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Abstract10

In the absence of annual laminations, time series generated from lake sediments or other sim-11

ilar stratigraphic sequences are irregularly spaced in time, which complicates formal analysis12

using classical statistical time series models. In lieu, statistical analyses of trends in palaeoen-13

vironmental time series, if done at all, have typically used simpler linear regressions or (non-)14

parametric correlations with little regard for the violation of assumptions that almost surely15

occurs due to temporal dependencies in the data or that correlations do not provide estimates16

of the magnitude of change, just whether or not there is a linear or monotonic trend. Alter-17

native approaches have used Loess-estimated trends to justify data interpretations or test hy-18

potheses as to the causal factors without considering the inherent subjectivity of the choice of19

parameters used to achieve the Loess fit (e.g. span width, degree of polynomial). Generalized20

additive models (GAMs) are statistical models that can be used to estimate trends as smooth21

functions of time. Unlike Loess, GAMs use automatic smoothness selection methods to objec-22

tively determine the complexity of the fitted trend, and as formal statistical models, GAMs,23

allow for potentially complex, non-linear trends, a proper accounting of model uncertainty,24

and the identification of periods of significant temporal change. Here, I present a consistent25

and modern approach to the estimation of trends in palaeoenvironmental time series using26

GAMs, illustrating features of the methodology with two example time series of contrasting27

complexity; a 150-year bulk organic matter δ15N time series from Small Water, UK, and a 3000-28

year alkenone record from Braya-Sø, Greenland. I discuss the underlying mechanics of GAMs29

that allow them to learn the shape of the trend from the data themselves and how simultane-30

ous confidence intervals and the first derivatives of the trend are used to properly account for31
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model uncertainty and identify periods of change. It is hoped that by using GAMs greater at-32

tention is paid to the statistical estimation of trends in palaeoenvironmental time series leading33

to more a robust and reproducible palaeoscience.34

1 Introduction35

Palaeoecology and palaeolimnology have moved away from being descriptive disciplines,36

rapidly adopting new statistical developments in the 1990s and beyond (Smol et al., 2012).37

Less development has been observed in the area of trend estimation in palaeoenvironmental38

time series. The vast majority of data produced by palaeoecologists and palaeolimnologists39

is in the form of time-ordered observations on one or more proxies or biological taxa (Birks,40

2012b; Smol, 2008; Smol et al., 2012). Typically these data are arranged irregularly in time;41

in the absence of annual laminae or varves, the sediment core is sectioned at regular depth42

intervals (Glew et al., 2001), which, owing to variation in accumulation rates over time43

and compaction by overlying sediments, results in an uneven sampling in time. An under-44

appreciated feature of such sampling is that younger sediments often have larger variance45

than older sediments; each section of core represents fewer lake years in newer samples,46

relative to older samples. This variable averaging acts as a time-varying low-pass (high-cut)47

filter of the annual depositional signal.48

Irregular intervals between samples means that the time-series analysis methods of autore-49

gressive or moving average processes, in the form of autoregressive integrated moving aver-50

age (ARIMA) models, are practically impossible to apply because software typically requires51

even spacing of observations in time. Dutilleul et al. (2012) and Birks (2012a), eschewing the52

term time series, prefer to call such data temporal series on account of the irregular spacing of53

samples, a distinction that I find unnecessary, however.54

Where statistical approaches have been applied to trend estimation in palaeoenvironmental55

time series, a commonly-used method is Loess (Birks, 1998, 2012a; Cleveland, 1979; Juggins56

and Telford, 2012). Loess, locally weighted scatterplot smoother, as it’s name suggests, was57

developed to smooth x-y scatterplot data (Cleveland, 1979). The method fits a smooth line58

through data by fitting weighted least squares (WLS) models to observations within a user-59

specified window of the focal point, whose width is typically expressed as a proportion 𝛼 of60

the 𝑛 data points. Weights are determined by how close (in the x-axis only) an observation in61

the window is to the focal point giving greatest weight given to points closest to the focal point.62

The interim Loess-smoothed value for the focal point is the predicted value from the weighted63

regression at the focal point. The interim values are updated using weights based on how far64

in the y-axis direction the interim smoothed value lies from the observed value plus the x-axis65

distance weights; this has the effect of down-weighting outlier observations. The final Loess is66

obtained by joining the smoothed values. The user has to choose how large a window to use,67

whether to fit degree 1 (linear) or degree 2 (quadratic) polynomials in theWLSmodel, and how68

to weight points in the x-axis. When used in an exploratory mode, the user has considerable69

freedom to choose the detail of the Loess fit; the window width, for example, can be infinitely70

tweaked to give as close a fit to the data, as assessed by eye, as is desired. Using cross-validation71

(CV) to choose 𝛼 or the degree of polynomial in theWLSmodel is complicated for a number of72
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reasons, not least because the CV scheme used must involve the time ordering of the data (e.g.73

Bergmeir et al., 2018). This subjectivity is problematic however once we wish to move beyond74

exploratory analysis and statistically identify trends to test hypotheses involving those trend75

estimates.76

Running means or other types of filter (Juggins and Telford, 2012) have also been used exten-77

sively to smooth palaeoenvironmental time series, but, as with Loess, their behaviour depends78

on a number of factors, including the filter width. Furthermore, the width of the filter causes79

boundary issues; with a centred filter, of width five, the filtered time series would be two data80

points shorter at both ends of the series because the filter values are not defined for the first81

and last two observations of the original series as these extra time points were not observed.82

Considerable research effort has been expended to identifyways to pad the original time series83

at one or both ends to maintain the original length in the filtered series, without introducing84

bias due to the padding (e.g. Mann, 2004, 2008; Mills, 2006, 2007, 2010).85

These are not the only methods that have been used to estimated trends in stratigraphic series.86

Another common approach involves fitting a simple linear trend using ordinary least squares87

regression and use the resulting t statistic as evidence against the null hypothesis of no trend88

despite the statistical assumptions being almost surely violated due to dependence among89

observations. The Pearson correlation coefficient, r, is also often used to detect trends in palaeo90

time series (Birks, 2012a), despite the fact that r provides no information as to themagnitude of91

the estimated trend, and the same temporal autocorrelation problem that dogs ordinary least92

squares similarly plagues significance testing for r (Tian et al., 2011). Additionally, both the93

simple least squares trend line and r are tests for linear trends only, and yet we typically face94

data sets with potentially far more complex trends than can be identified by these methods.95

Instead, non-parametric rank correlation coefficients have been used (Birks, 2012a; Gautheir,96

2001), and whilst these do allow for the detection of non-linear trends, trends are restricted to97

be monotonic, no magnitude of the trend is provided, and the theory underlying significance98

testing of Spearman’s 𝜌 and Kendall’s 𝜏 assumes independent observations.99

Here, I describe generalized additive models (GAMs; Hastie and Tibshirani, 1986, 1990; Rup-100

pert et al., 2003; Wood, 2017; Yee and Mitchell, 1991) for trend estimation. GAMs, like simple101

linear regression, are a regression-based method for estimating trends, yet they are also, su-102

perficially at least, similar to Loess. GAMs and Loess estimate smooth, non-linear trends in103

time series and both can handle the irregular spacing of samples in time, yet GAMs do not104

suffer from the subjectivity that plagues Loess as a method of formal statistical inference.105

In the subsequent sections, I present an introduction to GAMs and discuss the issue of uncer-106

tainty in model-estimated trends, the topic of posterior simulation from a regression model107

and how to identify periods of significant environmental change using the first derivative of108

the estimated trend. The main steps in the analysis of palaeoenvironmental time series using109

GAMs are illustrated in Figure 1. Two non-standard types of spline— adaptive smoothers and110

Gaussian process splines— that are especially applicable toGAMs in the palaeoenvironmental111

setting are subsequently described, followed by an assessment of the the impact of age-model112

uncertainty on trend estimation via GAMs. Finally, I briefly discuss the application of GAM113

trend analysis to multivariate species abundance and compositional data.114
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Figure 1: Flowchart showing the main steps in the analysis of time series using generalized
additive models. The main R functions associated with each step or decision are shown in
bold.

1.1 Example time series115

To illustrate trend estimation in palaeoenvironmental data using GAMs, I use two proxy time116

series; a 150-year bulk organic matter δ15N record from SmallWater, and a 3000-year alkenone117

record from Braya-Sø. Between them, the two examples, combine many of the features of118

interest to palaeoecologists that motivate the use of GAMs; non-linear trends and the question119

of when changes in the measured proxy occurred. The example analyses were all performed120

using the mgcv package (version 1.8.24; Wood, 2017) and R (version 3.4.4; R Core Team, 2018),121

and the supplementarymaterial contains a fully annotated document showing the R code used122

to replicate all the analyses described in the remainder of the paper.123

1.1.1 δ15N time series from Small Water124

Figure 2a shows 48 nitrogen stable isotope measurements on the bulk organic matter of a sed-125

iment core collected from Small Water, a small corrie lake located in the English Lake District,126

UK. The data were collected to investigate disturbance of nitrogen (N) cycling in remote, olig-127

otrophic lakes by N deposited from the atmosphere (Simpson, unpublished data). The data128

are shown on a 210Pb time scale. Questions that might be asked about this series are; what is129

the trend in δ15N?, when do we first see evidence for a change in δ15N?, and is the reversal in130

δ15N values in the uppermost section of the core a real change?131
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Figure 2: Example time series; a) Small Water bulk organic matter 𝛿15N time series on a 210Pb
time scale, and b) Braya-Sø UK

37 time series on a calibrated
14C time scale. The observations

UK
37 time series have been joined by lines purely as a visual aid to highlight potential trends.

