 Analysis of differentially methylated regions in primates and non-primates provides support for the evolutionary hypothesis of schizophrenia Niladri Banerjee^{a,b}, Tatiana Polushina^{a,b}, Francesco Bettella^{c,d}, Vidar M. Steen^{a,b}, Ole A. Andreassen^{c,d}, Stephanie Le Hellard^{a,b} a. NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clin Science, University of Bergen, Bergen, Norway b. Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway 							
 provides support for the evolutionary hypothesis of schizophrenia Niladri Banerjee^{a,b}, Tatiana Polushina^{a,b}, Francesco Bettella^{c,d}, Vidar M. Steen^{a,b}, Ole A. Andreassen^{c,d}, Stephanie Le Hellard^{a,b} a. NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clin Science, University of Bergen, Bergen, Norway b. Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical 							
 Niladri Banerjee^{a,b}, Tatiana Polushina^{a,b}, Francesco Bettella^{c,d}, Vidar M. Steen^{a,b}, Ole A. Andreassen^{c,d}, Stephanie Le Hellard^{a,b} a. NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clin Science, University of Bergen, Bergen, Norway b. Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical 							
 Niladri Banerjee^{a,b}, Tatiana Polushina^{a,b}, Francesco Bettella^{c,d}, Vidar M. Steen^{a,b}, Ole A. Andreassen^{c,d}, Stephanie Le Hellard^{a,b} a. NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clin Science, University of Bergen, Bergen, Norway b. Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical 							
 Vidar M. Steen^{a,b}, Ole A. Andreassen^{c,d}, Stephanie Le Hellard^{a,b} a. NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clin Science, University of Bergen, Bergen, Norway b. Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical 							
 8 9 a. NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clin 10 Science, University of Bergen, Bergen, Norway 11 b. Dr. Einar Martens Research Group for Biological Psychiatry, Department of 12 Medical Genetics, Haukeland University Hospital, Bergen, Norway 13 c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical 							
 a. NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clin Science, University of Bergen, Bergen, Norway b. Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical 							
 Science, University of Bergen, Bergen, Norway b. Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical 							
 b. Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical 	cal						
 Medical Genetics, Haukeland University Hospital, Bergen, Norway c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical 	Science, University of Bergen, Bergen, Norway						
13 c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical	b. Dr. Einar Martens Research Group for Biological Psychiatry, Department of						
	Medical Genetics, Haukeland University Hospital, Bergen, Norway						
14 Medicine, University of Oslo, Oslo, Norway	c. NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical						
	Medicine, University of Oslo, Oslo, Norway						
d. NORMENT - K.G. Jebsen Centre, Division of Mental Health and Addiction, Oslo							
University Hospital, Oslo, Norway							
17							
18 Correspondence to: Prof. Stéphanie Le Hellard, Department of Clinical Medicin	ie,						
19 Laboratory Building, Haukeland University Hospital, N-5021 Bergen, Norway.	Laboratory Building, Haukeland University Hospital, N-5021 Bergen, Norway.						
Telephone : +47-55 97 53 37	Telephone : +47-55 97 53 37						
Fax: +47-55 97 54 79							
22 Email: stephanie.hellard@uib.no							
23							
24 Authors' email addresses							
25 Niladri Banerjee niladri.banerjee@uib.no							

26	Tatiana Polushina	tatiana.polushina@uib.no
27	Francesco Bettella	francesco.bettella@medisin.uio.no
28	Vidar M. Steen	vidar.martin.steen@helse-bergen.no
29	Ole A. Andreassen	o.a.andreassen@medisin.uio.no
30	Stéphanie Le Hellard	stephanie.hellard@uib.no
31		

33 Abstract

34

35	Introduction: The persistence of schizophrenia in human populations separated by
36	geography and time led to the evolutionary hypothesis that proposes schizophrenia as
37	a by-product of the higher cognitive abilities of modern humans. To explore this
38	hypothesis, we used here an evolutionary epigenetics approach building on
39	differentially methylated regions (DMRs) of the genome.
40	Methods: We implemented a polygenic enrichment testing pipeline using the
41	summary statistics of genome-wide association studies (GWAS) of schizophrenia and
42	12 other phenotypes. We investigated the enrichment of association of these traits
43	across genomic regions with variable methylation between modern humans and great
44	apes (orangutans, chimpanzees and gorillas; primate DMRs) and between modern
45	humans and recently extinct hominids (Neanderthals and Denisovans; non-primate
46	DMRs).
47	Results: Regions that are hypo-methylated in humans compared to great apes show
48	enrichment of association with schizophrenia only if the major histocompatibility
49	complex (MHC) region is included. With the MHC region removed from the analysis,
50	only a modest enrichment for SNPs of low effect persists. The INRICH pipeline
51	confirms this finding after rigorous permutation and bootstrapping procedures.
52	
53	Conclusion: The analyses of regions with differential methylation changes in humans
54	and great apes do not provide compelling evidence of enrichment of association with
55	schizophrenia, in contrast to our previous findings on more recent methylation

56 differences between modern humans, Neanderthals and Denisovans. Our results

57	further support the evolutionary hypothesis of schizophrenia and indicate that the							
58	origin of some of the genetic susceptibility factors of schizophrenia may lie in recent							
59	human evolution.							
60								
61								
62	Key Words: schizophrenia; evolutionary hypothesis; epigenetics; differentially							
63	methylated regions; primates; Neanderthals.							
64								
65								
66								
67								
68								
69								
70								

72 **1. Introduction**

73

74	Schizophrenia is a psychiatric disorder with a prevalence rate of 2.7-8.3/1,000 persons
75	(Messias et al., 2007) and heritability estimated between 60-90% (Cardno et al., 1999;
76	Lichtenstein et al., 2009; Skre et al., 1993; Sullivan et al., 2003). It occurs at quite
77	similar rates across populations worldwide (Ayuso-Mateos, 2002; Brüne, 2004;
78	WHO, 1973) and written records describing its symptoms exist dating back 5,000
79	years (Jeste et al., 1985). This consistent persistence of the disease despite reduced
80	fecundity (Brüne, 2004; Nichols, 2009) and increased mortality is a paradox (Bassett
81	et al., 1996; Brown, 1997; Larson and Nyman, 1973), since the reduced fecundity of
82	patients afflicted with schizophrenia does not appear to eliminate the disease from the
83	population (Power et al., 2013) Part of the reason may be due to afflicted individuals
84	reproducing prior to the onset of the disease (Markow, 2012). Another contributing
85	factor could be that schizophrenia risk variants may have provided an advantage to
86	the kin of the affected by conferring superior creative and intellectual abilities upon
87	them (Kyaga et al., 2011; Nichols, 2009). To explain the constant occurrence of the
88	disease, TJ Crow (Crow, 1997, 1995) proposed the so-called evolutionary hypothesis
89	of schizophrenia, which suggests that the disease is a consequence of human
90	evolution: the higher cognitive abilities of modern-day humans, including language,
91	may predispose to psychiatric illnesses such as schizophrenia (Crow, 2008, 2000,
92	1997).
93	
94	In the post-genomic era (Lander et al., 2001; Venter et al., 2001), emerging lines of
95	evidence are lending support to this hypothesis. Crespi et al. (Crespi et al., 2007) were

amongst the first to show that genes with evidence of recent positive selection in

