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ABSTRACT  
The identification of somatic alterations with a cancer promoting role is 

challenging in highly unstable and heterogeneous cancers, such as esophageal 

adenocarcinoma (EAC). Here we developed a machine learning algorithm to identify 

cancer genes in individual patients considering all types of damaging alterations 

simultaneously (mutations, copy number alterations and structural rearrangements). 

Analysing 261 EACs from the OCCAMS Consortium, we discovered a large number 

of novel cancer genes that, together with well-known drivers, help promote cancer. 

Validation using 107 additional EACs confirmed the robustness of the approach. 

Unlike known drivers whose alterations recur across patients, the large majority of the 

newly discovered cancer genes are rare or patient-specific. Despite this, they 

converge towards perturbing cancer-related processes, including intracellular 

signalling, cell cycle regulation, proteasome activity and Toll-like receptor signalling. 

Recurrence of process perturbation, rather than individual genes, divides EACs into 

six clusters that differ in their molecular and clinical features and suggest patient 

stratifications for personalised treatments. By experimentally mimicking or reverting 

alterations of predicted cancer genes, we validated their contribution to cancer 

progression and revealed EAC acquired dependencies, thus demonstrating their 

potential as therapeutic targets. 
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INTRODUCTION 

Genome instability enables the onset of several hallmarks of cancer as some of 

the acquired alterations confer selective advantages to the mutated cells, thus driving 

their outgrowth and eventual dominance (1). The identification of driver genes (the 

genes acquiring driver alterations) is therefore critical to fully understand the molecular 

determinants of cancer and to inform the development of precision oncology. Since 

driver genes are under positive selection during cancer progression, a reasonable 

assumption is that their mutation is observed more frequently than expected. Over the 

past years, large-scale cancer genomic studies have provided the required power to 

detect driver events recurring across samples with good statistical confidence (2,3). 

However, the full characterisation of driver events is particularly challenging when the 

genomic landscape of the cancer is highly variable and recurrent events are relatively 

rare.  

One such cancer is esophageal adenocarcinoma (EAC), whose incidence in 

recent years has risen substantially in the western world (4). EAC exhibits high 

mutational and chromosomal instability leading to widespread genetic heterogeneity. 

In over 400 EACs sequenced so far, mutations in TP53, CDKN2A, SMARCA4, 

ARID1A, SMAD4, ERBB2, MYD88, PIK3CA, KAT6A, ARID2 as well as amplifications 

of VEGFA, ERBB2, EGFR, GATA4/6, CCNE1 are the most recurrent driver events (5-

11). However, a significant fraction of patients is still left without known genetic 

determinants and often the number of identified drivers per sample is too low to fully 

explain the disease. Consequently, the molecular mechanisms that drive EAC have 

been difficult to characterise in full. This has a profound impact on the way in which 

EAC is currently diagnosed and treated. For example, phase III clinical trials with 

various targeted agents have failed to show benefits or reached inconclusive results 

(12-14).  

Here we hypothesise that, alongside the critical role of recurrent and well-known 

drivers, complementary somatic alterations of other genes help cancer progression in 

individual patients. Therefore, the comprehensive characterisation of the full 

compendium of cancer drivers requires that both recurrent and rare events are 

considered. While recurrent drivers can be identified based on the frequency of their 

alterations, rare genes altered in few or even single patients are difficult to identify. To 

this aim, we developed sysSVM, an algorithm based on supervised machine learning 
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that predicts cancer genes in individual patients. The rationale of sysSVM is that 

somatic alterations sustaining cancer affect genes with specific properties (15). It 

therefore uses these properties, rather than recurrence, to identify cancer genes.  

