 R800 but lytA::aphIII lytC::ermC; Kanr Eryr 7 

P104 R6 but lytA::cat; Cmr This study 

P147 R6 ciaHTupelo_VT 33 

P203 R391 but cbpD::spc; R391 transformed with 

R1582 chromosomal DNA; Spcr 

This study 

P204 P042 but cbpD::spc; P042 transformed with 

R1582 chromosomal DNA; Spcr 

This study 

P211 P104 but comA::kan; P104 transformed with 

R391 chromosomal DNA; Kanr 

This study 

P213 P211 but lytC; P211 transformed with R6BC 

chromosomal DNA; Tetr 

This study 

P233 R6 transformed with M22 chromosomal DNA; 

Novr 

This study 

P234 R6 pspC; spontaneous mutantb This study 

P235 R6 but luxS null mutant; R6 transformed with 

SPJV05 chromosomal DNA; Eryr 

This study 
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P236 R6 but comC null mutant; R6 transformed with 

SPJV10 chromosomal DNA; Eryr 

This study 

P271 P204 transformed with M222 chromosomal 

DNA; Optr; Strr 

This study 

P272 P204 transformed with M222 chromosomal 

DNA; Novr 

This study 

P273 R6 transformed with M222 chromosomal DNA; 

Optr; Strr 

This study 

R391 R800 but comA::kan; Kanr 25 

R1582 R800 but cbpD::spc; Spcr 25 

aCm, chloramphenicol; Ery, erythromycin; Kan, kanamycin; Nov, novobiocin; 849 

Opt, optochin; Tet, tetracycline; Spc, spectinomycin; Str, streptomycin; VT, 850 

vancomycin tolerance. r, resistant. 851 

bThe pspC mutation corresponds to a single base substitution (G:C to A:T) 852 

converting Trp (TGG) at position 512 to a stop codon (TAG). The wild type 853 

pspC gene encodes a 701 amino acid residue-long protein. 854 

 855 

856 
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FIGURE LEGENDS  857 

FIG 1     Evidence of the existence of eDNA in pneumococcal biofilms using 858 

CLSM. A biofilm of S. pneumoniae R6 grown for 5 h at 34C in C+Y medium 859 

was stained with a combination of SYTO 59 (A, red), DDAO (B, blue), and -860 

dsDNA, followed by Alexa Fluor-488 goat anti-mouse IgG (C, green). Image D 861 

is a merge of channels A and B. Image E is a merge of channels A and C. 862 

Image F is a merge of channels B and C. Image G is a merge of the three 863 

channels. Images H, I and J correspond, respectively, to an enlarged vision of 864 

the area marked with squares in D, E and F. Yellow arrows point to eDNA 865 

stained only with DDAO or -dsDNA–Alexa Fluor-488. White arrows indicate 866 

the location of SYTO 59-stained bacteria together with eDNA labelled either 867 

with DDAO (H, magenta) or with -dsDNA–Alexa Fluor-488 (I, yellow). The red 868 

arrow in image J points to doubly labelled (DDAO plus -dsDNA–Alexa Fluor-869 

488) eDNA (J, light blue). Scale bars = 25 μm. 870 

FIG 2     Dynamics of eDNA release in pneumococcal biofilms. S. pneumoniae 871 

R6 was grown under biofilm-forming conditions. After 3 and 5 h incubation at 872 

34C, adherent (biofilm) and non-adherent (planktonic) cells were independently 873 

stained with a combination of SYTO 59 (red) and -dsDNA–Alexa Fluor-488 874 

(green). Scale bars = 25 m. 875 

FIG 3     Inhibition and dispersal of pneumococcal biofilms with DNase I. (A) 876 

The indicated S. pneumoniae strains were grown overnight at 37C to an A550 877 

value of 0.5 (corresponding to the late exponential phase of growth) in C+Y 878 

medium, centrifuged, and adjusted to an A550 of 0.6 with fresh medium. The cell 879 

suspensions were then diluted 100-fold, and 200 μl aliquots distributed into the 880 

wells of microtiter plates, which were then incubated for 5 h at 34C (open 881 

bars). Other samples received DNase I (100 g ml–1) (red bars) and were 882 

incubated as above (inhibition assay). In other cases, and after biofilm 883 

development (4 h at 34C), DNase I (green bars) was added at 100 g ml–1, 884 
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and incubation allowed to proceed for an additional 1 h at 34C before staining 885 

with CV to quantify biofilm formation (dispersal assay). In all assays, black bars 886 

indicate growth (adherent plus non-adherent cells). *, P < 0.001 compared with 887 

the corresponding, untreated control. 888 

FIG 4     Influence of autolysins on biofilm formation and eDNA release revealed 889 

by CLSM. Biofilms were stained with a combination of SYTO 59 (red), and -890 

dsDNA, followed by Alexa Fluor-488 goat anti-mouse IgG (green). The R6 891 

strain was also incubated in C+Y medium containing 2% choline chloride (R6 + 892 

2% cho). Horizontal and vertical three-dimensional reconstructions of 55 (x–y 893 