97	humans are also implicated more frequently in schizophrenia. More evidence has
98	been provided by studies based on comparative genomics (Pollard et al., 2006;
99	Srinivasan et al., 2015; Xu et al., 2015), a field in which genomes of progressively
100	older species are compared to identify substitutions and mutations that help estimate
101	divergence between the species. For instance, a group of regions defined by negative
102	Neanderthal selective sweep (NSS) scores describe the selective evolution of genomic
103	regions in modern-day humans over Neanderthals (Burbano et al., 2010; Green et al.,
104	2010). These regions were shown by Srinivasan et al. (2015) to be enriched for
105	schizophrenia risk markers, in line with the evolutionary hypothesis of schizophrenia.
106	Other regions known as human accelerated regions (HARs) (Gittelman et al., 2015;
107	Pollard et al., 2006; Xu et al., 2015), first described by Pollard et al. (2006), show
108	accelerated evolution in humans compared to primates or mammals. HARs have also
109	provided some evidence of enrichment of association with schizophrenia (Xu et al.,
110	2015), but these findings may have been driven by a few genes since they were not
111	replicated using a polygenic approach (Srinivasan et al., 2017, 2015).
112	
113	While several studies have looked at the evolution of the genome (Bird et al., 2007;
114	Bush and Lahn, 2008; Gittelman et al., 2015; Paaby and Rockman, 2014; Pollard et
115	al., 2006), there are reports that the epigenome is evolving as well (Gokhman et al.,
116	2014; Hernando-Herraez et al., 2015, 2013; Mendizabal et al., 2014; Molaro et al.,
117	2011). This provides new insights into events leading to the speciation and divergence
118	of modern humans. The epigenome refers to the layer of chemical modifications, such
119	as methylation and histone modifications, to the genome that regulate gene expression
120	(Bernstein et al., 2007; Kundaje et al., 2015; Rivera and Ren, 2013). For instance,
121	Gokhman et al. (2014) compared the methylomes of humans with Neanderthals and

122	Denisovans. They reported that while 97% of the methylome was comparable
123	between humans, Neanderthals and Denisovans, some regions showed differential
124	methylation between the three hominids. Previously (Banerjee et al., 2017), we
125	analysed the differentially methylated regions (DMRs) identified for Neanderthals,
126	Denisovans and modern humans by Gokhman et al. (2014), and found evidence that
127	the regions of the genome with human-specific DMRs harbour relatively more genetic
128	variants associated with schizophrenia than the rest of the genome, i.e. the DMRs
129	were enriched for SCZ markers both at the single-nucleotide polymorphism (SNP)
130	level and at the gene level. These human-specific DMRs thus provide evidence of
131	enrichment of methylation changes in regions harbouring genetic variants associated
132	with schizophrenia, at least since the divergence from Neanderthals and Denisovans
133	(Banerjee et al., 2017).
134	

135 Here, we sought to determine if evolutionarily older methylation differences can 136 provide a further timeframe for the origin of schizophrenia risk markers in the human 137 lineage. We asked whether we can find epigenetic evidence that the origin of 138 schizophrenia risk markers predates the origins of the Homo genus, i.e. before the 139 divergence of chimpanzees and humans around 6-8 million years ago (MYA) (Glazko 140 and Nei, 2003; Langergraber et al., 2012). We tested this hypothesis by analysing 141 primate DMRs that trace an evolutionary history of at least 13 million years (Glazko 142 and Nei, 2003; Hasegawa et al., 1985; Rannala and Yang, 2003). We used the same 143 statistical analyses as described by Lee et al. (2012), Schork et al. (2013), and 144 Srinivasan et al. (2015) to test for polygenic enrichment of a set of markers from 145 genome-wide association studies (GWAS). We interrogated regions of the human 146 genome which are hypo- or hyper-methylated in comparison to the corresponding

- 147 ones in chimpanzees, gorillas and orangutans for enrichment of genetic variants
- 148 associated with schizophrenia or other human traits.

150 **2. Materials and methods**

151

- 152 2.1. GWAS data
- 153 Summary statistics for thirteen different phenotypes were obtained from their
- 154 respective published GWAS studies: schizophrenia (SCZ) (Ripke et al., 2014), bipolar
- disorder (BPD) (Sklar et al., 2011), attention deficit hyperactivity disorder (ADHD)
- 156 (Demontis et al., 2017), rheumatoid arthritis (RA) (Stahl et al., 2010), blood lipid
- 157 markers (high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides
- 158 (TG), total cholesterol (TC)) (Teslovich et al., 2010), blood pressure (systolic blood
- 159 pressure (SBP), diastolic blood pressure (DBP)) (Ehret et al., 2011), body mass index
- 160 (BMI) (Locke et al., 2015), height (Wood et al., 2014) and intelligence (Sniekers et
- al., 2017). For studies published with hg18 coordinates (BPD, SBP, DBP, HDL, LDL,
- 162 TG, TC, RA), conversion to hg19 was performed using the command line version of
- the liftOver tool from the UCSC Genome Browser (Karolchik et al., 2014)
- 164 (http://hgdownload.cse.ucsc.edu/downloads.html #utilities_downloads). For BMI and
- 165 height SNPs, the genomic coordinates were obtained by mapping them to the
- assembly of 1,000 Genomes Project (1KGP) Phase 1 reference panel SNPs (Durbin et

167 al., 2012).

168

169 2.2. Human hypo- and hyper-methylated regions from primate DMRs

170 These methylated regions were retrieved from the study by Hernando-Herraez et al.

- 171 (2015), who identified them by comparing the methylation profile of DNA from
- 172 peripheral blood samples of orangutans, chimpanzees and gorillas to that of humans.
- 173 Since the DMRs are determined by comparing humans with other primates, we refer
- to this set collectively as primate DMRs. Both hypo- and hyper-methylated DMRs

175	from humans were analysed. As these DMRs are identified in the same tissues in all
176	samples, they are considered to represent species-specific methylation differences, not
177	tissue-specific methylation differences (Gokhman et al., 2014). Altogether, the human
178	hypo- and hyper-methylated DMRs can be used to represent an evolutionary course of
179	history spanning from at least 13 MYA (Glazko and Nei, 2003; Langergraber et al.,
180	2012), when orangutans diverged from the common ancestors, to 6 MYA, when the
181	chimpanzees and humans diverged from each other (Glazko and Nei, 2003;
182	Langergraber et al., 2012). Since our interest was in human-specific enrichment, we
183	focused the analyses on human hypo- and hyper-methylated DMRs.
184	
185	2.3. Differentially methylated regions (DMRs) from Neanderthals, Denisovans and
186	modern humans
187	As previously described (Gokhman et al., 2014), these methylated regions have been
188	identified by comparing the methylomes of osteoblasts from modern-day humans
189	with those from Neanderthals and Denisovans. We refer to them in this paper as non-
190	primate DMRs. Gokhman et al. (2014) devised a strategy utilizing information in the
191	form of cytosine (C) to thymine (T) ratios to decipher the ancient methylomes of
192	Neanderthals and Denisovans. Subsequently, they compared the methylomes of
193	Neanderthals, Denisovans and modern humans and inferred the species in which the
194	methylation variation likely took place; this information was used to classify the
195	DMRs as Neanderthal-specific, Denisovan-specific and human-specific. These DMRs
196	represent species-specific methylation (Gokhman et al., 2014).
197	
100	

198 2.4. Neanderthal selective sweep (NSS) data

We obtained NSS marker data from Srinivasan et al. (2015). Negative scores for NSS
markers indicate positive selection in humans. Markers with such scores were used in
the downstream analyses.