1.1.2 Braya-Sø alkenone time series132

The second example time series is a 3,000 year record of alkenone unsaturation, UK
37, from133

Braya-Sø, a meromictic lake in West Greenland (D’Andrea et al., 2011). Alkenones are long-134

chained unsaturated organic compounds that are produced by a small number of planktonic135

organisms known as haptophytes. The UK
37 unsaturation index (Brassell, 1993) is136

UK
37 = [𝐶37∶2] − [𝐶37∶4]

[𝐶37∶2] + [𝐶37∶3] + [𝐶37∶4]

where [𝐶37∶𝑥] is the concentration of the alkenone with 37 carbon atoms and 𝑥 double carbon137

bonds. The relative abundance of these alkenones is known to vary with changes in water138

temperature (Brassell, 1993; Chu et al., 2005; Toney et al., 2010; Zink et al., 2001), and as a139

result UK
37 is used as a proxy for lake- and sea-surface temperatures. For further details on the140

Braya-Sø UK
37 record and age model see D’Andrea et al. (2011). Here I use the 3,000 year UK

37141

record from the PAGES 2K database (PAGES 2K Consortium, 2013). The data are presented in142

Figure 2b.143

2 Regression models for palaeoenvironmental time series144

A linear model for a trend in a series of 𝑇 observations 𝑦𝑡 at observation times 𝑥𝑡 with 𝑡 =145

1, 2, … , 𝑇 is146
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𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡 , (1)

where 𝛽0 is a constant term, the model intercept, representing the expected value of 𝑦𝑡 where147

𝑥𝑡 is 0. 𝛽1 is the slope of the best fit line through the data; it measures the rate of change in 𝑦148

for a unit increase in 𝑥. The unknowns, the 𝛽𝑗, are commonly estimated using least squares149

by minimising the sum of squared errors, ∑𝑡 𝜀2
𝑡 . If we want to ask if the estimated trend 𝛽1 is150

statistically significant we must make further assumptions about the data (conditional upon151

the fitted model) or the model errors (residuals); 𝜀𝑡
𝑖𝑖𝑑∼ (0, 𝜎2). This notation indicates that152

the residuals 𝜀𝑡 are independent and identically distributedGaussian random variables with mean153

equal to 0 and constant variance 𝜎2. In the time series setting, the assumption of independence154

of model residuals is often violated.155

The linear model described above is quite restrictive in terms of the types of trend it can fit;156

essentially linear increasing or decreasing trends, or, trivially, a null trend of no change. This157

model can be extended to allow for non-linear trends by making 𝑦𝑡 depend on polynomials of158

𝑥𝑡, for example159

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝛽2𝑥2
𝑡 + ⋯ + 𝛽𝑃𝑥𝑃

𝑡 + 𝜀𝑡 (2)

= 𝛽0 +
𝑃

∑
𝑝=1

𝛽𝑝𝑥𝑝
𝑡 + 𝜀𝑡 ,

where polynomials of 𝑥𝑡 up to order 𝑃 are used. This model allows for more complex trends160

but it remains a fully parametric model and suffers from several problems, especially the be-161

haviour of the fitted trend at the start and end of the observed series.162

Linear models using a range of polynomials fitted to the Small Water data set are shown in163

Figure 3. The low-order models (𝑃 ∈ {1, 3}) result in very poor fit to the data. The model with164

𝑃 = 5 does a reasonable job of capturing the gross pattern in the time series, but fails to adapt165

quickly enough to the decrease in δ15N that begins ~1940 CE, and the estimated trend is quite166

biased as a result. The 𝑃 = 10th-order polynomial model is well able to capture this period167

of rapid change, but it does so at the expense of increased complexity in the estimated trend168

prior to ~1940. Additionally, this model (𝑃 = 10) has undesirable behaviour at the ends of the169

series, significantly overfitting the data, a commonly observed problem in polynomial models170

such as these (Epperson, 1987; Runge, 1901). Finally, the choice of what order of polynomial to171

fit is an additional choice left for the analyst to specify; choosing the optimal 𝑃 is not a trivial172

task when the data are a time series and residual autocorrelation is likely present.173

Can we do better than these polynomial fits? In the remainder, I hope to demonstrate that174

the answer to that question is emphatically “yes”! Below I describe a coherent and consistent175

approach to modelling palaeoenvironmental time series using generalized additive models176

that builds upon the linear regression framework.177
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Figure 3: Linear models with various orders of polynomial of the covariate Year fitted using
ordinary least squares to the 𝛿15N time series from Small Water. The degree of polynomial is
indicated, with the degree 1 line equal to a simple linear regression model.

3 Generalized additive models178

The GAM version of the linear model (1) is179

𝑦𝑡 = 𝛽0 + 𝑓 (𝑥𝑡) + 𝜀𝑡 , (3)

where the linear effect of time (the 𝛽1𝑥𝑡 part) has been replaced by a smooth function of time,180

𝑓 (𝑥𝑡). The immediate advantage of the GAM is that we are no longer restricted to the shapes181

of trends that can be fitted via global polynomial functions such as (2). Instead, the shape of182

the fitted trend will be estimated from the data itself.183

The linear model is a special case of a broader class, known as the generalized linear model184

(GLM; McCullagh and Nelder, 1989). The GLM provides a common framework for modelling185

a wide range of types of data, such as count, proportions, or binary (presence/absence) data,186

that are not conditionally distributed Gaussian. GLMs are, like the linear model, parametric187

in nature; the types of trends that we can fit using a GLM are the linear or polynomial mod-188

els. GAMs extend the GLM by relaxing this parametric assumption; in a GAM some, or all,189

of the parametric terms, the 𝛽𝑝, are replace by smooth functions 𝑓𝑗 of the covariates 𝑥𝑗. For190

completeness then, we can write (3) as a GLM/GAM191

𝑦𝑡 ∼ EF(𝜇𝑡, Θ) (4a)
𝑔(𝜇𝑡) = 𝛽0 + 𝑓 (𝑥𝑡) (4b)

𝜇𝑡 = 𝑔−1(𝛽0 + 𝑓 (𝑥𝑡)), (4c)

where 𝜇𝑡 is the expected value (e.g. the mean count or the probability of occurrence) of the192

random variable 𝑌𝑡 (𝜇𝑡 ≡ 𝔼(𝑌𝑡)) of which we have observations 𝑦𝑡. 𝑔 is the link function, an193

invertible, monotonic function, such as the natural logarithm, and 𝑔−1 is its inverse. The link194

function maps values from the response scale on to the scale of the linear predictor, whilst the195

inverse of the link function provides the reverse mapping. For example, count data are strictly196

non-negative integer values and are commonly modelled as a Poisson GLM/GAM using the197
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natural log link function. On the log scale, the response can take any real value between −∞198

and +∞, and it is on this scale that model fitting actually occurs (i.e. using equation (4b)).199

However we need to map these unbounded values back on to the non-negative response scale.200

The inverse of the log link function, the exponential function, achieves this and maps values201

to the interval 0–∞ (equation (4c)).202

In (4a), we further assume that the observations are drawn from a member of the exponential203

family of distributions—such as the Poisson for count data, the binomial for presence/absence204

or counts from a total — with expected value 𝜇𝑡 and possibly some additional parameters Θ205

(𝑦𝑡 ∼ EF(𝜇𝑡, Θ)). Additionally, many software implementations of the above model also allow206

for distributions that are not within the exponential family but which can be fitted using an207

algorithm superficially similar to the one used to fit GAMs to members of the exponential208

family (e.g. Wood et al., 2016). Common examples of such extended families include the209

negative binomial distribution (for overdispersed counts) and the beta distribution (for true210

proportions or other interval-bounded data).211

3.1 Basis functions212

It is clear from plots of the data (Figure 2) that we require the fitted trends for the Small Water213

δ15N and Braya-Sø UK
37 time series to be non-linear functions, but it is less clear how to specify214

the actual shape require. Ideally, we’d like to learn the shape of the trend from the data them-215

selves. We will refer to these non-linear functions as smooth functions, or just smooths for short,216

and we will denote a smooth using 𝑓 (𝑥𝑡). Further, we would like to represent the smooths in217

a way that (4) is represented parametrically so that it can be estimate within the well-studied218

GLM framework. This is achieved by representing the smooth using a basis. A basis is a set219

of functions that collectively span a space of smooths that, we hope, contains the true 𝑓 (𝑥𝑡) or220

a close approximation to it. The functions in the basis are known as basis functions, and arise221

from a basis expansion of a covariate. Writing 𝑏𝑗(𝑥𝑡) as the 𝑗th basis function of 𝑥𝑡, the smooth222

𝑓 (𝑥𝑡) can be represented as a weighted sum of basis functions223

𝑓 (𝑥𝑡) =
𝑘

∑
𝑗=1

𝑏𝑗(𝑥𝑡)𝛽𝑗 ,

where 𝛽𝑗 is the weight applied to the 𝑗th basis function.224

The polynomial model is an example of a statistical model that uses a basis expansion. For the225

cubic polynomial (𝑃 = 3) fit shown in Figure 3 there are in fact 4 basis functions: 𝑏1(𝑥𝑡) = 𝑥0
𝑡 = 1,226

𝑏2(𝑥𝑡) = 𝑥𝑡, 𝑏3(𝑥𝑡) = 𝑥2
𝑡 , and 𝑏4(𝑥𝑡) = 𝑥3

𝑡 . Note that 𝑏1(𝑥𝑡) is constant and is linked to the227

model intercept, 𝛽0, in the linear model (2), and further, that the basis function weights are the228

estimated coefficients in the model, the 𝛽𝑗.229

As we have already seen, polynomial basis expansions do not necessarily lead to well-fitting230

models unless the true function 𝑓 is itself a polynomial. One of the primary criticisms is that231

polynomial basis functions are global (Magee, 1998); the value of 𝑓 at time point 𝑥𝑡 affects the232

value of 𝑓 at time point 𝑥𝑡+𝑠 even if the two time points are at opposite ends of the series. There233

are many other bases we could use; here I discuss one such set of bases, that of splines.234
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Figure 4: Basis functions for the time covariate and the Small Water 𝛿15N time series. A rank
(size) 7 cubic regression spline (CRS) basis expansion is show in a), with knots, indicated by
tick marks on the x-axis, spread evenly through the rang of the data. b) shows the same CRS
basis functions weighted by the estimated coefficients 𝛽𝑗, plus the resulting GAM trend line
(black line drawn through the data). The grey points in both panels are the observed 𝛿15N
values. c) A rank 7 thin plate regression spline basis for the same data.