plane) or 65 scans (x–z plane) are shown. Scale bars = 25 μm. 894 

FIG 5     Influence of competence induction on biofilm formation and eDNA 895 

release revealed by CLSM. Biofilms were stained with a combination of SYTO 896 

59 (red), and -dsDNA, followed by Alexa Fluor-488 goat anti-mouse IgG 897 

(green). Scale bars = 25 μm. 898 

 899 

900 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 16, 2018. ; https://doi.org/10.1101/322818doi: bioRxiv preprint 

https://doi.org/10.1101/322818


37 
 

Supplemental Material 901 

Additional information may be found in the online version of this article: 902 

 903 

FIG S1     Calibration curve for S. pneumoniae-transforming DNA. Competent 904 

R6 cells were used as recipient bacteria. Values represent the means ± 905 

standard errors for three independent transformation experiments. The dotted 906 

line corresponds to a slope of 1. 907 

FIG S2     Observation of EV produced by S. pneumoniae P271. (A–C) 908 

Fluorescent labeling of an EV preparation with FM 4-64 (red; A) and -dsDNA, 909 

followed by incubation with Alexa fluor 488-labeled goat anti-mouse IgG (green; 910 

B). Image C is a merger of the two channels. Scale bars = 10 μm. (D–E)  911 

Electron micrographs of EVs. (D) LTSEM image of a pneumococcal biofilm. 912 

Arrows point to spherical blebs protruding from cells. The arrowhead indicates a 913 

putatively cell extruded EV. (E, F) TEM micrographs showing negatively stained 914 

EV. In some cases, EV appear to coalesce and fuse (F). 915 

 916 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 16, 2018. ; https://doi.org/10.1101/322818doi: bioRxiv preprint 

https://doi.org/10.1101/322818


FIG 1     Evidence of the existence of eDNA in pneumococcal biofilms using CLSM. A biofilm of S. pneumoniae R6 

grown for 5 h at 34 C in C+Y medium was stained with a combination of SYTO 59 (A, red), DDAO (B, blue), and -

dsDNA, followed by Alexa Fluor-488 goat anti-mouse IgG (C, green). Image D is a merge of channels A and B. 

Image E is a merge of channels A and C. Image F is a merge of channels B and C. Image G is a merge of the three 

channels. Images H, I and J correspond, respectively, to an enlarged vision of the area marked with squares in D, E 

and F. Yellow arrows point to eDNA stained only with DDAO or -dsDNA–Alexa Fluor-488. White arrows indicate the 

location of SYTO 59-stained bacteria together with eDNA labelled either with DDAO (H, magenta) or with -dsDNA–

Alexa Fluor-488 (I, yellow). The red arrow in image J points to doubly labelled (DDAO plus -dsDNA–Alexa Fluor-

488) eDNA (J, light blue). Scale bars = 25 μm. 
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FIG 2     Dynamics of eDNA release in pneumococcal biofilms. S. pneumoniae R6 was grown 

under biofilm-forming conditions. After 3 and 5 h incubation at 34 C, adherent (biofilm) and non-

adherent (planktonic) cells were independently stained with a combination of SYTO 59 (red) and 

-dsDNA–Alexa Fluor-488 (green). Scale bars = 25 m. 
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FIG 3     Inhibition and dispersal of pneumococcal biofilms with DNase I. The indicated S. pneumoniae 

strains were grown overnight at 37 C to an A550 value of 0.5 (corresponding to the late exponential phase 

of growth) in C+Y medium, centrifuged, and adjusted to an A550 of 0.6 with fresh medium. The cell 

suspensions were then diluted 100-fold, and 200 μl aliquots distributed into the wells of microtiter plates, 

which were then incubated for 5 h at 34 C (open bars). Other samples received DNase I (100 g ml–1) 

(red bars) and were incubated as above (inhibition assay). In other cases, and after biofilm development 

(4 h at 34 C), DNase I (green bars) was added at 100 g ml–1, and incubation allowed to proceed for an 

additional 1 h at 34 C before staining with CV to quantify biofilm formation (dispersal assay). In all 

assays, black bars indicate growth (adherent plus non-adherent cells). *, P < 0.001 compared with the 

corresponding, untreated control. 
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FIG 4     Influence of autolysins on biofilm formation and eDNA release revealed by CLSM. 

Biofilms were stained with a combination of SYTO 59 (red), and -dsDNA, followed by 

Alexa Fluor-488 goat anti-mouse IgG (green). The R6 strain was also incubated in C+Y 

medium containing 2% choline chloride (R6 + 2% cho). Horizontal and vertical three-

dimensional reconstructions of 55 (x–y plane) or 65 scans (x–z plane) are shown. Scale 

bars = 25 μm. 
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FIG 5     Influence of competence induction on biofilm formation and eDNA release revealed by CLSM. Biofilms 

were stained with a combination of SYTO 59 (red), and -dsDNA, followed by Alexa Fluor-488 goat anti-mouse 

IgG (green). Scale bars = 25 μm. 
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