- 202
- 203 2.5. SNP assignment with LDsnpR

204 The previously published R-based software package LDsnpR (Christoforou et al.,

205 2012) was utilized for assigning SNPs to the respective DMRs using LD (linkage

206 disequilibrium)-based binning at $r^2 \ge 0.8$ in R (R Core Team, 2017). LD-based binning

207 makes it possible to determine whether SNPs from a specific GWAS are in LD with

208 the DMR of interest. Using LD allows the capture of a greater number of relevant

209 SNPs in comparison to an approach where only physically overlapping SNPs are

210 considered. The LD file utilized was in HDF5 format and was constructed from the

European reference population of 1KGP and can be publicly downloaded at:

212 http://services.cbu.uib.no/software/ldsnpr/Download.

213

214 2.6. Enrichment analyses based on stratified quantile-quantile (QQ) plots

215 QQ plots are an essential method used in GWASs to depict the presence of true 216 signals. They help to visually observe the spread of data and deviations from the null 217 distribution. Under the null hypothesis, no difference is expected between the 218 observed and expected distributions of data. As such, a line of no difference or null 219 line is obtained that is equidistant from both X and Y axes. However, if the null 220 hypothesis were to be false, there would be a deviation of the observed data 221 distribution from the expected data distribution. As described in depth by Schork et al. 222 (2013), a leftward deflection of the observed distribution from the null line represents 223 enrichment – the greater the leftward deflection, the stronger the enrichment of true

224 signals. This method has been used recently not only to show how specific genomic 225 annotation affects the distribution of disease SNPs with true signals (Schork et al., 226 2013), but also to demonstrate that regions of recent evolution are enriched for 227 schizophrenia markers (Banerjee et al., 2017; Srinivasan et al., 2015). We took the 228 SNPs that are in LD with the DMR regions and plotted their *p*-value distributions 229 from various GWASs. The observed *p*-value distributions were then determined to be 230 enriched or not using conditional Q-Q plots as described by Schork et al. (2013). 231 Genomic inflation was corrected by λ_{GC} .

232

233 2.7. INRICH-based enrichment analysis

234 The stratified QQ plots provide a visual depiction of data distributions and enrichment 235 of true signals within a stratum of data, but they do not quantify this enrichment. 236 Therefore, we used the INterval EnRICHment (INRICH) analysis tool to statistically 237 quantify the enrichment observed. This pipeline performs permutation and 238 bootstrapping procedures to determine with statistical confidence whether LD-239 implicated genomic intervals are enriched in specific gene sets (Lee et al., 2012). The 240 INRICH analysis takes into account several potential biases that can otherwise lead to 241 false positives, such as variable gene size, SNP density within genes, LD between and 242 within genes, and overlapping genes in the gene sets. We used the same procedure 243 reported previously (Banerjee et al., 2017; Xu et al., 2015) with SNPs in the extended 244 MHC region and SNPs with MAF <0.05 excluded from the analysis. Additional 245 details can be found in the Supplementary Information.

246

247 **3. Results**

249 3.1. Co-localisation of human hypo-methylated regions and genetic variants

- 250 associated with schizophrenia in the MHC.
- 251 We ascertained whether there is any enrichment of human hypo- and hyper-
- 252 methylated regions in schizophrenia-associated SNPs. Using previously published
- 253 methodology (Christoforou et al., 2012), we mapped schizophrenia markers to human
- 254 hypo-methylated regions (hypo-DMRs) and hyper-methylated regions (hyper-DMRs).
- 255 Out of a total of ~9.4 million SCZ markers obtained from the GWAS, 10,165 markers
- tagged hypo-DMRs and 4,503 tagged hyper-DMRs.
- 257
- 258 Figure 1A shows the conditional QQ plots for schizophrenia markers (all markers, the
- 259 hypo-DMR set and the hyper-DMR set) including those in the MHC region. For
- 260 hypo-DMR markers (Supplementary Dataset 1), we observed a significant enrichment
- as depicted by the leftward deviation. No enrichment was observed for hyper-DMR
- 262 markers. Since the MHC region is a region of extended linkage disequilibrium, which
- 263 can bias the enrichment estimates, and since it is the main region of association with
- schizophrenia, we also tested the enrichment with the MHC region removed (Figure
- 1B). Under these conditions there is a trend for enrichment of hypo-DMR markers at
- higher *p*-value thresholds, but this enrichment is substantially less than when the
- 267 MHC is included (Figure 1A).
- 268
- 269 3.2. Enrichment of markers is not seen for other human traits
- 270 Next, we tested if the human hypo- and hyper-methylated regions are enriched for
- other human traits and phenotypes. We tested a total of thirteen different phenotypes,
- full details of which can be found in section 2.1. Each GWAS had been performed
- with a different number of genotyped SNPs, and this difference could potentially bias

274	our results. To circumvent this, we created a list of ~2.4 million common SNPs that
275	were genotyped across all the phenotypes investigated in the present study. Only
276	SNPs on this list were used for enrichment analysis.
277	
278	As can be seen in Fig. 2, no enrichment was observed in any of the traits, with the
279	possible exception of height at higher p -value threshold markers. The common list of
280	markers did not contain the MHC region and as such no enrichment is observed for
281	schizophrenia either.
282	
283	3.3. Evidence of enrichment for hypo-methylated regions with SNPs at high p-values
284	The enrichment plots allowed us to visually ascertain enrichment in the datasets.
285	However, they did not give any indication of the statistical robustness of the
286	enrichment. To ascertain if the human hypo- and hyper-methylated regions are
287	statistically enriched for schizophrenia and height markers, we implemented the
288	INRICH pipeline, which performs 10,000 permutations and 5,000 bootstrapping
289	calculations, to determine with statistical confidence the enrichment observed (Lee et
290	al., 2012).
291	
292	The INRICH analysis confirmed a significant ($p < 0.05$) enrichment of association for
293	human hypo-DMRs, but not hyper-DMRs, with schizophrenia at SNPs of higher <i>p</i> -
294	value thresholds ($p < 10e-3$ to $p < 10e-4$) (Fig. 3). This enrichment was at the gene level,
295	and complemented the enrichment observed at the SNP level for higher <i>p</i> -value
296	thresholds (Fig. 1B). Importantly, this enrichment persisted upon testing a pruned
297	schizophrenia dataset (Supplementary Fig. 1). The enrichment was however not
298	significant at the genome-wide threshold ($p < 5x10e-8$) and was much weaker than that

