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Abstract 33 

 34 

Introduction: The persistence of schizophrenia in human populations separated by 35 

geography and time led to the evolutionary hypothesis that proposes schizophrenia as 36 

a by-product of the higher cognitive abilities of modern humans. To explore this 37 

hypothesis, we used here an evolutionary epigenetics approach building on 38 

differentially methylated regions (DMRs) of the genome. 39 

Methods: We implemented a polygenic enrichment testing pipeline using the 40 

summary statistics of genome-wide association studies (GWAS) of schizophrenia and 41 

12 other phenotypes. We investigated the enrichment of association of these traits 42 

across genomic regions with variable methylation between modern humans and great 43 

apes (orangutans, chimpanzees and gorillas; primate DMRs) and between modern 44 

humans and recently extinct hominids (Neanderthals and Denisovans; non-primate 45 

DMRs).  46 

Results: Regions that are hypo-methylated in humans compared to great apes show 47 

enrichment of association with schizophrenia only if the major histocompatibility 48 

complex (MHC) region is included. With the MHC region removed from the analysis, 49 

only a modest enrichment for SNPs of low effect persists. The INRICH pipeline 50 

confirms this finding after rigorous permutation and bootstrapping procedures.  51 

 52 

Conclusion: The analyses of regions with differential methylation changes in humans 53 

and great apes do not provide compelling evidence of enrichment of association with 54 

schizophrenia, in contrast to our previous findings on more recent methylation 55 

differences between modern humans, Neanderthals and Denisovans. Our results 56 
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further support the evolutionary hypothesis of schizophrenia and indicate that the 57 

origin of some of the genetic susceptibility factors of schizophrenia may lie in recent 58 

human evolution. 59 

 60 

 61 

Key Words: schizophrenia; evolutionary hypothesis; epigenetics; differentially 62 

methylated regions; primates; Neanderthals. 63 

 64 

 65 

 66 

 67 
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 69 
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1. Introduction 72 

 73 

Schizophrenia is a psychiatric disorder with a prevalence rate of 2.7-8.3/1,000 persons 74 

(Messias et al., 2007) and heritability estimated between 60-90% (Cardno et al., 1999; 75 

Lichtenstein et al., 2009; Skre et al., 1993; Sullivan et al., 2003). It occurs at quite 76 

similar rates across populations worldwide (Ayuso-Mateos, 2002; Brüne, 2004; 77 

WHO, 1973) and written records describing its symptoms exist dating back 5,000 78 

years (Jeste et al., 1985). This consistent persistence of the disease despite reduced 79 

fecundity (Brüne, 2004; Nichols, 2009) and increased mortality is a paradox (Bassett 80 

et al., 1996; Brown, 1997; Larson and Nyman, 1973), since the reduced fecundity of 81 

patients afflicted with schizophrenia does not appear to eliminate the disease from the 82 

population (Power et al., 2013) Part of the reason may be due to afflicted individuals 83 

reproducing prior to the onset of the disease (Markow, 2012). Another contributing 84 

factor could be that schizophrenia risk variants may have provided an advantage to 85 

the kin of the affected by conferring superior creative and intellectual abilities upon 86 

them (Kyaga et al., 2011; Nichols, 2009). To explain the constant occurrence of the 87 

disease, TJ Crow (Crow, 1997, 1995) proposed the so-called evolutionary hypothesis 88 

of schizophrenia, which  suggests that the disease is a consequence of human 89 

evolution: the higher cognitive abilities of modern-day humans, including language, 90 

may predispose to psychiatric illnesses such as schizophrenia (Crow, 2008, 2000, 91 

1997).  92 

 93 

In the post-genomic era (Lander et al., 2001; Venter et al., 2001), emerging lines of 94 

evidence are lending support to this hypothesis. Crespi et al. (Crespi et al., 2007) were 95 

amongst the first to show that genes with evidence of recent positive selection in 96 
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humans are also implicated more frequently in schizophrenia. More evidence has 97 

been provided by studies based on comparative genomics (Pollard et al., 2006; 98 

Srinivasan et al., 2015; Xu et al., 2015), a field in which genomes of progressively 99 

older species are compared to identify substitutions and mutations that help estimate 100 

divergence between the species. For instance, a group of regions defined by negative 101 