We applied sysSVM to 261 EACs from the UK OCCAMS Consortium, which is 

part of the International Cancer Genome Consortium (ICGC). We first trained the 

classifier using 34 features derived from properties specific to known cancer genes 

and then prioritised 952 genes that, together with the known drivers, help promote 

cancer development across the whole EAC cohort. The large majority of these newly 

predicted ‘helper’ genes are rare or patient-specific. When analysing the biological 

pathways that they are involved in, helpers converge towards the perturbation of 

cancer-related processes such as intracellular signalling, cell cycle regulation, 

proteasome activity and Toll-like receptor signalling. We used the recurrence of 

process perturbation, rather than genes, to stratify the 261 EACs into six clusters that 

show distinct molecular and clinical features and suggest differential response to 

targeted treatment.  
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RESULTS 

The landscape of recurrent and rare EAC genes 
sysSVM applies machine learning to predict altered genes contributing to cancer 

in individual patients based on the similarity of their molecular and systems-level 

properties to those of known cancer genes (Supplementary text). Molecular properties 

include somatic alterations with a predicted damaging effect on the protein function 

(gene gains and losses, translocations, inversions, insertions, truncating and non-

truncating damaging alterations and gain of function mutations) as well as the overall 

mutation burden and the gene copy number (Supplementary Table 1). Systems-level 

properties are genomic, epigenomic, evolutionary, network and gene expression 

features that distinguish cancer genes from other genes. They include gene length 

and protein domain organisation (15,16), gene duplicability (17,18), chromatin state 

(19), connections and position of the encoded proteins in the protein-protein 

interaction network (17), number of associated regulatory miRNAs (18), gene 

evolutionary origin (18) and breadth of gene expression in human tissues (15,16)  

(Supplementary Table 1). 

sysSVM is composed of three steps (Figure 1A, Supplementary text). In step 1, 

34 features that describe the gene molecular and systems-level properties are 

mapped to all altered genes in each patient. In step 2, known cancer genes altered in 

the patient cohort are used to run a set of three-fold cross validations and identify the 

best models in four kernels (linear, sigmoid, radial, polynomial). In step 3, these best 

models used for training and prediction. All altered genes except known cancer genes 

are first scored in each patient individually by combining the predictions of the four 

kernels and then ranked according to the resulting score. Since the hypothesis is that 

the strength of the contribution of a gene to cancer depends on how similar its 

properties are to those of known cancer genes, the top scoring genes in each patient 

are the most likely contributors to cancer progression. The overall results are 

combined to obtain the final list of predicted cancer genes.  

We applied sysSVM to 261 EACs from OCCAMS which are part of the ICGC 

dataset (Figure 1B, Supplementary Table 2). In step 1, we extracted 17,078 genes 

with predicted damaging alterations (median of 382 damaged genes per patient) and 

mapped their 34 features. We verified that there is no pairwise correlation between 
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these features (Supplementary Figure 1). Moreover, 476 known cancer genes (20) 

altered in the 261 EACs (Supplementary Table 3) tend to cluster in distinct regions of 

the feature space (Supplementary Figure 2). This confirms that these features 

distinguish cancer genes from other genes. In step 2, we ran 10,000 iterations of a 

three-fold cross validation using the 476 known cancer genes and combined the 

results to obtain 500 best models for each kernel (Supplementary Table 4, Methods). 

In step 3, we trained the four classifiers with these best models and used them to score 

and rank the remaining 16,602 altered genes in each patient. Since the gene score 

reflects a gradient between driver and passenger activity, we considered the top 10 

scoring genes in each EAC as the main cancer contributors for that patient. We verified 

that the main findings of our study hold true if we apply higher or lower cut offs (see 

below). Overall, this produced 500 lists of top 10 scoring genes in each sample 

(Supplementary Table 4, Methods). We considered the list of 952 genes that occurred 

most frequently as the final set of predicted cancer genes (Supplementary Table 5). 

Since our hypothesis is that these genes help the known drivers to promote cancer, 

we define them as ‘helper genes’. 

Helper genes localise to the same high-density regions of known cancer genes 

(Figure 1C), with lower scoring genes being further away from these regions 

(Supplementary Figure 3). This indicates that the properties of top scoring genes 

indeed resemble those of known cancer genes. Consistent with the prevalence of 

gene amplification in EAC (Supplementary Table 1), the vast majority of the 952 

helpers undergo copy number gain (Figure 1D), resulting in their increased expression 

(Figure 1E). Despite the majority of helpers being rare or patient-specific (Figure 1F), 

a few of them are altered in more than 10% of EACs (Supplementary Table 5). These 

genes are usually associated with frequently occurring amplification events (10) 

(Supplementary Figure 4).  