299	observed for non-primate DMRs (Fig. 3). We also observed a similar trend for height
300	where there was enrichment at SNPs of higher but not lower <i>p</i> -value thresholds. This
301	enrichment was similarly less pronounced than for non-primate DMRs
302	(Supplementary Fig. 2).
303	
304	
305	4. Discussion
306	
307	In our study, we investigated if regions of the human genome whose methylation has
308	evolved since the divergence of modern humans from great apes are enriched for
309	markers of schizophrenia. We found evidence that there is enrichment for hypo-
310	methylated DMRs driven by the MHC locus, a known risk region that harbours the
311	most significant schizophrenia GWAS markers (Ripke et al., 2014). When the MHC
312	region was excluded from the analysis, there remained a trend towards enrichment of
313	hypo-DMRs driven by SNPs of higher <i>p</i> -value thresholds. This finding was
314	complemented by the INRICH analyses that indicated significant enrichment among
315	SNPs of higher <i>p</i> -value thresholds. When analysing a global SNP list common to
316	GWAS of several traits, we failed to find evidence of enrichment of any trait with the
317	possible exception of height at higher SNP <i>p</i> -value thresholds. We tested this further
318	with the INRICH pipeline, which revealed gene-level enrichment of LD intervals for
319	height markers below the genome-wide threshold ($p < 5x10e-8$). Compared to our
320	previous study, in which we demonstrated enrichment of association with
321	schizophrenia for non-primate DMRs that were derived by comparing human,
322	Neanderthal and Denisovan methylomes (Banerjee et al., 2017), the primate DMRs
323	tested here show far less enrichment. The primate and non-primate DMRs have very

324 little overlap, which suggests that the methylation changes that took place since the 325 divergence of modern humans from Neanderthals and Denisovans occurred in 326 different regions of the genome compared to those that took place since divergence 327 from great apes. 328 329 The central role of the MHC region in the enrichment of human hypo-methylated 330 regions poses interesting questions. The MHC region is known for its complex LD 331 architecture, which renders the interpretation of genetic signals very challenging. 332 Other groups have previously reported that the MHC region is one of the fastest 333 evolving regions of the human genome (Meyer et al., 2017) and have implicated it in 334 mate preference (Bernatchez and Landry, 2003; Kromer et al., 2016; Potts and 335 Wakeland, 1990; Roberts et al., 2008; Winternitz et al., 2017), odour perception 336 (Roberts et al., 2008; Santos et al., 2005) and immune response (Benacerraf, 1981; 337 Horton et al., 2004). Recently it was shown that a large proportion of the association 338 of the region with schizophrenia can be explained by complement C4 haplotypes that 339 include C4 copy number variation (Sekar et al., 2016). Nevertheless, there remains a 340 part of the association in this region that is unexplained (Gejman et al., 2011) and will 341 need further investigation. It is interesting to consider the possibility that the MHC 342 region and the immune system in general play a central role in evolution at the 343 epigenomic as well as at the genomic level (Meyer et al., 2017; Potts and Wakeland, 344 1990; Sommer, 2005; Traherne, 2008). The mechanisms by which hypo-methylation 345 could influence the aforementioned processes are open to speculation since the MHC

region has more than 200 genes in close physical proximity and LD with one another

347 (Beck et al., 1999). This makes it hard to interpret the exact biological consequences

348 of our findings.

349

350	Interestingly, the gene-level analysis via INRICH seems to suggest enrichment of
351	SNPs of higher <i>p</i> -value thresholds in primate DMRs for both schizophrenia and
352	height. This enrichment is far lower than what we found for non-primate DMRs for
353	both schizophrenia and height (Banerjee et al., 2017) and which persisted for
354	schizophrenia even with pruned datasets.
355	
356	The very small overlap between primate and non-primate DMRs might suggest that
357	the divergence from Neanderthals and Denisovans brought about more significant
358	methylation changes in regions implicated in the aetiology of schizophrenia and
359	height than the divergence from great apes. In other words, our results might suggest
360	that the evolutionary factors that regulate methylation variation acted on different
361	segments of the genome at different time points. So while the methylation variation
362	since the divergence from Neanderthals and Denisovans may mark a genome-wide
363	increase of schizophrenia susceptibility (Banerjee et al., 2017), the methylation
364	variation from the time period between 13 and 6 MYA appears not to have
365	significantly increased the risk for schizophrenia (except possibly for some markers in
366	the MHC region),
367	
368	Our results are also in line with the findings of Srinivasan et al. (2017), who failed to
369	find evidence of enrichment of schizophrenia using genomic markers of evolution
370	dating back to 200 MYA. The same authors also reported enrichment of association
371	for regions of more recent evolution in modern humans (Srinivasan et al., 2015).
372	Interestingly, one of the evolutionary proxies used by Srinivasan and colleagues

373 (2017), namely HARs, also showed enrichment for height, similar to our recent study

374	(Banerjee et al.,	2017).	This suggests	that regions	controlling	both	genomic and	
-----	-------------------	--------	---------------	--------------	-------------	------	-------------	--

epigenomic variation in height may also be driven by recent evolution. Finally, our

results agree well with the observation by Srinivasan et al. (2017) of some

377 involvement of the MHC in an early evolutionary context.

378

379	Although our results are in line with several findings in the field, the current methods
380	have some limitations. Highly polygenic traits such as schizophrenia have a large
381	number of genetic loci contributing to the aetiology of a disease (Bulik-Sullivan et al.,
382	2015; Schork et al., 2016). The ability to detect these large numbers of genetic loci is
383	dependent on the sample size and adequate statistical power (Schork et al., 2016).
384	Consequently, the polygenic enrichment methods may be limited by the statistical
385	power of the respective GWAS and trait polygenicity. Furthermore, in the INRICH
386	analysis that uses LD-clumping of SNPs at $p < 10e-3$ to $p < 10e-8$, higher p -value
387	thresholds (e.g. $p < 10e-3$) still include SNPs of lower p -values, even though they
388	become progressively smaller minorities. Thus, although higher <i>p</i> -values increase the
389	number of LD-clumps tested, we do not expect this to increase the Type I error rate
390	(Lee et al., 2012).
201	

391

In conclusion, our results suggest that methylation markers tracing an evolutionary
period dating back to 13 MYA (primate DMRs) are not enriched for schizophrenia
markers, unlike methylation markers from a recent timeframe (non-primate DMRs)
(Banerjee et al., 2017). Taken in consideration with previous studies of genomic
markers of evolution dating back 200 MYA (Srinivasan et al., 2017), our results
support the hypothesis that the origins of schizophrenia lie in more recent

- 398 evolutionary events, possibly after the divergence of modern-day humans from
- 399 Neanderthals and Denisovans.
- 400
- 401
- 402 Appendix A. Supplementary data
- 403 Supplementary Information: Additional Methods, Figures and Tables
- 404 Supplementary Dataset 1: Annotation of human hypo-methylated regions with
- 405 markers of schizophrenia