Neanderthal selective sweep (NSS) scores describe the selective evolution of genomic 102 

regions in modern-day humans over Neanderthals (Burbano et al., 2010; Green et al., 103 

2010). These regions were shown by Srinivasan et al. (2015) to be enriched for 104 

schizophrenia risk markers, in line with the evolutionary hypothesis of schizophrenia. 105 

Other regions known as human accelerated regions (HARs) (Gittelman et al., 2015; 106 

Pollard et al., 2006; Xu et al., 2015), first described by Pollard et al. (2006), show 107 

accelerated evolution in humans compared to primates or mammals. HARs have also 108 

provided some evidence of enrichment of association with schizophrenia (Xu et al., 109 

2015), but these findings may have been driven by a few genes since they were not 110 

replicated using a polygenic approach (Srinivasan et al., 2017, 2015) . 111 

 112 

While several studies have looked at the evolution of the genome (Bird et al., 2007; 113 

Bush and Lahn, 2008; Gittelman et al., 2015; Paaby and Rockman, 2014; Pollard et 114 

al., 2006), there are reports that the epigenome is evolving as well (Gokhman et al., 115 

2014; Hernando-Herraez et al., 2015, 2013; Mendizabal et al., 2014; Molaro et al., 116 

2011). This provides new insights into events leading to the speciation and divergence 117 

of modern humans. The epigenome refers to the layer of chemical modifications, such 118 

as methylation and histone modifications, to the genome that regulate gene expression 119 

(Bernstein et al., 2007; Kundaje et al., 2015; Rivera and Ren, 2013). For instance, 120 

Gokhman et al. (2014) compared the methylomes of humans with Neanderthals and 121 
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Denisovans. They reported that while 97% of the methylome was comparable 122 

between humans, Neanderthals and Denisovans, some regions showed differential 123 

methylation between the three hominids. Previously (Banerjee et al., 2017), we 124 

analysed the differentially methylated regions (DMRs) identified for Neanderthals, 125 

Denisovans and modern humans by Gokhman et al. (2014), and found evidence that 126 

the regions of the genome with human-specific DMRs harbour relatively more genetic 127 

variants associated with schizophrenia than the rest of the genome, i.e. the DMRs 128 

were enriched for SCZ markers both at the single-nucleotide polymorphism (SNP) 129 

level and at the gene level. These human-specific DMRs thus provide evidence of 130 

enrichment of methylation changes in regions harbouring genetic variants associated 131 

with schizophrenia, at least since the divergence from Neanderthals and Denisovans 132 

(Banerjee et al., 2017). 133 

 134 

Here, we sought to determine if evolutionarily older methylation differences can 135 

provide a further timeframe for the origin of schizophrenia risk markers in the human 136 

lineage. We asked whether we can find epigenetic evidence that the origin of 137 

schizophrenia risk markers predates the origins of the Homo genus, i.e. before the 138 

divergence of chimpanzees and humans around 6-8 million years ago (MYA) (Glazko 139 

and Nei, 2003; Langergraber et al., 2012). We tested this hypothesis by analysing 140 

primate DMRs that trace an evolutionary history of at least 13 million years (Glazko 141 

and Nei, 2003; Hasegawa et al., 1985; Rannala and Yang, 2003). We used the same 142 

statistical analyses as described by Lee et al. (2012), Schork et al. (2013), and 143 

Srinivasan et al. (2015) to test for polygenic enrichment of a set of markers from 144 

genome-wide association studies (GWAS). We interrogated regions of the human 145 

genome which are hypo- or hyper-methylated in comparison to the corresponding 146 
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ones in chimpanzees, gorillas and orangutans for enrichment of genetic variants 147 

associated with schizophrenia or other human traits. 148 

  149 
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2. Materials and methods 150 