There are a bewildering array of different types of spline. In the models discussed below we235

will largely restrict ourselves to cubic regression splines (CRS) and thin plate regression splines236

(TPRS). In addition, I also discuss two special types of spline basis, an adaptive spline basis237

and a Gaussian process spline basis.238

Acubic spline is a smooth curve comprised of sections of cubic polynomials, where the sections239

are joined together at some specified locations — known as knots — in such a way that at240

the joins, the two sections of cubic polynomial that meet have the same value as well as the241

same first and second derivative. These properties mean that the sections join smoothly and242

differentiably at the knots (Wood, 2017, 5.3.1).243

The CRS can be parameterized in a number of different ways. One requires a knot at each244

unique data value in 𝑥𝑡, which is computationally inefficient. Another way of specifying a245

CRS basis is to parameterize in terms of the value of the spline at the knots. Typically in246

this parametrization there are many fewer knots than unique data, with the knots distributed247

evenly over the range of 𝑥𝑡 or at the quantiles of 𝑥𝑡. Placing knots at the quantiles of 𝑥𝑡 has the248

effect of placing a greater number of knots where the data is most dense.249

ACRS basis expansion comprised of 7 basis functions for the time covariate in the SmallWater250

series, is shown in Figure 4a. The tick marks on the x-axis show the locations of the knots,251

which are located at the ends of the series and evenly in between. Notice that in this particular252

parametrization, the 𝑗th basis function takes a value of 1 at the 𝑗th knot and at all other knots253
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a value of 0.254

To estimate amodel using this basis expansion each basis function forms a column in themodel255

matrix X and the weights 𝛽𝑗 can be found using least squares regression (assuming a Gaussian256

response). Note that in order to estimate a coefficient for each basis function the model has257

to be fitted without an intercept term. In practice we would include an intercept term in the258

model and therefore the basis functions are modified via an identifiability constraint (Wood,259

2017). This has the effect of making the basis orthogonal to the intercept but results in more260

complicated basis functions than those shown in in Figure 4a.261

Having estimated the weight for each basis function, the 𝑗th basis function 𝑏𝑗 is scaled262

(weighted) by its coefficient 𝛽𝑗. The scaled CRS basis functions for the Small Water time series263

are shown in Figure 4b. The solid line passing through the data points is formed by summing264

up the values of the seven scaled basis functions (𝑏𝑗(𝑥𝑡)𝛽𝑗) at any value of 𝑥𝑡 (time).265

Cubic regression splines, as well as many other types of spline, require the analyst to choose266

the number and location of the knots that parametrise the basis. Thin plate regression splines267

(TPRS) remove this element of subjectivity when fitting GAMs. Thin plate splines were in-268

troduced by Duchon (1977) and, as well as solving the knot selection problem, have several269

additional attractive properties in terms of optimality and their ability to estimate a smooth270

function of two or more variables, leading to smooth interactions between covariates. How-271

ever, thin plate splines have one key disadvantage over CRS; thin plate splines have as many272

unknown parameters as there are unique combinations of covariate values in a data set (Wood,273

2017, 5.5.1). It is unlikely that any real data problemwould involve functions of such complex-274

ity that they require as many basis functions as data. It is much more likely that the true func-275

tions that we attempt to estimate are far simpler than the set of functions representable by 1276

basis function per unique data value. From a practical point of view, it is also highly inefficient277

to carry around all these basis functions whilst model fitting, and the available computational278

resources would become quickly exhausted for large time series with many observations.279

To address this issue low rank thin plate regression splines (TPRS) have been suggested which280

truncate the space of the thin plate spline basis to some lower number of basis functions whilst281

preserving much of the advantage of the original basis as an optimally-fitting spline (Wood,282

2003). A rank 7 TPRS basis (i.e. one containing 7 basis functions) is shown in Figure 4c for the283

Small Water time series. The truncation is achieved by performing an eigen-decomposition284

of the basis functions and retaining the eigenvectors associated with the 𝑘 largest eigenvalues.285

This is similar to the way principal components analysis decomposes a data set into axes of286

variation (eigenvectors) in decreasing order of variance explained. The truncated basis can287

preserve much of the space of functions spanned by the original basis but at the cost of using288

far fewer basis functions (Wood, 2003, 2017, 5.5.1). Note the horizontal TPRS basis function (at289

δ15N = 1) in Figure 4c; this basis function is confounded with the intercept term and, after the290

application of identifiability constraints, ends up being removed from the set of basis functions291

used to fit the model.292

The truncation suggested by Wood (2003) is not without cost; the eigen-decomposition and293

related steps can be relatively costly for large data sets. For data sets of similar size to the two294

examples used here, the additional computational effort required to set up the TPRS basis over295

the CRS basis will not be noticeable. For highly resolved series containing more than ~1000296
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observations the truncation may be costly computationally. In such instances, little is lost by297

moving to the CRS basis with the same number of knots as the rank of the desired TPRS, with298

the benefit of considerably reduced set up time for the basis.299

To fit a GAM using either of the two regression spline bases described above, the analyst is300

generally only required to the specify the size (rank) of the basis expansion required to rep-301

resent or closely approximate the true function 𝑓 . With practice and some knowledge of the302

system fromwhich the observations arise, it can be relatively easy to put an upper limit on the303

expected complexity of the true trend in the data. Additionally, the number of available data304

points places a constraint on the upper limit of the size of basis expansion that can be used.305

In practice, the size of the basis is an upper limit on the expected complexity of the trend,306

and a simple test can be used to check if the basis used was sufficiently large (Pya and Wood,307

2016). This test is available via the gam.check() function in mgcv for example, which essen-308

tially looks at whether there is any additional nonlinearity or structure in the residuals that309

can be explained by a further smooth of 𝑥𝑡. Should a smooth term in the fitted model fail this310

test themodel can be refitted using a larger basis expansion, say by doubling the value of k (the311

rank) used to fit the original. Note also that a smooth might fail this test whilst using fewer312

effective degrees of freedom than the maximum possible for the dimension of basis used. This313

may happen when the true function lies at the upper limit of the set of functions encompassed314

by the size of basis used. Additionally, a basis of size 2𝑘 encompasses a richer space of func-315

tions of a given complexity than a basis of size 𝑘 (Wood, 2017); increasing the basis dimension316

used to fit the model may unlock this additional function space resulting in a better fitting317

model whilst using a similar number of effective degrees of freedom.318

3.2 Smoothness selection319

Having identified low rank regression splines as a useful way to represent 𝑓 , we next need320

a way to decide how wiggly the fitted trend should be. A backwards elimination approach321

to sequentially remove knots or basis functions might seem appropriate, however such an322

approach would likely fail as the resulting sequence of models would not be strictly nested,323

precluding many forms of statistical comparison (Wood, 2017). Alternatively, we could keep324

the basis dimension at a fixed size but guard against fitting very complex models through the325

use of a wiggliness penalty.326

The default wiggliness penalty used in GAMs is on the second derivative of the spline, which327

measures the rate of change of the slope, or the curvature, of the spline at any infinitesimal328

point in the interval spanned by 𝑥𝑡. The actual penalty used is the integrated squared second329

derivative of the spline330

∫
ℝ

[𝑓 ′′]2𝑑𝑥 = 𝛽TS𝛽 . (5)

The right hand side of (5) is the penalty in quadratic form. The convenience of the quadratic331

form is that it is a function of the estimated coefficients of 𝑓 (𝑥𝑡)where S is known as the penalty332

matrix. Notice that now both the weights for the basis functions and the wiggliness penalty333

are expressed as functions of the model coefficients.334
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Figure 5: The effect of the smoothness parameter 𝜆 on the resultingwiggliness of the estimated
spline. Large values of 𝜆 penalize wiggliness strongly, resulting in smooth trends (upper row),
while smaller values allow increasingly wiggly trends. The aim of automatic smoothness se-
lection is to find an optimal value of 𝜆 that balances the fit of themodel withmodel complexity
to avoid overfitting.

Now that we have a convenient way to measure wiggliness, it needs to be incorporated into335

the objective function that will beminimised to fit the GAM. The likelihood of themodel given336

the parameter estimates (𝛽) is combined with the penalty to create the penalized likelihood337

𝑝(𝛽):338

𝑝(𝛽) = (𝛽) − 1
2𝜆𝛽TS𝛽 .