References

409 410 411	Ayuso-Mateos, J.L., 2002. Global Burden of schizophrenia in the year 2000-Version 1 Estimates. World Health Organization.
412 413 414 415	Banerjee, N., Polushina, T., Bettella, F., Giddaluru, S., Steen, V.M., Andreassen, O.A., Le Hellard, S., 2017. Human-specific methylated regions are enriched in schizophrenia. bioRxiv 113175.
416 417 418	Bassett, A.S., Bury, A., Hodgkinson, K.A., Honer, W.G., 1996. Reproductive fitness in familial schizophrenia. Schizophr. Res. 21, 151–60.
419 420 421	Beck, S., Geraghty, D., Inoko, H., Rowen, L., 1999. Complete sequence and gene map of a human major histocompatibility complex. Nature 401, 921–923.
422 423 424	Benacerraf, B., 1981. Role of MHC gene products in immune regulation. Science 212, 1229–1238.
425 426 427	Bernatchez, L., Landry, C., 2003. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J. Evol. Biol. 16, 363–77.
428 429 430	Bernstein, B.E., Meissner, A., Lander, E.S., 2007. The mammalian epigenome. Cell 128, 669 – 681.
431 432 433 434	Bird, C.P., Stranger, B.E., Liu, M., Thomas, D.J., Ingle, C.E., Beazley, C., Miller, W., Hurles, M.E., Dermitzakis, E.T., 2007. Fast-evolving noncoding sequences in the human genome. Genome Biol. 8, R118.
435 436 437	Brown, S., 1997. Excess mortality of schizophrenia. A meta-analysis. Br. J. Psychiatry 171, 502–508.
438 439 440	Brüne, M., 2004. Schizophrenia—an evolutionary enigma? Neurosci. Biobehav. Rev. 28, 41–53.
441 442 443 444 445 446	Bulik-Sullivan, B.K., Loh, PR., Finucane, H.K., Ripke, S., Yang, J., Patterson, N., Daly, M.J., Price, A.L., Neale, B.M., Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2015. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genet. 47, 291.
447 448 449 450 451 452	 Burbano, H.A., Hodges, E., Green, R.E., Briggs, A.W., Krause, J., Meyer, M., Good, J.M., Maricic, T., Johnson, P.L.F., Xuan, Z., Rooks, M., Bhattacharjee, A., Brizuela, L., Albert, F.W., de la Rasilla, M., Fortea, J., Rosas, A., Lachmann, M., Hannon, G.J., Pääbo, S., 2010. Targeted investigation of the Neandertal genome by array-based sequence capture. Science 328, 723–5.

453 454 455	Bush, E.C., Lahn, B.T., 2008. A genome-wide screen for noncoding elements important in primate evolution. BMC Evol. Biol. 8, 17.
456 457 458 459 460	Cardno, A.G., Marshall, E.J., Coid, B., Macdonald, A.M., Ribchester, T.R., Davies, N.J., Venturi, P., Jones, L.A., Lewis, S.W., Sham, P.C., et al., 1999. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch. Gen. Psychiatry 56, 162–168.
461 462 463 464 465	Christoforou, A., Dondrup, M., Mattingsdal, M., Mattheisen, M., Giddaluru, S., N□then, M.M., Rietschel, M., Cichon, S., Djurovic, S., Andreassen, O.A., et al., 2012. Linkage-disequilibrium-based binning affects the interpretation of GWASs. Am. J. Hum. Genet .90, 727–733.
466 467 468	Crespi, B., Summers, K., Dorus, S., 2007. Adaptive evolution of genes underlying schizophrenia. Proc. Roy. Soc. Lond. [Biol] 274, 2801–2810.
469 470 471	Crow, T.J., 1995. A Darwinian approach to the origins of psychosis. Br. J. Psychiatry 167, 12–25.
472 473 474	Crow, T.J., 1997. Is schizophrenia the price that Homo sapiens pays for language? Schizophr. Res. 28, 127–41.
475 476 477 478	Crow, T.J., 2000. Schizophrenia as the price that Homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Research Reviews 31, 118–129.
479 480 481	Crow, T.J., 2008. The □big bang□ theory of the origin of psychosis and the faculty of language. Schizophr. Res. 102, 31–52.
482 483 484 485 486	Demontis, D., Walters, R.K., Martin, J., Mattheisen, M., Als, T.D., Agerbo, E., Belliveau, R., Bybjerg-Grauholm, J., Bækved-Hansen, M., Cerrato, F., et al., 2017. Discovery of the first genome-wide significant risk loci for ADHD. bioRxiv 145581.
487 488 489 490	Durbin, R., Abecasis, G., Bentley, D., Chakravarti, A., Clark, A., Donnelly, P., Eichler, E., Flicek, P., Gabriel, S., Gibbs, R., et al., 2012. An integrated map of genetic variation from 1,092 human genomes. Nature 497, 56-65.
491 492 493 494 495	Ehret, G.B., Munroe, P.B., Rice, K.M., Bochud, M., Johnson, A.D., Chasman, D.I., Smith, A.V., Tobin, M.D., Verwoert, G.C., Hwang, SJ., et al., 2011. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103.
496 497 498	Gejman, P.V., Sanders, A.R., Kendler, K.S., 2011. Genetics of schizophrenia: new findings and challenges. Annu. Rev. Genomics Hum. Genet. 12, 121–44.
499 500 501 502	Gittelman, R.M., Hun, E., Ay, F., Madeoy, J., Pennacchio, L., Noble, W.S., Hawkins, R.D., Akey, J.M., 2015. Comprehensive identification and analysis of human accelerated regulatory DNA. Genome Res. 25, 1245–1255.

503 504 505	Glazko, G.V., Nei, M., 2003. Estimation of divergence times for major lineages of primate species. Mol. Biol. Evol. 20, 424–34.
506 507 508 509	Gokhman, D., Lavi, E., Prüfer, K., Fraga, M.F., Riancho, J.A., Kelso, J., Pääbo, S., Meshorer, E., Carmel, L., 2014. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 344, 523–527.
510 511 512 513	Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M.HY., et al., 2010. A draft sequence of the Neandertal genome. Science 328, 710–722.
514 515 516	Hasegawa, M., Kishino, H., Yano, T., 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–74.
517 518 519 520 521	Hernando-Herraez, I., Heyn, H., Fernandez-Callejo, M., Vidal, E., Fernandez-Bellon, H., Prado-Martinez, J., Sharp, A.J., Esteller, M., Marques-Bonet, T., 2015. The interplay between DNA methylation and sequence divergence in recent human evolution. Nucleic Acids Res. 43, 8204–8214.
522 523 524 525 526	Hernando-Herraez, I., Prado-Martinez, J., Garg, P., Fernandez-Callejo, M., Heyn, H., Hvilsom, C., Navarro, A., Esteller, M., Sharp, A.J., Marques-Bonet, T., 2013. Dynamics of DNA methylation in recent human and great ape evolution. PLoS Genet 9, e1003763.
527 528 529 530	Horton, R., Wilming, L., Rand, V., Lovering, R.C., Bruford, E.A., Khodiyar, V.K., Lush, M.J., Povey, S., Talbot Jr, C.C., Wright, M.W., et al., 2004. Gene map of the extended human MHC. Nat. Rev. Genet. 5, 889-899.
531 532 533	Jeste, D.V., Del Carmen, R., Lohr, J.B., Wyatt, R.J., 1985. Did schizophrenia exist before the eighteenth century? Compr. Psychiatry 26, 493–503.
535 534 535 536 537 538 539 540	 Karolchik, D., Barber, G.P., Casper, J., Clawson, H., Cline, M.S., Diekhans, M., Dreszer, T.R., Fujita, P.A., Guruvadoo, L., Haeussler, M., Harte, R.A., Heitner, S., Hinrichs, A.S., Learned, K., Lee, B.T., Li, C.H., Raney, B.J., Rhead, B., Rosenbloom, K.R., Sloan, C.A., Speir, M.L., Zweig, A.S., Haussler, D., Kuhn, R.M., Kent, W.J., 2014. The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 42, D764–70.
541 542 543 544	Kromer, J., Hummel, T., Pietrowski, D., Giani, A., Sauter, J., Ehninger, G., Schmidt, A., Croy, I., 2016. Influence of HLA on human partnership and sexual satisfaction. Scientific Reports 6, 32550.
545 546 547 548	Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M.J., et al., 2015. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330.
549 550 551 552	Kyaga, S., Lichtenstein, P., Boman, M., Hultman, C., Långstr□m, N., Landén, M., 2011. Creativity and mental disorder: family study of 300 000 people with severe mental disorder. Brit. J. Psych. 199, 373–379.