We assessed the robustness of our predictions in several ways. First, we 

evaluated the performance of sysSVM using two independent cohorts, namely 86 

EACs from The Cancer Genome Atlas (TCGA) and 21 EACs from another study (21) 

(Supplementary Table 2). We scored all altered genes, including known cancer genes 

(20), in each of the 107 EACs independently, using the four best models trained on 

the ICGC cohort. In both datasets, known cancer genes have significantly higher 

scores than the rest of the altered genes (Supplementary Figure 3), indicating that 
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sysSVM is able to recognise them as major cancer contributors. Second, we searched 

whether any of the 952 helpers were previously identified as cancer genes. We found 

that 41 of them (4%) have recently been added as known cancer genes to the Cancer 

Gene Census (22) and 171 helper genes (18%) have been predicted as candidate 

cancer genes in various cancers, including EAC (5) (Supplementary Table 5). Third, 

we searched for possible false positive predictions using two lists. The first was 

composed of 49 genes predicted as false positives of recurrence-based methods (5) 

and found only three helpers (PCLO, CNTNAP2 and NRXN3) (Supplementary Table 

5). Interestingly, PCLO has recently been shown to exert an oncogenic role in 

esophageal cancer by interfering with EGFR signalling (23). The second list was a 

manually curated set of 488 putative false positives (3) where we found 44 helpers 

(4.6% of the total). This is less than the fraction of known cancer genes (20) present 

in the same list of false positives (46/719, 6.4%). Altogether these analyses indicate 

that sysSVM robustly predicts cancer genes in multiple patient cohorts, with a minimal 

false positive rate. 

 

Helper genes converge to perturb related biological processes 

In order to gather a comprehensive characterisation of the molecular 

determinants of EAC, we analysed the biological processes perturbed by helpers 

compared to drivers. We manually reviewed all 476 known cancer genes (20) with 

damaging alterations in the OCCAMS cohort and retained 202 of them based on the 

concordance between the type of acquired modification and the literature evidence of 

their cancer role (Methods, Supplementary Table 3). The median number of drivers 

per EAC is in accordance with recent estimates (24,25) and the majority of them 

undergo gene amplification (Supplementary Figure 4). We then performed two 

independent gene set enrichment analyses, one with the 202 known drivers and one 

with the 952 helpers, to dissect their relative functional contribution to EAC. This led 

to 212 and 189 enriched pathways out of the 1,877 tested, respectively (FDR <0.01, 

Supplementary Table 6, Supplementary Figure 4). Interestingly, the analysis of known 

drivers resulted in a higher number of enriched pathways than helpers, despite their 

lower number. This reflects the higher number of pathways that drivers map to (median 

of four pathways for known drivers and two pathways for helpers).  
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Seventy-three pathways (over 34%) enriched in known drivers are perturbed in 

more than 50% of EACs (Supplementary Table 6, Supplementary Figure 5). These 

‘universal cancer pathways’ are involved in well-known cancer-related processes, 

such as intracellular signalling, cell cycle control, apoptosis and DNA repair, and are 

associated with the most recurrently altered known drivers (TP53, CDKN2A, MYC, 

ERBB2, SMAD4, CDK6, KRAS, Supplementary Table 3). Interestingly, 50 of the 73 

(70%) are also enriched in helpers and 86 patients with altered helpers in a universal 

cancer pathway have no known drivers in that pathway (Figure 2A, Supplementary 

Table 6). This indicates that helpers often contribute to the perturbation of key cancer 

pathways and that their alteration may be sufficient for cancer development in the 

absence of known drivers.  

Next, we clustered EACs according to the proportion of perturbed pathways that 

they have in common (Methods, Figure 2B). When using pathways enriched in known 

drivers, we identified five well-supported clusters (1D-5D, Figure 2C, median 

silhouette score = 0.5, Supplementary Figure 6). These clusters are clearly driven by 

the mutational status of the most recurrent drivers. For example, TP53 is altered in 

clusters 1D-3D, EGFR, ERBB2 and MYC are altered in cluster 1D and MYC and KRAS 

are altered in cluster 2D (Figure 2 D, Supplementary Table 2). Samples in clusters 4D 

and 5D show an overall lower mutational burden (p = 0.03, Wilcoxon rank sum test), 

fewer known drivers and consequently a lower number of enriched pathways (p = 

7x10-6, Wilcoxon rank sum test, Supplementary Figure 4).  