 151 

2.1. GWAS data 152 

Summary statistics for thirteen different phenotypes were obtained from their 153 

respective published GWAS studies: schizophrenia (SCZ) (Ripke et al., 2014), bipolar 154 

disorder (BPD) (Sklar et al., 2011), attention deficit hyperactivity disorder (ADHD) 155 

(Demontis et al., 2017), rheumatoid arthritis (RA) (Stahl et al., 2010), blood lipid 156 

markers (high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides 157 

(TG), total cholesterol (TC)) (Teslovich et al., 2010), blood pressure (systolic blood 158 

pressure (SBP), diastolic blood pressure (DBP)) (Ehret et al., 2011), body mass index 159 

(BMI) (Locke et al., 2015), height (Wood et al., 2014) and intelligence (Sniekers et 160 

al., 2017). For studies published with hg18 coordinates (BPD, SBP, DBP, HDL, LDL, 161 

TG, TC, RA), conversion to hg19 was performed using the command line version of 162 

the liftOver tool from the UCSC Genome Browser (Karolchik et al., 2014) 163 

(http://hgdownload.cse.ucsc.edu/downloads.html #utilities_downloads). For BMI and 164 

height SNPs, the genomic coordinates were obtained by mapping them to the 165 

assembly of 1,000 Genomes Project (1KGP) Phase 1 reference panel SNPs (Durbin et 166 

al., 2012). 167 

 168 

2.2. Human hypo- and hyper-methylated regions from primate DMRs 169 

These methylated regions were retrieved from the study by Hernando-Herraez et al. 170 

(2015), who identified them by comparing the methylation profile of DNA from 171 

peripheral blood samples of orangutans, chimpanzees and gorillas to that of humans. 172 

Since the DMRs are determined by comparing humans with other primates, we refer 173 

to this set collectively as primate DMRs. Both hypo- and hyper-methylated DMRs 174 
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from humans were analysed. As these DMRs are identified in the same tissues in all 175 

samples, they are considered to represent species-specific methylation differences, not 176 

tissue-specific methylation differences (Gokhman et al., 2014). Altogether, the human 177 

hypo- and hyper-methylated DMRs can be used to represent an evolutionary course of 178 

history spanning from at least 13 MYA (Glazko and Nei, 2003; Langergraber et al., 179 

2012), when orangutans diverged from the common ancestors, to 6 MYA, when the 180 

chimpanzees and humans diverged from each other (Glazko and Nei, 2003; 181 

Langergraber et al., 2012). Since our interest was in human-specific enrichment, we 182 

focused the analyses on human hypo- and hyper-methylated DMRs. 183 

 184 

2.3. Differentially methylated regions (DMRs) from Neanderthals, Denisovans and 185 

modern humans 186 

As previously described (Gokhman et al., 2014), these methylated regions have been 187 

identified by comparing the methylomes of osteoblasts from modern-day humans 188 

with those from Neanderthals and Denisovans. We refer to them in this paper as non-189 

primate DMRs. Gokhman et al. (2014) devised a strategy utilizing information in the 190 

form of cytosine (C) to thymine (T) ratios to decipher the ancient methylomes of 191 

Neanderthals and Denisovans. Subsequently, they compared the methylomes of 192 

Neanderthals, Denisovans and modern humans and inferred the species in which the 193 

methylation variation likely took place; this information was used to classify the 194 

DMRs as Neanderthal-specific, Denisovan-specific and human-specific. These DMRs 195 

represent species-specific methylation (Gokhman et al., 2014). 196 

 197 

2.4. Neanderthal selective sweep (NSS) data 198 
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We obtained NSS marker data from Srinivasan et al. (2015). Negative scores for NSS 199 

markers indicate positive selection in humans. Markers with such scores were used in 200 

the downstream analyses. 201 

 202 

2.5. SNP assignment with LDsnpR 203 

The previously published R-based software package LDsnpR (Christoforou et al., 204 

2012) was utilized for assigning SNPs to the respective DMRs using LD (linkage 205 

disequilibrium)-based binning at r2 ≥0.8 in R (R Core Team, 2017). LD-based binning 206 

makes it possible to determine whether SNPs from a specific GWAS are in LD with 207 

the DMR of interest. Using LD allows the capture of a greater number of relevant 208 