The fraction of a half is there simply to make the penalised likelihood equal the penalised339

sum of squares in the case of a Gaussian model. 𝜆 is known as the smoothness parameter340

and controls the extent to which the penalty contributes to the likelihood of the model. In341

the extreme case of 𝜆 = 0 the penalty has no effect and the penalized likelihood equals the342

likelihood of the model given the parameters. At the other extreme, as 𝜆 → ∞ the penalty343

comes to dominate 𝑝(𝛽) and thewiggliness of 𝑓 (𝑥𝑡) tends to 0 resulting in an infinitely smooth344

function. In the case of a second derivative penalty, this is a straight line, and we recover the345

simple linear trend from (1) when assuming a Gaussian response.346

Figure 5 illustrates how the smoothness parameter 𝜆 controls the degree of wiggliness in the347

fitted spline. Four models are shown, each fitted with a fixed value of 𝜆; 10000, 1, 0.01, and348

0.00001. At 𝜆 = 10000 the model effectively fits a linear model through the data. As the value349

of 𝜆 decreases, the fitted spline becomes increasingly wiggly. As 𝜆 becomes very small, the350

resulting spline passes through most of the δ15N observations resulting in a model that is351

clearly over fitted to the data.352
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To fully automate smoothness selection for 𝑓 (𝑥𝑡) we need to estimate 𝜆. There are two main353

ways that 𝜆 can be automatically chosen during model fitting. The first way is to choose 𝜆354

such that it minimises the prediction error of the model. This can be achieved by choosing 𝜆355

to minimise Akaike’s information criterion (AIC) or via cross-validation (CV) or generalized356

cross-validation (GCV; Craven and Wahba, 1978). GCV avoids the computational overhead357

inherent to CV of having to repeatedly refit the model with one or more observations left out358

as a test set. Minimising the GCV score will, with a sufficiently large data set, find a model359

with the minimal prediction error (Wood, 2017). The second approach is to treat the smooth360

as a random effect, in which 𝜆 is now a variance parameter to be estimated using maximum361

likelihood (ML) or restricted maximum likelihood (REML; Wood, 2011; Wood et al., 2016).362

Several recent results have shown that GCV, under certain circumstances, has a tendency to363

under smooth, resulting in fitted splines that are overly wiggly (Reiss andOgden, 2009). Much364

better behaviour has been observed for REML and ML smoothness selection, in that order365

(Wood, 2011). REML is therefore the recommended means of fitting GAMs, though, where366

models have different fixed effects (covariates) they cannot be compared using REML, and367

ML selection should be used instead. In the sorts of data examples considered here there is368

only a single covariate 𝑥𝑡 as our models contain a single estimated trend so REML smoothness369

selection is used throughout unless otherwise stated.370

4 Fitting GAMs371

4.1 Small Water372

The trend in δ15N values is clearly non-linear but it would be difficult to suggest a suitable373

polynomial model that would allow for periods of relatively no change in δ15Naswell as rapid374

change. Instead, a GAM is ideally suited tomodelling such trends; the data suggest a smoothly375

varying change in δ15Nbetween 1925 and 1975. It is reasonable to expect some autocorrelation376

in the model errors about the fitted trend. Therefore I fitted the following GAM to the δ15N377

time series.378

𝑦𝑡 = 𝛽0 + 𝑓 (𝑥𝑡) + 𝜀, 𝜀𝑡 ∼ (0, Λ𝜎2) (6)

Now the i.i.d. assumption has been relaxed and a correlation matrix, Λ, has been introduced379

that is used tomodel autocorrelation in the residuals. The δ15Nvalues are irregularly spaced in380

time and a correlation structure that can handle the uneven spacing is needed (Pinheiro and381

Bates, 2000). A continuous time first-order autoregressive process (CAR(1)) is a reasonable382

choice; it is the continuous-time equivalent of the first-order autoregressive process (AR(1))383

and, simply stated, models the correlation between any two residuals as an exponentially de-384

creasing function of ℎ (𝜙ℎ), where ℎ is the amount of separation in time between the residuals385

(Pinheiro and Bates, 2000). ℎ may be a real valued number in the CAR(1), which is how it can386

accommodate the irregular separation of samples in time. 𝜙 controls how quickly the corre-387

lation between any two residuals declines as a function of their separation in time and is an388

additional parameter that will be estimated during model fitting. The model in (6) was fitted389
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Figure 6: GAM-based trends fitted to the SmallWater 𝛿15N (a) and Braya-SøUK
37 (b) time series.

The shaded bands surrounding the estimated trends are approximate 95% across-the-function
confidence intervals. For the UK

37 series, two models are shown; the orange fit is the result of
a GAM with a continuous-time AR(1) process estimated using REML smoothness selection,
while the blue fit is that of a simple GAM with GCV-based smoothness selection. The REML-
based fit significantly oversmooths the UK

37 time series.

using the gamm() function (Wood, 2004) in themgcv package (Wood, 2017) for R (R Core Team,390

2017).391

The fitted trend is shown in Figure 6a, and well-captures the strong pattern in the data. The392

trend is statistically significant (estimated degrees of freedom = 7.95; 𝐹 = 47.44, approximate 𝑝393

value =≪ 0.0001). However further analysis of the fittedmodel is required to answer the other394

questions posed earlier about the timing of change and whether features in the trend can be395

distinguished from random noise. I discuss these issues shortly.396

4.2 Braya-Sø397

TheUK
37 data present a more difficult data analysis challenge than the δ

15N time series because398

of the much more complex variation present. Fitting the same model as the Small Water ex-399

ample, (6), to the UK
37 data resulted in the unsatisfactory fit shown as the very smooth line in400

Figure 6b (labelled GAMM (CAR(1))). Further problems were evident with this model fit —401

the covariance matrix of the model was non-positive definite, a sure sign of problems with the402

fitted model. Refitting with a smaller basis dimension (k = 20) for the trend term resulted in403

a model with a positive-definite covariance matrix for the model variance-covariance terms,404

but the estimated value of of the CAR(1) parameter 𝜙 = 0.2 was exceedingly uncertain (95%405

confidence interval 0 – 1!)406
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Figure 7: GCV and REML scores as a function of the smoothness parameter 𝜆. From left to
right, GAMs were estimated using GCV and REML smoothness selection, and REML using a
basis dimension of 40 and observational weights to account for heterogeneity in the UK

37 times
series. The selected value of 𝜆 for each model is indicated by the vertical grey line.

Fitting this model as a standard GAM with REML smoothness selection resulted in the same407

fitted trend as the GAM with CAR(1) errors (not shown), whilst using GCV smoothness se-408

lection resulted in a much more satisfactory fitted trend. There are two potential problems409

with the GCV-selected trend: i) GCV is sensitive to the profile of the GCV score and has been410

shown to under smooth data in situations where the profile is flat around the minimum GCV411

score, and ii) the model fitted assumes that the observations are independent, an assumption412

that is certainly violated in the UK
37 time series.413

To investigate the first issue, the GCV and REML scores for an increasing sequence of values414

of the smoothness parameter (𝜆) were evaluated for the standard GAM (equation (4)) fit to the415

UK
37 time series. The resulting profiles are shown in Figure 7, with the optimal value of the416

parameter shown by the vertical line. The GCV score profile suggests that the potential for417

under smoothing identified by Reiss and Ogden (2009) is unlikely to apply here as there is a418

well-defined minimum in profile.419

Tounderstand the reasonwhy theGAMplusCAR(1) and the simpleGAMwithREML smooth-420

ness selection performed poorly with the UK
37 time series we need to delve a little deeper into421

what is happening when we are fitting these two models.422

The primary issue leading to poor fit is that neither model accounts for the different variance423

(known as (heteroscedasticity) of each observation in the UK
37 record. This seemingly isn’t a424

problem for GCV which minimizes prediction error. The sediments in Braya-Sø are not an-425

nually laminated and therefore the core was sliced at regular depth intervals. Owing to com-426

paction of older sediments and variation in accumulation rates over time, each sediment slice427

represents a different number of “lake years”. We can think of older samples as representing428

some average of many years of sediment deposition, whilst younger samples are representa-429

tive of fewer of these lake years. The average of a larger set of numbers is estimated more430

precisely than the average of a smaller set, all things equal. A direct result of this variable av-431

eraging of lake years it that some samples are more precise and therefore have lower variance432

than other samples and yet the model assumed that the variance was constant across samples.433

Accounting for heteroscedasticity within the model is relatively simple via the use of observa-434

tional weights. The number of lake years represented by each slice is estimated by assigning a435
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date to the top and bottom of each sediment slice. The variance of each observation should be436

proportional to the inverse of the number of lake years each sample represents. In the gam()437

function used here, weights should be specified as the number of lake years each sample rep-438

resents. Other software may require the weights to be specified in a different way.439

A secondary problem is the size of the basis dimension used for the time variable. The main440

user selectable option when fitting a GAM in the penalised likelihood framework of Wood441

(2004) is how many basis functions to use. As described above, the basis should be large442

enough to contain the true, but unknown, function or a close approximation to it. For GCV443

selection the basis used contained 29 basis functions, whilst the CAR(1) model with REML444

smoothness selection would only converge with a basis containing 20 functions. The size of445

the basis appears to be sufficient for GCV smoothness selection, but following Wood (2011)446