When clustering EACs according to the pathways enriched in helpers, we 

identified six well-supported clusters (1H-6H, Figure 2C, median silhouette score = 

0.3, Supplementary Figure 6). In this case, samples are brought together not by the 

recurrent alterations of known driver genes, but by several helpers mapping to the 

same or related pathways (Supplementary Table 2). For example, both clusters 1H 

and 3H show diffuse perturbations in intracellular signalling (Figure 2C), very often 

involving universal cancer pathways (Supplementary Table 6, Supplementary Figure 

7). In more than 43% of EACs in both clusters, the perturbations in universal cancer 

pathways occur in patients with no drivers. Other pathways perturbed in cluster 1H, 

but not in 3H, involve cell cycle regulation, Toll-like receptor signalling and proteasome 

activity (Supplementary Table 2, Supplementary Figure 7). EACs in cluster 1H also 

have significant association with several known cancer drivers such as RECQL4, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2018. ; https://doi.org/10.1101/321612doi: bioRxiv preprint 

https://doi.org/10.1101/321612
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 9 

RARA, MYC, SMARCE1 and ERBB2 (Figure 2D), which are often but not always co-

altered (Supplementary Figure 4). They have a prevalence of mutational signature S3 

and are enriched in early (stage 2) tumours (Figure 3A). Patients in cluster 3H are 

instead enriched in tobacco smokers (Figure 3A). 

Similar to clusters 1H and 3H, the processes perturbed in clusters 2H and 4H 

are also functionally related, in this case to cell cycle regulation (Figure 2C).  All EACs 

in cluster 2H have helpers involved in the regulation of G1/S transition (Supplementary 

Figure 7), such as members of the E2F family of transcription factors and their 

associated co-activators, competitors and downstream targets (Supplementary Table 

2). Cluster 4H instead harbours perturbations in DNA replication, with alterations in 

the MCM complex, which is a downstream target of E2F (26,27). Dysregulation of E2F 

transcription factors or the MCM complex can induce increased genomic instability 

through either aberrant cell-cycle control or replicative stress (28,29). Consistently with 

this, EACs in clusters 2H and 4H are genomically unstable. Samples in 2H accumulate 

significantly more damaged and amplified genes, while those in 4H show significantly 

more deleted genes and are enriched in mutational signature 2 (Figure 3A). Cluster 

2H also shows significant alterations of the known drivers GNAS, SS18L1, and FHIT 

(Figure 2D). FHIT is linked to increased genomic instability (30) and regulates the 

expression of cell cycle-related genes (31), therefore potentially affecting the G1/S 

transition pathways of this cluster. Cluster 4H shows frequent alterations in the known 

drivers TRAPP and CDK6 (Figure 2D). The latter functions in various cell cycle-related 

pathways, including the mitotic G1/S phase pathway altered in 100% of cluster 4H 

(Supplementary Table 2, Supplementary Figure 7). Furthermore, patients in cluster 

4H have a significantly lower survival compared to the rest of the cohort (Figure 3B). 

Interestingly, elevated expression of the MCM complex has been associated with poor 

patient survival in multiple tumour types	(32). The perturbation of MCM proteins and 

their related pathways could therefore contribute to tumour aggressiveness and poor 

outcome among patients in this cluster. Finally, cluster 5H shows perturbations in the 

Toll-like receptor (TLR) signalling cascade (Supplementary Figure 7) that has recently 

been reported to be dysregulated in EAC (33).  

Overall, clusters 1H to 5H account for 166 EACs (64% of the total cohort). The 

remaining 95 EACs in cluster 6H share fewer perturbed pathways, although 55 of them 

(58%) have alterations in Rho GTPase activity (Supplementary Figure 7) with frequent 
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modifications of Rho GTPase effectors such as ROCK1, PTK2, PAK1, LIMK1 and 

NDE1 (Supplementary Table 2). EACs in the six clusters obtained using helpers are 

broadly dispersed in the clustering of known drivers (Figure 2C) indicating that helpers 

bring together patients with similar perturbed processes that cannot be appreciated 

when focussing only on recurrent drivers.  