SNPs in comparison to an approach where only physically overlapping SNPs are 209 

considered. The LD file utilized was in HDF5 format and was constructed from the 210 

European reference population of 1KGP and can be publicly downloaded at: 211 

http://services.cbu.uib.no/software/ldsnpr/Download. 212 

 213 

2.6. Enrichment analyses based on stratified quantile-quantile (QQ) plots 214 

QQ plots are an essential method used in GWASs to depict the presence of true 215 

signals. They help to visually observe the spread of data and deviations from the null 216 

distribution. Under the null hypothesis, no difference is expected between the 217 

observed and expected distributions of data. As such, a line of no difference or null 218 

line is obtained that is equidistant from both X and Y axes. However, if the null 219 

hypothesis were to be false, there would be a deviation of the observed data 220 

distribution from the expected data distribution. As described in depth by Schork et al. 221 

(2013), a leftward deflection of the observed distribution from the null line represents 222 

enrichment – the greater the leftward deflection, the stronger the enrichment of true 223 
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signals. This method has been used recently not only to show how specific genomic 224 

annotation affects the distribution of disease SNPs with true signals (Schork et al., 225 

2013), but also to demonstrate that regions of recent evolution are enriched for 226 

schizophrenia markers (Banerjee et al., 2017; Srinivasan et al., 2015). We took the 227 

SNPs that are in LD with the DMR regions and plotted their p-value distributions 228 

from various GWASs. The observed p-value distributions were then determined to be 229 

enriched or not using conditional Q-Q plots as described by Schork et al. (2013). 230 

Genomic inflation was corrected by �GC. 231 

 232 

2.7. INRICH-based enrichment analysis 233 

The stratified QQ plots provide a visual depiction of data distributions and enrichment 234 

of true signals within a stratum of data, but they do not quantify this enrichment. 235 

Therefore, we used the INterval EnRICHment (INRICH) analysis tool to statistically 236 

quantify the enrichment observed. This pipeline performs permutation and 237 

bootstrapping procedures to determine with statistical confidence whether LD-238 

implicated genomic intervals are enriched in specific gene sets (Lee et al., 2012). The 239 

INRICH analysis takes into account several potential biases that can otherwise lead to 240 

false positives, such as variable gene size, SNP density within genes, LD between and 241 

within genes, and overlapping genes in the gene sets. We used the same procedure 242 

reported previously (Banerjee et al., 2017; Xu et al., 2015) with SNPs in the extended 243 

MHC region and SNPs with MAF <0.05 excluded from the analysis. Additional 244 

details can be found in the Supplementary Information.  245 

 246 

3. Results 247 

 248 
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3.1. Co-localisation of human hypo-methylated regions and genetic variants 249 

associated with schizophrenia in the MHC. 250 

We ascertained whether there is any enrichment of human hypo- and hyper-251 

methylated regions in schizophrenia-associated SNPs. Using previously published 252 

methodology (Christoforou et al., 2012), we mapped schizophrenia markers to human 253 

hypo-methylated regions (hypo-DMRs) and hyper-methylated regions (hyper-DMRs). 254 

Out of a total of ~9.4 million SCZ markers obtained from the GWAS, 10,165 markers 255 

tagged hypo-DMRs and 4,503 tagged hyper-DMRs.  256 

 257 

Figure 1A shows the conditional QQ plots for schizophrenia markers (all markers, the 258 

hypo-DMR set and the hyper-DMR set) including those in the MHC region. For 259 

hypo-DMR markers (Supplementary Dataset 1), we observed a significant enrichment 260 

as depicted by the leftward deviation. No enrichment was observed for hyper-DMR 261 

markers. Since the MHC region is a region of extended linkage disequilibrium, which 262 

can bias the enrichment estimates, and since it is the main region of association with 263 

schizophrenia, we also tested the enrichment with the MHC region removed (Figure 264 