553 554 555 556	Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al., 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921.
557 558 559 560 561 562 563	Langergraber, K.E., Prüfer, K., Rowney, C., Boesch, C., Crockford, C., Fawcett, K., Inoue, E., Inoue-Muruyama, M., Mitani, J.C., Muller, M.N., Robbins, M.M., Schubert, G., Stoinski, T.S., Viola, B., Watts, D., Wittig, R.M., Wrangham, R.W., Zuberbühler, K., Pääbo, S., Vigilant, L., 2012. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl. Acad. Sci. U.S.A. 109, 15716–15721.
564 565 566	Larson, C.A., Nyman, G.E., 1973. Differential fertility in schizophrenia. Acta Psychiatr Scand 49, 272–80.
567 568 569 570	Lee, P.H., O'Dushlaine, C., Thomas, B., Purcell, S.M., 2012. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 28, 1797–9.
571 572 573 574	Lichtenstein, P., Yip, B.H., Bj Rk, C., Pawitan, Y., Cannon, T.D., Sullivan, P.F., Hultman, C.M., 2009. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234–239.
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591	 Lindblad-Toh, K., Garber, M., Zuk, O., Lin, M.F., Parker, B.J., Washietl, S., Kheradpour, P., Ernst, J., Jordan, G., Mauceli, E., Ward, L.D., Lowe, C.B., Holloway, A.K., Clamp, M., Gnerre, S., Alf□ldi, J., Beal, K., Chang, J., Clawson, H., Cuff, J., Di Palma, F., Fitzgerald, S., Flicek, P., Guttman, M., Hubisz, M.J., Jaffe, D.B., Jungreis, I., Kent, W.J., Kostka, D., Lara, M., Martins, A.L., Massingham, T., Moltke, I., Raney, B.J., Rasmussen, M.D., Robinson, J., Stark, A., Vilella, A.J., Wen, J., Xie, X., Zody, M.C., Baldwin, J., Bloom, T., Whye Chin, C., Heiman, D., Nicol, R., Nusbaum, C., Young, S., Wilkinson, J., Worley, K.C., Kovar, C.L., Muzny, D.M., Gibbs, R. a., Cree, A., Dihn, H.H., Fowler, G., Jhangiani, S., Joshi, V., Lee, S., Lewis, L.R., Nazareth, L.V., Okwuonu, G., Santibanez, J., Warren, W.C., Mardis, E.R., Weinstock, G.M., Wilson, R.K., Delehaunty, K., Dooling, D., Fronik, C., Fulton, L., Fulton, B., Graves, T., Minx, P., Sodergren, E., Birney, E., Margulies, E.H., Herrero, J., Green, E.D., Haussler, D., Siepel, A., Goldman, N., Pollard, K.S., Pedersen, J.S., Lander, E.S., Kellis, M., 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482.
592 593 594 595	Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H., Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., Yang, J., et al., 2015. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206.
596 597 598 599 600	Markow, T.A., 2012. Developmental instability: its origins and evolutionary implications: proceedings of the International Conference on Developmental Instability: Its Origins and Evolutionary Implications, Tempe, Arizona, 14-15 June 1993. Springer Science and Business Media.

601 602 603	Mendizabal, I., Keller, T., Zeng, J., Soojin, V.Y., 2014. Epigenetics and evolution. Integr. Comp. Biol. 54, 31–42.
604 605 606	Messias, E.L., Chen, CY., Eaton, W.W., 2007. Epidemiology of schizophrenia: review of findings and myths. Psychiatr. Clin. North Am. 30, 323–38.
607 608 609	Meyer, D., Aguiar, V.R., Bitarello, B.D., Brandt, D.Y., Nunes, K., 2017. A genomic perspective on HLA evolution. Immunogenetics 70, 1–23.
610 611 612 613	Molaro, A., Hodges, E., Fang, F., Song, Q., McCombie, W.R., Hannon, G.J., Smith, A.D., 2011. Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell 146, 1029–1041.
614 615 616	Nichols, C., 2009. Is there an evolutionary advantage of schizophrenia? Pers. Individ. Diff. 46, 832–838.
617 618 619	Paaby, A.B., Rockman, M.V., 2014. Cryptic genetic variation: evolution's hidden substrate. Nat. Rev. Genet. 15, 247-258
620 621 622 623	Pollard, K.S., Salama, S.R., King, B., Kern, A.D., Dreszer, T., Katzman, S., Siepel, A., Pedersen, J.S., Bejerano, G., Baertsch, R., et al., 2006. Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2, e168.
624 625 626	Potts, W.K., Wakeland, E.K., 1990. Evolution of diversity at the major histocompatibility complex. Trends Ecol. Evol. (Amst.) 5, 181–7.
627 628 629 630 631	Power, R.A., Kyaga, S., Uher, R., MacCabe, J.H., Långstr Im, N., Landen, M., McGuffin, P., Lewis, C.M., Lichtenstein, P., Svensson, A.C., 2013. Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. JAMA Psychiatry 70, 22–30.
632 633 634 635	Rannala, B., Yang, Z., 2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164, 1645–1656.
636 637 638	R Core Team, 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria.
639 640 641 642	Ripke, S., Neale, B.M., Corvin, A., Walters, J.T., Farh, KH., Holmans, P.A., Lee, P., Bulik-Sullivan, B., Collier, D.A., Huang, H., et al., 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421-427.
643 644	Rivera, C.M., Ren, B., 2013. Mapping human epigenomes. Cell 155, 39–55.
645 646 647 648	Roberts, S.C., Gosling, L.M., Carter, V., Petrie, M., 2008. MHC-correlated odour preferences in humans and the use of oral contraceptives. Proc. Biol. Sci. 275, 2715–2722.
649 650	Santos, P.S.C., Schinemann, J.A., Gabardo, J., Bicalho, M. da G., 2005. New evidence that the MHC influences odor perception in humans: a study with 58