To test whether the clustering is affected by considering only the top 10 helper 

genes in each patient, we performed the same analysis considering as helpers the top 

five or top 15 scoring genes (528 and 1,297 unique genes, respectively). We found 

that the vast majority (99% and 77%) of the pathways enriched in these two datasets 

are also enriched when considering the top 10 helpers (Supplementary Figure 8). This 

indicates that the recurrently perturbed processes are highly overlapping. We then 

clustered EACs according to the proportion of common perturbed pathways and 

verified that the six clusters obtained using pathways enriched in top 10 genes 

recapitulated well the clusters obtained using pathways enriched in top five or 15 

genes (Supplementary Figure 8). Therefore, the clustering is robust regardless of the 

applied ranking cut-off.  

 
Helper alterations contribute to cancer-related phenotypes and lead to 
dependence 

To test the contribution of EAC helper genes towards the perturbation of cellular 

processes, we used two experimental approaches. In the first one, we assessed the 

consequences of altering representative helpers in FLO-1 cells. These are an EAC 

diploid cell line with no mutations or copy number alterations in any of the helpers 

selected for validation (34), thus allowing a clear evaluation of the effect of their 

alteration. We measured cell proliferation as a main hallmark of cancer (3,35) and also 

performed gene-specific assays. In the second approach, we assessed the effect of 

reverting the alteration of helpers on cell growth to evaluate the dependence of EAC 

on helper perturbations. In this case, we used EAC cell lines with alterations similar to 

those observed in patients. 

We started by modifying the most commonly altered helpers in clusters 2H and 

4H, namely E2F1 (23 out of 24 samples in cluster 2H) and MCM7 (18 out of 37 

samples in cluster 4H, Supplementary Table 2). Both E2F1 and MCM7 are amplified 

in EACs (Supplementary Table 5) leading to significant gene overexpression (median 
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two-fold increase, p = 6x10-3 and p=8x10-3, respectively Wilcoxon rank-sum test; 

Figure 4A). We therefore stably overexpressed E2F1 and MCM7 in FLO-1 cells to 

levels comparable to those observed in patients (Figure 4B). In both cases we 

observed significantly increased proliferation of overexpressing cells as compared to 

control cells (p=2x10-4 and p=9x10-4, respectively, two-tailed t-test; Figure 4C). Since 

E2F1 promotes cell cycle progression, we assessed DNA replication rate by 

measuring EdU incorporation during the cell cycle. We observed increased EdU 

intensity throughout S phase in E2F1 overexpressing cells as compared to control 

cells (p<10-4, Mann Whiney U test; Figure 4D). This suggests that E2F1 may help 

cancer growth by promoting S phase entry. To assess the functional consequence of 

MCM7 overexpression, we measured the loading of the MCM complex onto 

chromatin. We observed that MCM7 overexpressing cells display a lower MCM 

fluorescence intensity overall as compared to control cells when staining the 

chromatin-bound fraction for either MCM7 or MCM3 (p<10-4, Mann-Whitney U test; 

Figure 4E, 4F). This suggests that less MCM complex is loaded onto chromatin by the 

start of S phase. Therefore, MCM7 overexpression leads to both increased 

proliferation and perturbation of MCM complex activity. Finally, we reduced MCM7 

expression levels in MFD-1 cells that were recently derived from an EAC patient of our 

OCCAMS cohort (36). MFD-1 cells have four-fold higher MCM7 basal expression 

compared to the diploid FLO-1 cells (Figure 4G). We therefore used doxycycline-

inducible shRNA lentiviral vector (Supplementary Table 7) to reduce MCM7 

expression in MFD-1 cells to the level of FLO-1 cells (Figure 4H). This led to a 

significant decrease in cell proliferation (p = 2x10-5, two-tailed t-test; Figure 4I), 

indicating that MFD-1 cells rely on MCM7 overexpression for their faster growth. 

Next, we evaluated the role of rare helpers that were altered in a low fraction of 

patients. First, we tested NCOR2 that is altered in eight EACs across five of the six 

clusters (Supplementary Table 5). NCOR2 is part of the nuclear receptor corepressor 

complex that favours global chromatin deacetylation and transcriptional repression 

(37,38) (Figure 5A). Consistently with the suggested tumour suppressor role of 

NCOR2 in lymphoma and prostate cancer (39,40), the most frequent NCOR2 

alterations in EAC lead to a loss of function. To reproduce these alterations, we edited 

the gene in FLO-1 cells using a vector-free CRISPR system (41). Three pooled 

crRNAs were co-transfected with Cas9 and the tracrRNA (Methods, Supplementary 
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Table 7) and the editing was confirmed and quantified using Miseq (Figure 5B). We 

observed a 1.3-fold increase in proliferation in the edited cells compared to the control 

cells (p = 3x10-3, two-tailed t-test test; Figure 5C). 