1B). Under these conditions there is a trend for enrichment of hypo-DMR markers at 265 

higher p-value thresholds, but this enrichment is substantially less than when the 266 

MHC is included (Figure 1A). 267 

 268 

3.2. Enrichment of markers is not seen for other human traits 269 

Next, we tested if the human hypo- and hyper-methylated regions are enriched for 270 

other human traits and phenotypes. We tested a total of thirteen different phenotypes, 271 

full details of which can be found in section 2.1. Each GWAS had been performed 272 

with a different number of genotyped SNPs, and this difference could potentially bias 273 
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our results. To circumvent this, we created a list of ~2.4 million common SNPs that 274 

were genotyped across all the phenotypes investigated in the present study. Only 275 

SNPs on this list were used for enrichment analysis. 276 

 277 

As can be seen in Fig. 2, no enrichment was observed in any of the traits, with the 278 

possible exception of height at higher p-value threshold markers. The common list of 279 

markers did not contain the MHC region and as such no enrichment is observed for 280 

schizophrenia either. 281 

 282 

3.3. Evidence of enrichment for hypo-methylated regions with SNPs at high p-values 283 

The enrichment plots allowed us to visually ascertain enrichment in the datasets. 284 

However, they did not give any indication of the statistical robustness of the 285 

enrichment. To ascertain if the human hypo- and hyper-methylated regions are 286 

statistically enriched for schizophrenia and height markers, we implemented the 287 

INRICH pipeline, which performs 10,000 permutations and 5,000 bootstrapping 288 

calculations, to determine with statistical confidence the enrichment observed (Lee et 289 

al., 2012). 290 

 291 

The INRICH analysis confirmed a significant (p<0.05) enrichment of association for 292 

human hypo-DMRs, but not hyper-DMRs, with schizophrenia at SNPs of higher p-293 

value thresholds (p<10e-3 to p<10e-4) (Fig. 3). This enrichment was at the gene level, 294 

and complemented the enrichment observed at the SNP level for higher p-value 295 

thresholds (Fig. 1B). Importantly, this enrichment persisted upon testing a pruned 296 

schizophrenia dataset (Supplementary Fig. 1). The enrichment was however not 297 

significant at the genome-wide threshold (p<5x10e-8) and was much weaker than that 298 
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observed for non-primate DMRs (Fig. 3). We also observed a similar trend for height 299 

where there was enrichment at SNPs of higher but not lower p-value thresholds. This 300 

enrichment was similarly less pronounced than for non-primate DMRs 301 

(Supplementary Fig. 2). 302 

 303 

 304 

4. Discussion 305 

 306 

In our study, we investigated if regions of the human genome whose methylation has 307 

evolved since the divergence of modern humans from great apes are enriched for 308 

markers of schizophrenia. We found  evidence that there is enrichment for hypo-309 

methylated DMRs driven by the MHC locus, a known risk region that harbours the 310 

most significant schizophrenia GWAS markers (Ripke et al., 2014). When the MHC 311 

region was excluded from the analysis, there remained a trend towards enrichment of 312 

hypo-DMRs driven by SNPs of higher p-value thresholds. This finding was 313 

complemented by the INRICH analyses that indicated significant enrichment among 314 

SNPs of higher p-value thresholds. When analysing a global SNP list common to 315 

GWAS of several traits, we failed to find evidence of enrichment of any trait with the 316 

possible exception of height at higher SNP p-value thresholds. We tested this further 317 

with the INRICH pipeline, which revealed gene-level enrichment of LD intervals for 318 

height markers below the genome-wide threshold (p<5x10e-8). Compared to our 319 

previous study, in which we demonstrated enrichment of association with 320 

schizophrenia for non-primate DMRs that were derived by comparing human, 321 

Neanderthal and Denisovan methylomes (Banerjee et al., 2017), the primate DMRs 322 

tested here show far less enrichment. The primate and non-primate DMRs have very 323 
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little overlap, which suggests that the methylation changes that took place since the 324 

divergence of modern humans from Neanderthals and Denisovans occurred in 325 

different regions of the genome compared to those that took place since divergence 326 

from great apes. 327 

 328 

The central role of the MHC region in the enrichment of human hypo-methylated 329 

regions poses interesting questions. The MHC region is known for its complex LD 330 

architecture, which renders the interpretation of genetic signals very challenging. 331 