REML smoothness selection is preferred. Using the test of Pya and Wood (2016), the basis di-447

mension for the models with REML smoothness selection was too small. To proceed therefore,448

we must drop the CAR(1) term and increase the basis dimension to 39 functions (by setting k449

= 40; I set it larger than expected because the larger basis contains a richer family of functions450

and the excess complexity is reduced because of the smoothness penalty.)451

With the larger basis dimension and accounting for the non-constant variance of the observa-452

tions via weights, the model fitted using REML is indistinguishable from that obtained using453

GCV (Figure 6b). The trace of the REML score for thismodel shows a pronouncedminimum at454

a much smaller value of 𝜆 than the original REML fit (Figure 7), indicating that a more wiggly455

trend provides a better fit to the Braya-Sø time series. This example illustrates that some care456

and understanding of the underlying principles of GAMs is required to diagnose potential is-457

sues with the estimated model. After standard modelling choices (size of basis to use, correct458

selection of response distribution and link function, etc.) are checked, it often pays to think459

carefully about the properties of the data and ensure that the assumptions of the model are460

met. Here, despite increasing the basis size, it was the failure to appreciate the magnitude of461

the effect of the non-constant variance that lead to the initially poor fit and the problems asso-462

ciated with the estimation of the CAR(1) process. I return to the issue of why the GAM plus463

CAR(1) model encountered problems during fitting later (see section Residual autocorrelation464

and model identification).465

4.3 Confidence intervals and uncertainty estimation466

If we want to ask whether either of the estimated trends is statistically interesting or proceed467

to identify periods of significant change, we must address the issue of uncertainty in the esti-468

mated model. What uncertainty is associated with the trend estimates? One way to visualise469

this is through a 1 - 𝛼 confidence interval around the fitted trend, where 𝛼 is say 0.05 leading470

to a 95% interval. A 95% interval would be drawn at ̂𝑦𝑡 ±(𝑚1−𝛼 ×SE( ̂𝑦𝑡)), with𝑚1−𝛼 = 1.96, the471

0.95 probability quantile of a standard normal distribution1, and SE( ̂𝑦𝑡) is the standard error of472

1The 0.95 probability quantile of the t distribution may be used instead, which will account for estimation
of 𝜎 , the variance of the data. However, given the number of observations, and hence residual degrees of free-
dom, needed to motivate fitting GAMs, differences between intervals computed using extreme quantiles of the
standard normal or the t distribution will be tiny.
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Figure 8: Estimated trends (thick black lines) and 20 random draws (grey lines) from the pos-
terior distribution of the GAM fitted to the Small Water 𝛿15N (a) and Braya-Sø UK

37 (b) time
series.

the estimated trend at time 𝑥𝑡. This type of confidence interval would normally be described473

as pointwise; the coverage properties of the interval being correct for a single point on the fitted474

trend, but, if we were to consider additional points on the trend, the coverage would logically475

be lower than 1 - 𝛼. This is the traditional frequentist interpretation of a confidence interval.476

However, the GAM described here has a Bayesian interpretation (Kimeldorf andWahba, 1970;477

Silverman, 1985; Wahba, 1983, 1990) and therefore the typical frequentist interpretation does478

not apply. Nychka (1988) investigated the properties of a confidence interval created as de-479

scribed above using standard errors derived from the Bayesian posterior covariance matrix for480

the estimated mode parameters. Such intervals have the interesting property that they have481

good across-the-function coverage when considered from a frequentist perspective. This means482

that, when averaged over the range of the function, the Bayesian credible intervals shown in483

Figure 6 have close to the expected 95% coverage. However, to achieve this some parts of the484

functionmay havemore or less than 95%-coverage. Marra andWood (2012) recently explained485

Nychka’s (1988) surprising results and extended them to the case of generalized models (non-486

Gaussian responses).487

Whilst the across-the-function frequentist interpretation of the Bayesian credible intervals is use-488

ful, if may be important to have an interval that contains the entirety of the true function with489

some state probability (1 - 𝛼). Such an interval is known as a simultaneous interval. A (1 - 𝛼)100%490

simultaneous confidence interval contains in their entirety 1 - 𝛼 of all random draws from the491

posterior distribution of the fitted model.492

Fitting a GAM involves finding estimates for coefficients of the basis functions. Together, these493

coefficients are distributed multivariate normal with mean vector and covariance matrix spec-494

ified by the model estimates of the coefficients and their covariances respectively. Random495
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draws from this distribution can be taken, where each random draw represents a new trend496

that is consistent with the fitted trend but also reflects the uncertainty in the estimated trend.497

This process is known as posterior simulation.498

Figure 8 shows 20 random draws from the posterior distributions of the GAMs fitted to the499

SmallWater and Braya-Sø data sets. In the early period of the δ15N time seriesmany of the pos-500

terior simulations exhibit short periods of increasing and decreasing trend, balancing out to501

the relatively flat trend estimated by the GAM (Fig. 8a). Reflecting this uncertainty, we might502

expect relatively wide simultaneous intervals during this period in order to contain the vast503

majority of the simulated trends. Conversely, the decreasing δ15N trend starting at ~1945 is504

consistently reproduced in the posterior simulations, suggesting that this feature of the time505

series is both real and statistically significant, and that the rate of change in δ15N is relatively506

precisely estimated. We see a similar pattern in Figure 8b for the Braya-Sø record; the large507

peak in UK
37 at ~250CE and the strong decline at ~1200CE are well defined in the posterior508

simulations, whereas most of the localised trends that are smaller magnitude changes in 𝑦𝑡509

are associated with posterior simulations that are less well constrained with the ends of the510

record in particular showing considerable variation in the strength, timing, and even sign of511

simulated trends, reflecting the greater uncertainty in estimated trend during these periods.512

For the random draws illustrated in Figure 8, a (1 - 𝛼)100% simultaneous interval should con-513

tain the entire function for on average 19 of the 20 draws.514

There are a number of ways in which a simultaneous interval can be computed. Here I follow515

the simulation approach described by Ruppert et al. (2003) and present only the basic detail; a516

fuller description is contained in Appendix 1. The general idea is that if we want to create an517

interval that contains the whole of the true function with 1 - 𝛼 probability, we need to increase518

the standard Bayesian credible interval by some amount. We could simulate a large number519

of functions from the posterior distribution of the model and then search for the value of 𝑚1−𝛼520

that when multiplied by SE( ̂𝑓 (𝑥𝑡)) yielded an interval that contained the whole function for521

(1 − 𝛼) 100% of the functions simulated. In practice, the simulation method of Ruppert et al.522

(2003) does not involve a direct search, but yields the critical value 𝑚1−𝛼 required.523

Simultaneous intervals computed using the method described are show in Figure 9 alongside524

the across-the-function confidence intervals for the trends fitted to both example data sets. As525

expected, the simultaneous interval is somewhat wider than the across-the-function interval.526

The critical value 𝑚1−𝛼 for the simultaneous interval of the estimated trend in δ15N is 3.07,527

whilst the same value for the UK
37 series is 3.43, leading to intervals that are approximately528

±50% and ±75% wider than the equivalent across-the-function intervals.529

4.4 Identifying periods change530

In the simple linear trend model (1) whether the estimated trend constitutes evidence for or531

against a null hypothesis of no change rests on how large the estimated rate of change in 𝑦𝑡532

is ( ̂𝛽1) relative to its uncertainty. This is summarised in the 𝑡 statistic. As the rate of change533

in 𝑦𝑡 is constant over the fitted trend — there is only a singe slope for the fitted trend ̂𝛽1 — if534

the 𝑡 statistic of the test that ̂𝛽1 = 0 is unusually extreme this would be evidence against the535

null hypothesis of no change. Importantly, this applies to the whole time series as the linear536
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Figure 9: 95% simultaneous confidence intervals (light grey bands) and across-the-function
confidence intervals (dark grey bands) on the estimated trends (black lines) for the SmallWater
𝛿15N (a) and Braya-Sø UK

37 (b) time series.

model implies a constant rate of change throughout. More formally, the estimate ̂𝛽1 is the first537

derivative of the fitted trend.538

In the GAM, the fitted trend need not be linear; the slope of the trend is potentially different539

at every point in the time series. As such we might reasonably ask where in the series the540

response 𝑦𝑡 is changing, if at all? Mirroring the linear model we can answer this question by541

determining whether or not the first derivative at any time point 𝑥𝑡 of the fitted trend at any542

time point is consistent with a null hypothesis of no change. We want to know whether or not543

the first derivative is indistinguishable from a value of 0 — no trend — given the uncertainty544

in the estimate of the derivative.545

Derivatives of the fitted spline are not easily available analytically, but they can be estimated546

using the method of finite differences. Two values of the estimated trend, separated by a very547

small time-shift (Δ𝑡), are predicted from themodel; the difference between the estimated values548

for the two time points is an approximation of the true first derivative of the trend. As Δ𝑡 → 0549

the approximation becomes increasingly accurate. In practice, the first derivative of the fitted550

trend is evaluated using finite differences at a large number of points in the time series. An551

approximate (1 - 𝛼)100% pointwise confidence interval can be calculated for the derivative552

estimates using standard theory (i.e.±1.96×SE( ̂𝑦𝑡) for a 85% interval) and the covariancematrix553

of the spline coefficients. A (1 - 𝛼)100% simultaneous interval for the derivatives can also be554

computed using the method described earlier. Periods of significant change are identified as555

those time points where the (simultaneous) confidence interval on the first derivative does not556

include zero.557

Figure 10 shows the estimated first derivative of the fitted trend in the Small Water (10a) and558
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Braya-Sø (10b) time series. Although the estimated trend suggests a slight increase in δ15N559

from the start of the record to ~1940, the estimated trend is sufficiently uncertain that the si-560

multaneous interval on the first derivative includes 0 throughout. We can understandwhy this561

is so by looking at the posterior simulations in Figure 8a; there is considerable variation in the562

shape of the simulated trends throughout this period. From ~1925 the derivative of the trend563

becomes negative, however it is not until ~1940 that the simultaneous interval doesn’t include564