Then, we tested the effect of altering members of the Rho GTPase effector 

pathway, which is pervasively perturbed in all six clusters, often through patient-

specific alterations (Figure 5D, Supplementary Table 2). As representatives of this 

pathway we modified ABI2 and PAK1, which undergo damaging alterations and 

amplification in one and nine EACs, respectively (Supplementary Table 5). We 

therefore edited ABI2 and overexpressed PAK1 as described above (Supplementary 

Table 7, Figure 5E). In both cases we observed significantly increased proliferation as 

compared to control cells (ABI2:  p = 4x10-4, PAK1: p = 1x10-3 two-tailed t-test; Figure 

5F).  

Finally, we focussed on PSMD3 that encodes a subunit of the regulatory 19S 

proteasome complex. PSMD3 is amplified and overexpressed in three EACs of cluster 

1H, which overall contains 14 samples with alterations in six proteasome subunits 

(Figure 6A and Supplementary Table 5). We identified three EAC cell lines (MFD-1, 

OE19 and OE33) showing higher basal expression of PSMD3 compared to FLO-1 (2-

, 3- and 4-fold increase respectively, Figure 6B).  Using a doxycycline-inducible 

lentiviral shRNA vector (Supplementary Table 7s), we reduced PSMD3 expression in 

MFD-1, OE19 and OE33 cells to levels equivalent to those of FLO-1 (Figure 6C). In 

all three cell lines we observed a significant reduction in cell proliferation following the 

reduction of PSMD3 expression (MFD-1: p = 4x10-8; OE19: p = 2x10-8; OE33: p = 

6x10-3, two-tailed t-test; Figure 6D). The effect was particularly strong in OE19, where 

the reduction of PSMD3 expression to diploid levels arrested cell growth completely. 

In MFD-1 and OE33 it led to 1.3- and 1.2-fold reduction of cell growth (Figure 6D). 

This suggests that the extent of EAC reliance upon helper alterations is at least 

partially context dependent. 

Taken together, our experimental data indicate that, independently of the 

alteration frequency, the modification of helpers positively affects EAC cell growth. 

Moreover, we provide evidence that EAC cells become addicted to helper alterations, 

suggesting that targeting helpers, or the pathways in which they act, could reduce 

EAC progression. 
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DISCUSSION 

Most state-of-the-art approaches to discovering cancer driver events rely on the 

detection of positively selected alterations of genes that are functionally beneficial for 

cancer development (3,24). Even ratiometric methods based on gene properties (42) 

ultimately assess the effect of positive selection and distinguish the few selected 

drivers from the many passenger events. As a result, the discovery of cancer drivers 

is biased towards genes that are frequently altered across patients. This poses 

significant limitations for cancers such as EAC that have a highly variable but mostly 

flat (i.e. with few recurrent events) mutational landscape. In support of this, the overall 

selection acting on esophageal cancer genomes is among the lowest across cancer 

types (24), despite a median of 382 damaged genes per EAC (Supplementary Table 

2). This indicates that the exclusive focus on genes under strong selection is likely to 

return only a partial representation of the genes involved in EAC.  

To overcome these limitations, our machine learning approach sysSVM ranks 

somatically altered genes that are relevant to cancer development based on their 

properties rather than mutation recurrence. Another advantage is that sysSVM 

considers all types of gene alterations (SNVs, indels, CNVs, and structural variations) 

simultaneously. Therefore, it provides a comprehensive overview of the genetic 

modifications that play a cancer promoting role in individual patients. When applied to 

261 EACs, sysSVM prioritises 952 altered genes that, together with known drivers, 

help cancer progression. This large number of helper genes is in agreement with the 

recent observation of a positive correlation between mutational burden and number of 

driver genes, which is only partially explained by a sample size effect (3). We 

speculate that this positive correlation may indicate that the number of functionally 

relevant genes increases with the number of altered genes. 