Other groups have previously reported that the MHC region is one of the fastest 332 

evolving regions of the human genome (Meyer et al., 2017) and have implicated it in 333 

mate preference (Bernatchez and Landry, 2003; Kromer et al., 2016; Potts and 334 

Wakeland, 1990; Roberts et al., 2008; Winternitz et al., 2017), odour perception 335 

(Roberts et al., 2008; Santos et al., 2005) and immune response (Benacerraf, 1981; 336 

Horton et al., 2004). Recently it was shown that a large proportion of the association 337 

of the region with schizophrenia can be explained by complement C4 haplotypes that 338 

include C4 copy number variation (Sekar et al., 2016). Nevertheless, there remains a 339 

part of the association in this region that is unexplained (Gejman et al., 2011) and will 340 

need further investigation. It is interesting to consider the possibility that the MHC 341 

region and the immune system in general play a central role in evolution at the 342 

epigenomic as well as at the genomic level (Meyer et al., 2017; Potts and Wakeland, 343 

1990; Sommer, 2005; Traherne, 2008). The mechanisms by which hypo-methylation 344 

could influence the aforementioned processes are open to speculation since the MHC 345 

region has more than 200 genes in close physical proximity and LD with one another 346 

(Beck et al., 1999). This makes it hard to interpret the exact biological consequences 347 

of our findings.  348 
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 349 

Interestingly, the gene-level analysis via INRICH seems to suggest enrichment of 350 

SNPs of higher p-value thresholds in primate DMRs for both schizophrenia and 351 

height. This enrichment is far lower than what we found for non-primate DMRs for 352 

both schizophrenia and height (Banerjee et al., 2017) and which  persisted for 353 

schizophrenia even with pruned datasets.  354 

 355 

The very small overlap between primate and non-primate DMRs might suggest that 356 

the divergence from Neanderthals and Denisovans brought about more significant 357 

methylation changes in regions implicated in the aetiology of schizophrenia and 358 

height than the divergence from great apes. In other words, our results might suggest 359 

that the evolutionary factors that regulate methylation variation acted on different 360 

segments of the genome at different time points. So while the methylation variation 361 

since the divergence from Neanderthals and Denisovans may mark a genome-wide 362 

increase of schizophrenia susceptibility (Banerjee et al., 2017), the methylation 363 

variation from the time period between 13 and 6 MYA appears not to have 364 

significantly increased the risk for schizophrenia (except possibly for some markers in 365 

the MHC region),  366 

 367 

Our results are also in line with the findings of Srinivasan et al. (2017), who failed to 368 

find evidence of enrichment of schizophrenia using genomic markers of evolution 369 

dating back to 200 MYA. The same authors also reported enrichment of association 370 

for regions of more recent evolution in modern humans (Srinivasan et al., 2015). 371 

Interestingly, one of the evolutionary proxies used by Srinivasan and colleagues 372 

(2017), namely HARs, also showed enrichment for height, similar to our recent study 373 
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(Banerjee et al., 2017). This suggests that regions controlling both genomic and 374 

epigenomic variation in height may also be driven by recent evolution. Finally, our 375 

results agree well with the observation by Srinivasan et al. (2017) of some 376 

involvement of the MHC in an early evolutionary context. 377 

 378 

Although our results are in line with several findings in the field, the current methods 379 

have some limitations. Highly polygenic traits such as schizophrenia have a large 380 

number of genetic loci contributing to the aetiology of a disease (Bulik-Sullivan et al., 381 

2015; Schork et al., 2016). The ability to detect these large numbers of genetic loci is 382 

dependent on the sample size and adequate statistical power (Schork et al., 2016). 383 