651	Southern Brazilian students. Horm. Behav. 47, 384–388.
652	
653	Schork, A.J., Thompson, W.K., Pham, P., Torkamani, A., Roddey, J.C., Sullivan,
654	P.F., Kelsoe, J.R., O'Donovan, M.C., Furberg, H., Schork, N.J., et al., 2013. All
655	SNPs are not created equal: genome-wide association studies reveal a consistent
656	pattern of enrichment among functionally annotated SNPs. PLoS Genet 9,
657	e1003449.
658	
659	Schork, A.J., Wang, Y., Thompson, W.K., Dale, A.M., Andreassen, O.A., 2016. New
660	statistical approaches exploit the polygenic architecture of schizophrenia—
661	implications for the underlying neurobiology. Curr. Opin Neurobiol. 36, 89-98.
662	
663	Sekar, A., Bialas, A.R., de Rivera, H., Davis, A., Hammond, T.R., Kamitaki, N.,
664	Tooley, K., Presumey, J., Baum, M., Van Doren, V., et al., 2016. Schizophrenia
665	risk from complex variation of complement component 4. Nature 530, 177–183.
666	
667	Sklar, P., Ripke, S., Scott, L.J., Andreassen, O.A., Cichon, S., Craddock, N.,
668	Edenberg, H.J., Nurnberger, J.I., Rietschel, M., Blackwood, D., et al., 2011. Large-
669	scale genome-wide association analysis of bipolar disorder identifies a new
670	susceptibility locus near ODZ4. Nature Genet. 43, 977–983.
671	
672	Skre, I., Onstad, S., Torgersen, S., Lygren, S., Kringlen, E., 1993. A twin study of
673	DSM-III-R anxiety disorders. Acta Psychiatr. Scand. 88, 85–92.
674	
675	Sniekers, S., Stringer, S., Watanabe, K., Jansen, P.R., Coleman, J.R., Krapohl, E.,
676	Taskesen, E., Hammerschlag, A.R., Okbay, A., Zabaneh, D., et al., 2017. Genome-
677	wide association meta-analysis of 78,308 individuals identifies new loci and genes
678	influencing human intelligence. Nature Genet. 49, 1107-1112.
679	
680	Sommer, S., 2005. The importance of immune gene variability (MHC) in
681	evolutionary ecology and conservation. Front. Zool. 2, 16.
682	
683	Srinivasan, S., Bettella, F., Hassani, S., Wang, Y., Witoelar, A., Schork, A.J.,
684	Thompson, W.K., Collier, D.A., Desikan, R.S., Melle, I., et al., 2017. Probing the
685	association between early evolutionary markers and schizophrenia. PloS One 12,
686	e0169227.
687	
688	Srinivasan, S., Bettella, F., Mattingsdal, M., Wang, Y., Witoelar, A., Schork, A.J.,
689	Thompson, W.K., Zuber, V., Winsvold, B.S., Zwart, JA., et al., 2015. Genetic
690	markers of human evolution are enriched in schizophrenia. Biol. Psychiatry 80,
691	284-292.
692	
693	Stahl, E.A., Raychaudhuri, S., Remmers, E.F., Xie, G., Eyre, S., Thomson, B.P., Li,
694	Y., Kurreeman, F.A., Zhernakova, A., Hinks, A., et al., 2010. Genome-wide
695	association study meta-analysis identifies seven new rheumatoid arthritis risk loci.
696	Nature Genet. 42, 508–514.
697	
698	Sullivan, P.F., Kendler, K.S., Neale, M.C., 2003. Schizophrenia as a complex trait:
699	evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–
-	

700	1192.
701	
702	Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C., Stylianou, I.M.,
703	Koseki, M., Pirruccello, J.P., Ripatti, S., Chasman, D.I., Willer, C.J., Johansen,
704	C.T., Fouchier, S.W., Isaacs, A., Peloso, G.M., Barbalic, M., Ricketts, S.L., Bis,
705	J.C., Aulchenko, Y.S., Thorleifsson, G., Feitosa, M.F., Chambers, J., Orho-
706	Melander, M., Melander, O., Johnson, T., Li, X., Guo, X., Li, M., Shin Cho, Y., Jin
707	Go, M., Jin Kim, Y., Lee, JY., Park, T., Kim, K., Sim, X., Twee-Hee Ong, R.,
708	Croteau-Chonka, D.C., Lange, L.A., Smith, J.D., Song, K., Hua Zhao, J., Yuan, X.,
709	Luan, J., Lamina, C., Ziegler, A., Zhang, W., Zee, R.Y.L., Wright, A.F., Witteman,
710	J.C.M., Wilson, J.F., Willemsen, G., Wichmann, HE., Whitfield, J.B.,
711	Waterworth, D.M., Wareham, N.J., Waeber, G., Vollenweider, P., Voight, B.F.,
712	Vitart, V., Uitterlinden, A.G., Uda, M., Tuomilehto, J., Thompson, J.R., Tanaka,
713	T., Surakka, I., Stringham, H.M., Spector, T.D., Soranzo, N., Smit, J.H., Sinisalo,
714	J., Silander, K., Sijbrands, E.J.G., Scuteri, A., Scott, J., Schlessinger, D., Sanna, S.,
715	Salomaa, V., Saharinen, J., Sabatti, C., Ruokonen, A., Rudan, I., Rose, L.M.,
716	Roberts, R., Rieder, M., Psaty, B.M., Pramstaller, P.P., Pichler, I., Perola, M.,
717	Penninx, B.W.J.H., Pedersen, N.L., Pattaro, C., Parker, A.N., Pare, G., Oostra,
718	B.A., O'Donnell, C.J., Nieminen, M.S., Nickerson, D.A., Montgomery, G.W.,
719	Meitinger, T., McPherson, R., McCarthy, M.I., McArdle, W., Masson, D., Martin,
720	N.G., Marroni, F., Mangino, M., Magnusson, P.K.E., Lucas, G., Luben, R., Loos,
721	R.J.F., Lokki, ML., Lettre, G., Langenberg, C., Launer, L.J., Lakatta, E.G.,
722	Laaksonen, R., Kyvik, K.O., Kronenberg, F., König, I.R., Khaw, KT., Kaprio, J.,
723	Kaplan, L.M., Johansson, A., Jarvelin, MR., Janssens, A.C.J.W., Ingelsson, E.,
724	Igl, W., Kees Hovingh, G., Hottenga, JJ., Hofman, A., Hicks, A.A.,
725	Hengstenberg, C., Heid, I.M., Hayward, C., Havulinna, A.S., Hastie, N.D., Harris,
726	T.B., Haritunians, T., Hall, A.S., Gyllensten, U., Guiducci, C., Groop, L.C.,
727	Gonzalez, E., Gieger, C., Freimer, N.B., Ferrucci, L., Erdmann, J., Elliott, P.,
728	Ejebe, K.G., Döring, A., Dominiczak, A.F., Demissie, S., Deloukas, P., de Geus,
729	E.J.C., de Faire, U., Crawford, G., Collins, F.S., Chen, Y.I., Caulfield, M.J.,
730	Campbell, H., Burtt, N.P., Bonnycastle, L.L., Boomsma, D.I., Boekholdt, S.M.,
731	Bergman, R.N., Barroso, I., Bandinelli, S., Ballantyne, C.M., Assimes, T.L.,
732	Quertermous, T., Altshuler, D., Seielstad, M., Wong, T.Y., Tai, ES., Feranil,
733	A.B., Kuzawa, C.W., Adair, L.S., Taylor, H.A., Borecki, I.B., Gabriel, S.B.,
734	Wilson, J.G., Holm, H., Thorsteinsdottir, U., Gudnason, V., Krauss, R.M., Mohlke,
735	K.L., Ordovas, J.M., Munroe, P.B., Kooner, J.S., Tall, A.R., Hegele, R.A.,
736	Kastelein, J.J.P., Schadt, E.E., Rotter, J.I., Boerwinkle, E., Strachan, D.P., Mooser,
737	V., Stefansson, K., Reilly, M.P., Samani, N.J., Schunkert, H., Cupples, L.A.,
738	Sandhu, M.S., Ridker, P.M., Rader, D.J., van Duijn, C.M., Peltonen, L., Abecasis,
739	G.R., Boehnke, M., Kathiresan, S., 2010. Biological, clinical and population
740	relevance of 95 loci for blood lipids. Nature 466, 707–713.
741	
742	Traherne, J., 2008. Human MHC architecture and evolution: implications for disease
743	association studies. Int. J. Iimmunogenet. 35, 179–192.
744	
745	Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith,
746	H.O., Yandell, M., Evans, C.A., Holt, R.A., et al., 2001. The sequence of the
747	human genome. Science 291, 1304–1351.
7/0	