The heterogeneous landscape of EAC cancer genes is substantially reduced by 

considering the perturbed biological processes they act on (Figure 2C). Most of these 

processes are well-known contributors to cancer development, including intracellular 

signalling, cell cycle control, and DNA repair (Supplementary Table 6). Interestingly, 

while the known drivers tend to encode upstream players in these pathways, helpers 

are often downstream effectors. For example, we found several Rho GTPase effectors 

(Figure 5D, Supplementary Table 5) or genes downstream of previously reported EAC 

drivers in the Toll-like receptor cascade (Supplementary Table 5). This supports a 
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more local role of helpers in contributing to cancer at the single patient level, possibly 

by sustaining or complementing the function of drivers. In this respect, helpers are 

conceptually similar to mini-drivers (43). 

Analysing the pathways disrupted by helpers allows the division of the 261 EACs 

into six functional clusters that often are closely related in function. For example, two 

of these clusters (1H and 3H) share perturbations in intracellular signalling. Similarly, 

clusters 2H and 4H show perturbations of processes involved in cell cycle, namely S-

phase entry and DNA replication. Consistent with this, they bring together the most 

genomically unstable samples. By experimentally mimicking the amplification of E2F1 

(representative of cluster 2H) and MCM7 (representative of cluster 4H), we induced 

increased proliferation in EAC cells (Figure 4C). We also provide evidence that E2F1 

increases proliferation by promoting S phase entry (Figure 4D). Interestingly, MCM7 

overexpression resulted in a reduction of MCM complex loading onto chromatin 

(Figure 4E and 4F), maybe due to a stoichiometric imbalance of complex subunits. 

This may indicate that MCM7 promotes cell growth through a separate mechanism 

besides its function in the MCM complex. For example, MCM7 interacts with the 

tumour suppressor protein Rb, a well-characterised inhibitor of E2F1 (44). It is possible 

that MCM7 overexpression may sequester Rb away from E2F1, thereby promoting 

E2F1-mediated cell cycle progression. Moreover, reducing MCM7 expression levels 

in cells with high basal expression led to decreased cell proliferation, showing not only 

the contribution of MCM7 alteration to EAC growth but also the dependence of cancer 

cells on its high expression. 

We also confirmed the cancer promoting role of very rare helpers, such as ABI2, 

NCOR2 and PAK1 that are altered between 1% and 4% of EACs (Figure 5C and 5F). 

Therefore, irrespective of the frequency, helpers have a substantial impact on the 

progression of the cancer where their alteration occurs. This may indicate new, 

patient-specific gene dependencies and suggest possible stratifications that could 

inform the selection of targeted treatments. For example, 14 samples of cluster 1H 

have alterations of several proteasome subunits (Figure 6A, Supplementary Table 2). 

Experimentally reverting the expression of the proteasome subunit PSMD3 to diploid 

levels resulted in reduced cell growth in three different EAC cell lines (Figure 6D). This 

indicates that EACs become addicted to helper alterations and vulnerable to its 

inhibitions. Interestingly, proteasome inhibition has been shown to have a synergic 
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effect in combination with ERBB2 inhibitors (45). Since ERBB2 is also significantly 

altered in cluster 1H (Figure 2D), a combined therapy may be beneficial to patients in 

this cluster. 

In summary, we provide one of the first attempts to extend the discovery of 

acquired perturbations contributing to cancer beyond those of recurrent drivers. 

Additional efforts are required to fully exploit the potential of these approaches to offer 

a more comprehensive view of the molecular mechanisms behind cancer and to guide 

novel clinical interventions. 
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METHODS 
Annotation of molecular properties 
Data on somatic single nucleotide variations (SNVs), small insertions and deletions 

(indels), copy number variations (CNVs), structural variations (SVs), and mutational 

signatures for 261 EACs were obtained from ICGC and analysed as previously 

described (10) (Supplementary Table 2). Briefly, SNVs and indels were called using 

Strelka v.1.0.13 (46) and subsequently filtered as previously described (10). For 

CNVs, the absolute copy number for each genomic region was obtained from ASCAT-

NGS v.2.1 (47) after correction for tumour content, using read counts at germline 

heterozygous positions as derived from GATK v.3.2-2 (48). To account for the high 

number of amplifications occurring in EAC, copy number gains were corrected by the 

ploidy of each sample as estimated by ASCAT-NGS. A gene was assigned with the 

copy number of a CNV region if at least 25% of its length was contained in that region. 