0. At this point we have evidence to reject the null hypothesis of no change. This time point565

may be taken as the first evidence for change in δ15N in the Small Water core. The simultane-566

ous interval on the first derivative of the trend in δ15N is bounded away from 0 between ~1940567

and ~1975, covering themajor decline in values evident in the observations. The simultaneous568

interval includes 0 from ~1975 onward, suggesting that, whilst quite pronounced, the recent569

increase in δ15N is not statistically significant. To determine whether or not the recent increase570

is real, wewould require considerablymore samples with which to (hopefully) more-precisely571

estimate the trend during this period. Alternatively, we might just have to wait until sufficient572

additional sedimentation has occurred to warrant recoring Small Water and reestimating the573

trend in δ15N.574

The estimated trend at Braya-Sø exhibited a number of oscillations in UK
37. As we saw previ-575

ously in Figures 8b and 9b, many of these are subject to significant uncertainty and it is impor-576

tant therefore to discernwhich, if any, of the oscillations in the response can be identified given577

the model uncertainty. In Figure 10b only two features of the estimated trend are considered578

significant based on the derivatives of the smooth; one centred on ~250CE and a second at579

~1150CE. In both these periods, the simultaneous interval for the first derivative of the trend580

does not include zero. In the first case we detect the large peak and subsequent decline in581

UK
37 at ~250CE, whilst at ~1150CE the large trough is identified, but not the increasing trend582

immediately prior to this excursion to lower UK
37. Recall that these intervals are simultaneous583

in nature, strongly guarding against false positives, and as such we can be confident in the584

estimation of these two features, whilst care must be taken to not over-interpret the remaining585

variations in the estimated trend.586

4.5 Residual autocorrelation and model identification587

TheGAMfitted to the δ15N time series contained a CAR(1) process tomodel residual temporal588

autocorrelation in the residuals. The estimated magnitude of the autocorrelation is given by589

the parameter 𝜙. The estimated value of 𝜙 for the δ15N series is 0.6 with 95% confidence in-590

terval 0.28–0.85, indicating moderate to strong residual autocorrelation about the fitted trend.591

The correlation function is an exponentially decreasing function of temporal separation (Δ𝑡),592

and whilst observations that are a few years apart are quite strongly dependent on one an-593

other, this dependence drops off rapidly as Δ𝑡 increases and is effectively zero when samples594

are separated by a decade or more (Figure 11).595

Failure to account for the dependencies in the δ15N time series could lead to the estimation596

of a more wiggly trend than the one shown in Figure 6a which would negatively impact the597

confidence placed on the inferences we might draw from the fitted model. Importantly, fail-598

ing to account for the strong dependency in the residuals would lead to smaller uncertainties599
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Figure 10: Estimated first derivatives (black lines) and 95% simultaneous confidence intervals
of the GAM trends fitted to the Small Water 𝛿15N (a) and Braya-Sø UK

37 (b) time series. Where
the simultaneous interval does not include 0, the models detect significant temporal change
in the response.

in the estimated spline coefficients, which would propagate through to narrower confidence600

intervals on the fitted trend and on the first derivatives, and ultimately to the identification of601

significant periods of change. The end result would be a tendency toward anti-conservative602

identification of periods of change; the coverage probability would be lower than the antici-603

pated 1 − 𝛼, leading to a greater chance of false positive results.604

Problems estimating the GAM plus CAR(1) model were encountered when this was fitted to605

the UK
37 time series; including both a smooth trend in the mean UK

37 and a CAR(1) process in606

the residuals lead to an unidentifiable model. What makes a model with a spline-based trend607

and an autocorrelation process like the CAR(1) potentially unidentifiable?608

Consider again the basic GAM for a smooth trend, (3). In that equation the correlation ma-609

trix Λ was omitted for the sake of simplicity. As I did in (6), I reintroduce it and restate the610

distributional assumptions of this model611

𝑦𝑡 = 𝛽0 + 𝑓 (𝑥𝑡) + 𝜀𝑡, 𝜀 ∼ (0, Λ𝜎2) (7)

In the basicGAM,Λ ≡ I is an identitymatrix, amatrixwith 1s on the diagonal and 0s elsewhere612
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Figure 11: Estimated CAR(1) process from the GAM fitted to the Small Water 𝛿15N time series.
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which is where the independence assumption of the model comes from; a model residual is613

perfectly correlated with itself (the 1s on the diagonal), but uncorrelated with any other resid-614

ual (the off-diagonal 0s). In the GAM plus CAR(1) model, an alternative correlation function615

for Λ was used — the CAR(1) with correlation parameter 𝜙. Fahrmeir and Kneib (2008) show616

that where the stochastic structure of 𝑓 and Λ approach one another, i.e. where we have a617

potentially wiggly trend or strong autocorrelation as 𝜙 → 1, the two processes can quickly618

become unidentifiable (see also Fahrmeir et al., 2013). By unidentifiable, we mean that it be-619

comes increasingly difficult to distinguish between a wiggly trend or strong autocorrelation620

because these two processes are very similar to one another in appearance. This leads tomodel621

estimation problems of the sort encountered with fitting the GAM plus CAR(1) model to the622

Braya-sø UK
37 series.623

Why might this be so? Autocorrelation is the tendency for a large (small) value of 𝑦𝑡 at time 𝑥𝑡624

to be followed by a likewise large (small) value at time 𝑥𝑡+1. This leads to runs of values that625

are consistently greater (less) than the overall mean. Short runs would indicate weaker auto-626

correlation whilst longer runs are associated with stronger autocorrelation, and long runs of627

values greater (less) than themeanwould be evident as non-linear trends in the time series. As628

a result, a wiggly trend and an autocorrelation function with large 𝜙 are two ways to describe629

the same pattern of values in a time series, and, without any further information to constrain630

either of these, the model is unable to distinguish both components uniquely.631

Situations where it may be possible to uniquely identify separate wiggly trends and autocor-632

relation are exemplified by the Small Water δ15N time series. The non-linear trend and the633

autocorrelation operate at very different scales; the trend represents decadal-scale variation in634
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Figure 12: Power exponential (a) and Matérn (b) correlation functions for observation separa-
tion distance ℎ. Two values of the effective range parameter (𝜙)) are shown for each function.
For the power exponential function, 𝜅 is the power in the power exponential function. For the
Matérn correlation function, 𝜅 distinguishes the member of the Matérn family.

mean δ15N, whilst the CAR(1) process represents the much smaller-scale tendency for values635

of the response to be followed in time by similar values. That such a pattern is observed in636

the Small Water core is the result of the high resolution of the sampling in time relative to the637

long-term trend. In contrast, the Braya-Sø record is sampled at far lower resolution relative638

to the fluctuations in the mean response, and consequently the data do not contain sufficient639

information to separate trend and autocorrelation.640

4.6 Gaussian process smooths641

In the world of machine learning, Gaussian processes (Golding and Purse, 2016; Rasmussen642

and Williams, 2006) are a widely-used method for fitting smooth non-parametric regression643

models. A Gaussian process is a distribution over all possible smooth functions 𝑓 (𝑥). In the644

field of spatial statistics, Gaussian processes are known by the name kriging.645

With a Gaussian process we are interested in fitting a smooth temporal trend by modelling646

the way the correlation between pairs of observations varies as a function of the distance, ℎ, in647

time that separates the observations. The correlation between pairs of observations decreases648

with increasing separation, which is modelled using a correlation function, 𝑐(ℎ).649

Several functions can be used to represent 𝑐(ℎ). Two common ones are the power exponential650

function and the Matérn family of correlation functions. The power exponential function at651

separation distance ℎ is652

𝑐(ℎ) = exp{(−ℎ/𝜙)𝜅}
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Figure 13: Gaussian process smooths fitted to theUK
37 time series. REML score traces for GAMs

fitted using power exponential (𝜅 = 1) or Matérn (𝜅 = 1.5) correlation functions as a function
of the effective range parameter (𝜙) are shown (a). The optimal model for each function is
that with the lowest REML score. b) shows the resulting trends estimated using the respective
correlation function with the value of 𝜙 set to the optimal value.

where 0 < 𝜅 ≤ 2. The Matérn correlation function is actually a family of functions with closed-653

forms only available for a subset of the family, distinguished by 𝜅. When 𝜅 = 1.5, the Matérn654

correlation function is655

𝑐(ℎ) = (1 + ℎ/𝜙) exp(−ℎ/𝜙)

whilst for 𝜅 = 2.5 it is656

𝑐(ℎ) = {1 + ℎ/𝜙 + (ℎ/𝜙)2/3} exp(−ℎ/𝜙)

and for 𝜅 = 3.5657

𝑐(ℎ) = {1 + ℎ/𝜙 + 2(ℎ/𝜙)2/5 + (ℎ/𝜙)3/15} exp(−ℎ/𝜙) .