749	WHO, 1973. Report of the international pilot study of schizophrenia.
750	
	Winternitz, J., Abbate, J., Huchard, E., Havl'\i\vcek, J., Garamszegi, L., 2017.
	Patterns of MHC-dependent mate selection in humans and nonhuman primates: a
753	meta-analysis. Molecular ecology 26, 668–688.
754	
755	Wood, A.R., Esko, T., Yang, J., Vedantam, S., Pers, T.H., Gustafsson, S., Chu, A.Y.,
756	Estrada, K., Luan, J., Kutalik, Z., et al., 2014. Defining the role of common
757	variation in the genomic and biological architecture of adult human height. Nature
758	Genet 46, 1173–1186.
759	
760	Xu, K., Schadt, E.E., Pollard, K.S., Roussos, P., Dudley, J.T., 2015. Genomic and
761	network patterns of schizophrenia genetic variation in human evolutionary
762 762	accelerated regions. Mol Biol Evol 32, 1148–1160.
763 764	
704	
765	
766	
767	

768 **Figure legends**

769 Fig. 1: Enrichment plots of hypo-DMR and hyper-DMR SNPs in schizophrenia

- 770 Quantile-quantile (QQ) plots of GWAS SNPs for Schizophrenia (SCZ) with the
- extended MHC region (chr6: 25-35Mb) unmasked (A) and masked (B). Expected -
- $\log_{10} p$ -values under the null hypothesis are shown on the X-axis. Observed $-\log_{10} p$ -
- values are on the Y-axis. The values for all GWAS SNPs are plotted in dark green
- while the values for SNPs in linkage disequilibrium (LD) with hypo-methylated
- 775 DMRs are plotted in blue and SNPs in LD with hyper-methylated DMRs are plotted
- in pink. A leftward deflection of the plotted *p*-values from the line for all GWAS
- 577 SNPs indicates enrichment of true signals the greater the leftward deflection, the
- stronger the enrichment. Genomic correction was performed on all SNPs with global
- 779 lambda.
- 780

Fig. 2: Enrichment plots of hypo-DMR and hyper-DMR SNPs across multiple traits

783 Thirteen different GWASs were analysed using a common set of ~2.4 million 784 SNPs. The *p*-values for the common set of GWAS SNPs are plotted in dark 785 green; *p*-values for SNPs that tag hypo-methylated DMRs are plotted in blue; 786 and *p*-values for SNPs that tag hyper-methylated DMRs are plotted in pink. 787 ADHD, attention deficit hyperactivity disorder; BMI, body mass index; BPD, 788 bipolar disorder; DBP, diastolic blood pressure; HDL, high density lipoprotein; 789 LDL, low density lipoprotein; RA, rheumatoid arthritis; SBP, systolic blood 790 pressure; SCZ, schizophrenia; TC, total cholesterol; TG, triglycerides. The 791 MHC region was absent from the common set of SNPs.

793 Fig. 3: INRICH test for enrichment of association of DMR gene sets and NSS

794 genes with SCZ, MHC masked

- A visual heatmap depicting *p*-values from bootstrapping with 5,000 iterations. The
- various evolutionary annotations compared are as follows. HypoDMR human hypo-
- 797 methylated DMRs; HyperDMR human hyper-methylated DMRs. HypoDMR and
- 798 HyperDMR were taken from the study by Hernando-Herraez et al. (2013). dmrH –
- human-specific DMRs (Gokhman et al, 2014), which are referred to as non-primate
- 800 DMRs in this manuscript. NSS Neanderthal selective sweep. Datasets marked with *
- 801 have been previously reported by Banerjee et al. (2017) and are presented here for
- 802 comparison only.

803

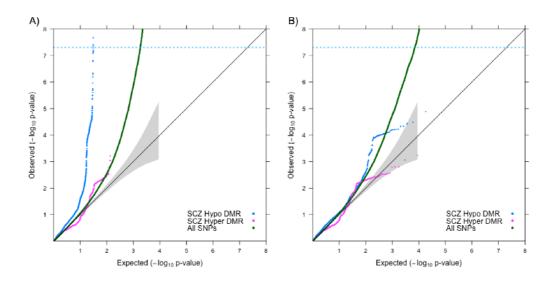
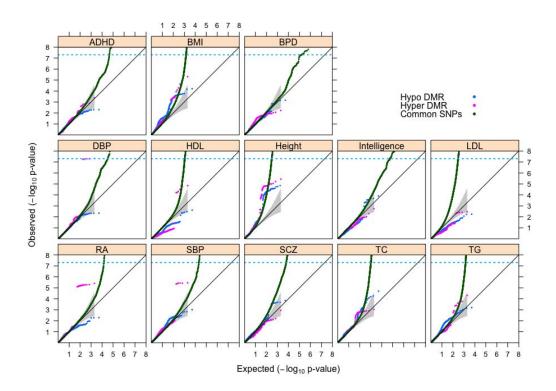
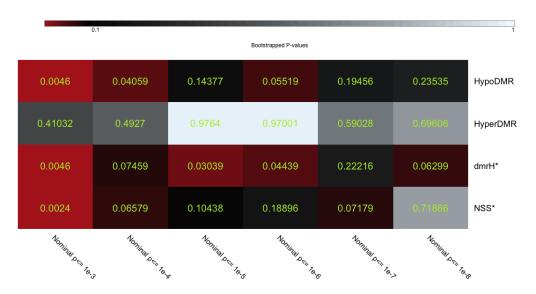




Figure 2

Figure 3