Consequently, the polygenic enrichment methods may be limited by the statistical 384 

power of the respective GWAS and trait polygenicity. Furthermore, in the INRICH 385 

analysis that uses LD-clumping of SNPs at p<10e-3 to p<10e-8, higher p-value 386 

thresholds (e.g. p<10e-3) still include SNPs of lower p-values, even though they 387 

become progressively smaller minorities. Thus, although higher p-values increase the 388 

number of LD-clumps tested, we do not expect this to increase the Type I error rate 389 

(Lee et al., 2012). 390 

 391 

In conclusion, our results suggest that methylation markers tracing an evolutionary 392 

period dating back to 13 MYA (primate DMRs) are not enriched for schizophrenia 393 

markers, unlike methylation markers from a recent timeframe (non-primate DMRs) 394 

(Banerjee et al., 2017). Taken in consideration with previous studies of genomic 395 

markers of evolution dating back 200 MYA (Srinivasan et al., 2017), our results 396 

support the hypothesis that the origins of schizophrenia lie in more recent 397 
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evolutionary events, possibly after the divergence of modern-day humans from 398 

Neanderthals and Denisovans. 399 

 400 

 401 

Appendix A. Supplementary data 402 

Supplementary Information: Additional Methods, Figures and Tables 403 

Supplementary Dataset 1: Annotation of human hypo-methylated regions with 404 

markers of schizophrenia 405 

  406 
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Figure legends 768 

Fig. 1: Enrichment plots of hypo-DMR and hyper-DMR SNPs in schizophrenia 769 

Quantile-quantile (QQ) plots of GWAS SNPs for Schizophrenia (SCZ) with the 770 

extended MHC region (chr6: 25-35Mb) unmasked (A) and masked (B). Expected -771 

log10 p-values under the null hypothesis are shown on the X-axis. Observed -log10 p-772 

values are on the Y-axis. The values for all GWAS SNPs are plotted in dark green 773 

while the values for SNPs in linkage disequilibrium (LD) with hypo-methylated 774 

DMRs are plotted in blue and SNPs in LD with hyper-methylated DMRs are plotted 775 

in pink. A leftward deflection of the plotted p-values from the line for all GWAS 776 

SNPs indicates enrichment of true signals – the greater the leftward deflection, the 777 

stronger the enrichment. Genomic correction was performed on all SNPs with global 778 

lambda.  779 

 780 

Fig. 2: Enrichment plots of hypo-DMR and hyper-DMR SNPs across 781 

multiple traits   782 

Thirteen different GWASs were analysed using a common set of ~2.4 million 783 

SNPs. The p-values for the common set of GWAS SNPs are plotted in dark 784 

green; p-values for SNPs that tag hypo-methylated DMRs are plotted in blue; 785 

and p-values for SNPs that tag hyper-methylated DMRs are plotted in pink. 786 

ADHD, attention deficit hyperactivity disorder; BMI, body mass index; BPD, 787 

bipolar disorder; DBP, diastolic blood pressure; HDL, high density lipoprotein; 788 

LDL, low density lipoprotein; RA, rheumatoid arthritis; SBP, systolic blood 789 

pressure; SCZ, schizophrenia; TC, total cholesterol; TG, triglycerides. The 790 

MHC region was absent from the common set of SNPs. 791 

 792 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 30, 2018. ; https://doi.org/10.1101/322693doi: bioRxiv preprint 

https://doi.org/10.1101/322693
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 3: INRICH test for enrichment of association of DMR gene sets and NSS 793 

genes with SCZ, MHC masked 794 

A visual heatmap depicting p-values from bootstrapping with 5,000 iterations. The 795 

various evolutionary annotations compared are as follows. HypoDMR – human hypo-796 

methylated DMRs; HyperDMR – human hyper-methylated DMRs. HypoDMR and 797 

HyperDMR were taken from the study by Hernando-Herraez et al. (2013). dmrH – 798 

human-specific DMRs (Gokhman et al, 2014), which are referred to as non-primate 799 

DMRs in this manuscript. NSS - Neanderthal selective sweep. Datasets marked with * 800 

have been previously reported by Banerjee et al. (2017) and are presented here for 801 

comparison only.  802 
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