In all cases, 𝜙 is the effective range parameter, which sets the distance beyond which the cor-658

relation function is effectively zero.659

Figure 12 shows examples of two different correlation functions; the power exponential (Fig-660

ure 12a), and the Matérn (Figure 12b) correlation functions. These functions are smooth and661

monotonic-decreasing, meaning that the value of the correlation function decreases with in-662

creasing separation (ℎ). When ℎ = 0, the correlation is equal to 1 (𝑐(0) = 1); two samples taken663

at exactly the same time point are perfectly correlated. As ℎ → ∞, the correlation tends to zero664

(𝑐(ℎ) → 0); two samples separated by a large amount of time tend to be uncorrelated. Often665

we are interested in learning how large the separation in time needs to be before, on average,666

a pair of observations is effectively uncorrelated (i.e. where 𝑐(ℎ) is sufficiently close to zero).667
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Gaussian processes and GAMs share many similarities and we can fit a Gaussian process us-668

ing the techniques already described above for splines (Handcock et al., 1994; Kammann and669

Wand, 2003). It can be shown (e.g. Fahrmeir et al., 2013) that the Gaussian process model has670

the same penalised likelihood form as the GAM that we discussed earlier; the observations are671

the knots of the smoother and each has a basis function in the form of a correlation function.672

The equivalence is only true if the basis functions do not depend on any other parameters of673

the model, which is only achievable if the value of 𝜙 is fixed and known (Fahrmeir et al., 2013).674

In general, however, we would like to estimate 𝜙 as part of model fitting. To achieve this we675

can maximise the profile likelihood or score statistic of the model over a range of values of676

𝜙 (Wood, 2017, 362–363). This involves proposing a value of 𝜙 for the effective range of the677

correlation function and then estimating the resulting GAM by minimising the penalised log-678

likehood conditional upon this value of 𝜙 and repeating for a range of values for 𝜙. The model,679

and its corresponding value of 𝜙, with lowest penalised log-likelihood or score statistic is then680

retained as the estimated GAM. Figure 13a shows the REML score for models estimated using681

aGaussian process smoothwith aMatérn correlation function (𝜅 = 1.5) for a sequence of values682

of 𝜙 between 15 and 1000 years. There is a clear minimum around 40 years separation, with683

the minimum REML score being observed at 𝜙 = 41.81). Also shown are the REML scores for684

models using the power exponential function (𝜅 = 1) with the minimum score observed at a685

somewhat higher effective range of 𝜙 = 71.06.686

Figure 13b shows the estimated trends for theUK
37 time series using Gaussian process smooths687

with exponential and Matérn correlations functions, both using 𝜙 values at their respective688

optimal value as assessed using the REML score. The estimated trends are very similar to689

one another, although there is a noticeable difference in behaviour, with the power exponen-690

tial (𝜅 = 1) version being noticeably less-smooth than the Matérn version. This difference is691

attributable to the shapes of the respective correlation functions; the Matérn approaches a cor-692

relation of 1 smoothly as ℎ approaches 0, whilst the power exponential with 𝜅 = 1 approaches693

a correlation of 1 increasingly quickly with decreasing ℎ. The power exponential with 𝜅 =694

2, like the Matérn, approaches 𝜙 = 1 smoothly, and consequently the trend estimated using695

this correlation function is qualitatively similar to that estimated using the Matérn correlation696

function.697

4.7 Adaptive smoothing698

Each of the spline types that I have discussed so far shares a common feature; the degree of699

wiggliness over the time series is fixed due to the use of a single smoothness parameter, 𝜆. The700

definition of wiggliness, as the integrated squared second derivative of the spline, ensures that701

the fitted smoother does not jump aboutwildly. This assumes that the data themselves arewell702

described by a smoothly varying trend. If we anticipate abrupt change or step-like responses to703

environmental forcing this underlying assumption of theGAMwould suggest that themethod704

is ill-suited to modelling palaeo time series in which such features are evident or expected.705

While there is not much we can do within the GAM framework to model a series that contains706

both smooth trends and step-like responses, an adaptive smoother can help address problems707

where the time series consists of periods of rapid change in the mean combined with periods708
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Figure 14: Comparison of trends estimated using i) adaptive smooth, ii) Gaussian process, and
iii) thin plate regression spline bases for the UK

37 time series.

of complacency or relatively little change. As suggested by their name, adaptive smoothers709

can adjust to changes in the wiggliness of the time series. This adaptive behaviour is achieved710

by making the smoothness parameter 𝜆 itself depend smoothly on 𝑥𝑡 (Ruppert et al., 2003,711

17; Wood, 2017, 5.3.5); in other words, the adaptive smoother allows the wiggliness of the712

estimated trend to vary smoothly over time. Whilst this allows the estimated trend to adapt713

to periods of rapid change in the response, adaptive smoothers make significant demands on714

the data (Wood, 2017, 5.3.5); if we used 𝑚 smoothness penalties to allow the wiggliness to715

vary over a time series, it would be like estimating 𝑚 separate smooths from chunks of the716

original series each of length 𝑛/𝑚. In a practical sense, this limits the use of adaptive splines717

in palaeoecology to proxies that are readily enumerated, such as the biogeochemical proxies718

used in the two example data sets.719

Figure 14 compares trends for the Braya-Sø time series estimated using GAMs with the three720

main types of spline discussed; i) TPRS, ii) Gaussian process smooths, and iii) an adaptive721

smoother using 45 basis functions and 5 smoothing parameters. There is a clear difference722

in the behaviour of the adaptive and non-adaptive smoothers for the first 1000 years of the723

record, with the adaptive smooth exhibiting much less variation compared with either the724

TPRS or Gaussian process splines. Over the remaining two thirds of the series, there is much725

closer agreement in the three smooths.726

The behaviour of the TPRS andGaussian process splines for these data is the result of requiring727

a large amount of wiggliness (a small 𝜆) to adapt to the large oscillations inUK
37 present around728

year 250CE and again at ~900–1500CE. This large degree of wiggliness allows the splines to729

potentially over-fit individual data points much earlier in the record. Because the adaptive730

smoother, in contrast, can adapt to these periods of rapid change in the response it is much731

less susceptible to this “chasing” behaviour — we don’t need to waste effective degrees of732

freedom in periods with little or no change just to be able to fit the data well when there is a733

lot of change.734

This potential for over-fitting in such situations is undesirable, yet if we recall Figure 10 and735

the discussion around the use of the first derivative to identify periods of significant change,736

we would not interpret the oscillations in the early part of the UK
37 record as being statistically737

significant. Owing to the paucity of data in this part of the series the trends fitted using the738

non-adaptive smoothers are subject to such a large degree of uncertainty that the alternative739
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of no trend through the first 1000 years of the record is also a plausible explanation of the data.740

The trend estimated using the adaptive smooth reflects this. Therefore, should we conclude741

that there is no trend in UK
37 and thence climate in this period? I believe that to be too-strong a742

statement; those oscillations inUK
37may be real responses to climate forcing but wemay simply743

lack the statistical power to distinguish them from the null hypothesis of no trend through744

this period. The adaptive smoother is only adjusting to the data available to it; just because745

it does not detect a trend during this period does not lend itself to an interpretation of stable746

climate forcing or complacency in the lake’s response to forcing (although that is a justifiable747

interpretation of the result). If there were particular interest in the climate of this particular748

period we might take from the Braya-Sø record that there is potential early variation due to749

climate forcing, but that additional data from this or other sites is required before anydefinitive750

conclusion can be drawn.751

4.8 Accounting for age model uncertainty752

Thus far, the trend models that I have described and illustrated assumed that the time co-753

variate (𝑥𝑡) was fixed and known. In both examples, and generally for most palaeoecological754

records, this assumption is violated. Unless the record is annually laminated, assigning an755

age to a sediment interval requires the development of an age model from observations of the756

relationship between depth down the sediment core and estimates of the age of the sample757

arrived at using any of a number of techniques, for example 210Pb or 14C radiometric dating.758

This age-depth relationship is itself uncertain, usually being derived from a mathematical or759

statistical model applied to point age estimates (e.g. Blaauw andHeegaard, 2012). Incorporat-760

ing this additional component of uncertainty complicates the estimation of statistical models761

from palaeoenvironmental data. In this section I illustrate a simulation based approach to762

quantify and account for age-model uncertainty as part of the trend estimation using a GAM763

(see Anchukaitis and Tierney (2013) for a similar, non-GAM related idea).764

Figure 15a shows the estimated dates (in Years CE) for 12 levels in the Small Water core dated765

using 210Pb. The vertical bars show the estimated age uncertainty of each level. The solid line766

through the data points is an additive model fitted to the observations, with prior weights767

given by the estimated age uncertainties. The fitted age-depth model is constrained to be768

monotonically decreasing with increasing depth, following the method of (Pya and Wood,769

2015) using the scam package (Pya, 2017). Also shown are 25 simulations from the posterior770

distribution of the monotonically-constrained GAM. Each simulation from the posterior dis-771

tribution of the age-model is itself a potential age-depth model, which can be used to assign772

dates to the Small Water core. The trendmodel in (4) can be fitted to the δ15Ndata using these773

new dates as 𝑥𝑡, and the whole process repeated for a large number of simulations from the774

age model.775

Figure 15b shows the trend in δ15N for the observed age-depth model, plus trends estimated776

via the same model using 100 draws from the posterior distribution of the age model. In this777

case, the age-depth model is relatively simple with little variation in the posterior draws, re-778

sulting in trends that match closely that obtained from the estimated age-depth relationship.779

Even so, this additional uncertainty suggests that the timing of the decline in δ15N covers the780
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Figure 15: Accounting for uncertainty in age estimates whilst fitting a smooth trend to the
Small Water 𝛿15N time series. (a) Estimated age model using a monotonically-constrained
spline fitted to 210Pb inferred ages for selected depths in the sediment core (red points). The
uncertainty in the 210Pb inferred age is show by the red vertical bars. The fitted age model is
illustrated by the solid black line. The faint grey lines are 25 random draws from the posterior
distribution of the monotonically constrained GAM. The effect of age uncertainty on trend
estimation is shown in b); for 100 simulations from the posterior distribution of the age model
in a) a trendwas estimated using a GAMwith a thin plate regression spline basis and a CAR(1)
process in the residuals. These trends are shown as grey lines. The combined effect of age
model and fitted GAM uncertainty on the trends for the 𝛿15N time series is shown in c). The
grey lines in c) are based on 50 random draws from the model posterior distribution for each
of the 100 trends shown in b). For both b) and c) the black line shows the trend estimated
assuming the ages of each sediment sample are known and fixed.

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/322248doi: bioRxiv preprint 

https://doi.org/10.1101/322248
http://creativecommons.org/licenses/by/4.0/


interval ~1935–1945.781

The uncertainty in the trend estimates illustrated in Figure 15b only reflects the variation in782

trends fitted to the uncertain dates of the sediment samples. To fully visualise the uncertainty783

in the trend estimates, incorporating both age model uncertainty and uncertainty in the esti-784

mated model coefficients themselves, 50 simulations from the posterior distribution of each785

of the 100 estimated trends shown in Figure 15b were performed, resulting in 5,000 trend esti-786

mates for the δ15N series. These are shown in Figure 15c, where the two obvious changes over787

the same simulations without accounting for uncertainty in 𝑥𝑡 (Figure 8a) are that the uncer-788

tainty band traced out by the simulations is approximately 50% wider and, not surprisingly,789

the uncertainty in the estimated trend is most pronounced in the least accurately-dated sec-790

tion of the core. Despite this additional uncertainty however, the main result holds; a marked791

decline of ~1.5‰ that occurred between approximately 1930 and 1945, with mild evidence of792

a small increase in δ15N post 2000 CE.793

4.9 Multivariate data794

A large proportion of the palaeoenvironmental data generated today is multivariate in nature795

and yet the two examples used to illustrate GAMs were univariate. Can the approach de-796

scribed here be used for multivariate data? Yes, and no. With one main exception it is not797

possible to directly apply the GAM methodology described here to multivariate abundance798

data, where the aim is to model all species at once. The mgcv software, for example, is not able799

to estimate the penalized GAM for multiple non-Gaussian responses. The exception is for a800

small number of correlated Gaussian responses; these could be modelled as being distributed801

multivariate normal conditional upon the covariates. Such a model would estimate the ex-802

pected values of each response and the correlations between them. For example, we could803

jointly model δ15N and δ13C series using this approach.804

Formal multivariate versions of GLM or GAMs are currently an important area of research805

within ecology (see Warton et al. (2015) for a recent review), where they go by the name joint806

species distribution models (JSDMs). Whilst undoubtedly powerful, our knowledge regard-807

ing JSDMs and their availability in software are still in their relative infancy and they require808

considerable expertise to implement. As such, JSDMs are currently beyond the reach of most809

palaeoecologists. Despite this, we should be watching JSDM research as developments are810

ongoing and a degree of method maturation occurring.811

One currently available avenue for fitting a multivariate GAM is via regularized sandwich812

estimators and GLMs (Warton, 2011), which involves fitting separate GLMs (or GAMs) to813

each response variable and subsequently using resampling-based hypothesis tests to deter-814

mine which covariates are related to variation at the community level and for individual taxa815

(Wang et al., 2012; Warton, 2011; Warton et al., 2012). The mvabund package (Wang et al., 2012)816

implements this approach within R and can use mgcv to fit GAMs to each species.817

Apragmatic although inelegant approach that has been used to estimate trends inmultivariate818

palaeoecological data is to first summarise the response data using an unconstrained ordina-819

tion via a PCA, CA, or principal curve and then fit separate GAM models to the site (sample)820

scores of the first few ordination axes or principal curve (Beck et al., 2018; Bennion et al., 2015).821
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Whilst this two-step approach is relatively easy to implement and builds on approaches that822

palaeoecologists already use to summarise multivariate stratigraphic data, it is best thought of823

as modelling changes in abundance or relative composition at the community level. It is less824

well suited to unpicking taxon-specific trends however, because the ordination step combines825

individual species information into latent variables (axes) that are linear combinations of all826

species and it is these latent variables that are then modelled using GAM.827

5 Conclusions828

Formal statistical estimation of trends in palaeoenvironmental data has been hampered by829

the nature of the data that comprise the time series; the uneven spacing of samples in time830

makes it, if not impossible, difficult to fit classical statistical time series models like ARIMA.831

This has led palaeoecologists and palaeolimnologists to either ignore statistical estimation of832

trends or fall back on basic statistical methods such as linear parametric and non-parametric833

correlations or simple linear regression models, where the assumptions of the method are834

often grossly violated by the dependencies inherent to time series data. GAMs, whilst similar835

to the popular Loess smoother, provide a superior alternative approach to trend estimation in836

palaeoenvironmental time series. GAMs can estimate non-linear trends, provide estimates of837

the magnitude of change as well as allow the identification of periods of change, can account838

for the lack of independence (either via autocorrelation processes or via the fitting of a wiggly839

trend), and provide a formal framework for statistical inference on each of these features.840

In presenting theGAMwith specific palaeoenvironmental examples and addressing the issues841

that arise in palaeoenvironmental time series, it is hoped that palaeoecologists and palaeolim-842

nologists will be motivated to give greater consideration to the estimation of trends and the843

identification of change in stratigraphic time series.844
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Appendix 1 — Simultaneous intervals1018

We proceed by considering a simultaneous confidence interval for a function 𝑓 (𝑥) at a set of 𝑀1019

locations in 𝑥; we’ll refer to these locations, following the notation of Ruppert et al. (2003) by1020

g = (𝑔1, 𝑔2, … , 𝑔𝑀)

The true function over g, fg, is defined as the vector of evaluations of 𝑓 at each of the𝑀 locations1021

fg ≡
⎡⎢⎢⎢⎢
⎣

𝑓 (𝑔1)
𝑓 (𝑔2)

⋮
𝑓 (𝑔𝑀)

⎤⎥⎥⎥⎥
⎦

and the corresponding estimate of the true function given by the fitted GAM denoted by ̂fg.1022

The difference between the true function and our unbiased estimator is given by1023

̂fg − fg = Cg [
̂𝛽 − 𝛽

û − u] ,

whereCg is amatrix formed by the evaluation of the basis functions at locations g, and the part1024

in square brackets is the bias in the estimatedmodel coefficients, whichwe assume to bemean 01025

anddistributed, approximately, multivariate normalwithmean vector 0 and covariancematrix1026

Vb1027

[
̂𝛽 − 𝛽

û − u] approx.∼ 𝑁 (0, Vb) ,

where Vb is the Bayesian covariance matrix of the GAM coefficients.1028

Now, the (1 - 𝛼)100% simultaneous confidence interval is1029

̂fg ± 𝑚1−𝛼

⎡⎢⎢⎢⎢
⎣

̂st.dev( ̂𝑓 (𝑔1) − 𝑓 (𝑔1))
̂st.dev( ̂𝑓 (𝑔2) − 𝑓 (𝑔2))

⋮
̂st.dev( ̂𝑓 (𝑔𝑀) − 𝑓 (𝑔𝑀))

⎤⎥⎥⎥⎥
⎦

,
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where 𝑚1−𝛼 is the 1 - 𝛼 quantile of the random variable1030

sup
𝑥∈𝑥

∣∣∣∣

̂𝑓 (𝑥) − 𝑓 (𝑥)
̂st.dev( ̂𝑓 (𝑥) − 𝑓 (𝑥))

∣∣∣∣
≈ max

1≤ℓ≤𝑀

∣∣∣∣∣∣∣∣

(Cg [
̂𝛽 − 𝛽

û − u])
ℓ

̂st.dev( ̂𝑓 (𝑔ℓ) − 𝑓 (𝑔ℓ))

∣∣∣∣∣∣∣∣

The sup refers to the supremum or the least upper bound; this is the least value of , the set of all1031

values of which we observed subset 𝑥, that is greater than all of the values in the subset. Often1032

this is the maximum value of the subset. This is what is indicated by the right-hand side of1033

the equation; we want the maximum (absolute) value of the ratio over all values in g.1034

The fractions in both sides of the equation correspond to the standardized deviation between1035

the true function and the model estimate, and we consider the maximum absolute standardized1036

deviation. We don’t usually know the distribution of the maximum absolute standardized1037

deviation but we need this to access its quantiles. However, we can closely approximate the1038

distribution via simulation. The difference here is that rather than simulating from the poste-1039

rior of the model as we did earlier see section Confidence intervals, this time we simulate from1040

the multivariate normal distribution with mean vector 0 and covariance matrix Vb. For each1041

simulation we find the maximum absolute standardized deviation of the fitted function from1042

the true function over the grid of 𝑥 values we are considering. Then we collect all these max-1043

ima, sort them and either take the 1 - 𝛼 probability quantile of the maxima, or the maximum1044

with rank ⌈(1 − 𝛼)/𝑁⌉.1045
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