SVs (gene translocations, inversions, insertions) were identified from discordant read 

pairs using Manta (49) after excluding SVs that were also present in more than two 

normal samples of a panel of 15 esophagus and 50 blood samples (10). In the case 

of TCGA validation cohort, SNVs, indels, and CNVs were derived from level 3 TCGA 

annotation data of 86 EACs (https://portal.gdc.cancer.gov/projects/TCGA-ESCA, 

Supplementary Table 2). In the case of 21 EACs from a previous study (21), SNVs, 

indels, and CNVs were called as described for the ICGC samples (Supplementary 

Table 2). The distribution of variant allele frequency of SNVs and indels across all 

samples was used to remove outliers likely indicating sequencing or calling artefacts. 

Variants with <10% frequency and indels longer than five base pairs were also 

removed. For CNVs, genomic regions were considered as amplified or deleted if their 

segment mean was higher than 0.3 or lower than -0.3, respectively, capping the 

segment mean to 1.5 to avoid hypersegmentation (50). A gene was considered as 

amplified or deleted if at least 25% of its length was contained in a CNV region and 

the resulting copy number (CN) was estimated as: 

CN = 2×2#$%&$'(	&$*' 

No SV data were available for the validation cohorts.  

Since only genes with predicted damaging alterations were used as input for sysSVM, 

further annotation for the variant damaging effect was performed. Stopgain, stoploss, 

frameshift, nonframeshift, nonsynonymous, and splicing SNVs and indels were 
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annotated using ANNOVAR (December 2015) (51). All truncating alterations 

(stopgain, stoploss, and frameshift mutations) were considered as damaging. 

Nonframeshift and nonsynonymous mutations were considered as non-truncating 

damaging alterations if predicted by at least five of seven function-based methods 

(SIFT (52), PolyPhen-2 HDIV (53), PolyPhen-2 HVAR (53), MutationTaster (54), 

MutationAssessor (55), LRT (56) and FATHMM (57)) or by two out of three 

conservation-based methods (PhyloP	(58), GERP++ RS	(59), SiPhy	(60)), using the 

scores from dbNSFP v.3.0 (61). Splicing modifications were considered as damaging 

if predicted by at least one of the two ensemble algorithms as implemented in dbNSFP 

v3.0. Putative gain of function alterations were predicted with OncodriveClust (62) with 

default parameters and applying a false discovery rate of 10%. The transcript lengths 

to estimate mutation clustering were derived from the refGene table of UCSC Table 

Browser (https://genome.ucsc.edu/cgi-bin/hgTables). Gene gains, homozygous 

losses, translocations, inversions, insertions were always considered as putative 

damaging alterations. 

Overall, 17,078 genes had at least one damaging alteration, for a total of 116,989 

redundant damaged genes across 261 EACs (Supplementary Table 1). Of these, 476 

were known cancer genes (20), corresponding to 4,091 redundant genes 

(Supplementary Table 2). For all 17,078 genes, the total number of exonic alterations 

(silent and nonsilent) and the somatic copy number were used as additional molecular 

features in sysSVM. 

 

Annotation of systems-level properties 
Protein sequences from RefSeq v.63 (63) were aligned to the human reference 

genome assembly GRCh37 to define unique gene loci as previously described (16). 

The length of the longest coding sequence was taken as the gene length. Genes 

aligning to more than one gene locus for at least 60% of the protein length were 

considered as duplicated genes (17). Data on human ohnologs (gene duplicates 

retained after whole genome duplications) were collected from Makino et al., 2013 

(64). The number of protein domains was derived from CDD (65). The gene chromatin 

state based on Hi-C experiments (19) was retrieved from the covariate matrix of 

MutSigCV v1.2.01 (2). Data on protein-protein and miRNA-gene interactions, gene 

evolutionary origin and gene expression were retrieved as described in An et al., 2016 
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(16). Briefly, human protein-protein interaction network was rebuilt from the integration 

of BioGRID v.3.4.125 (66); MIntAct v.190 (67); DIP (April 2015) (68); HPRD v.9 (69); 

the miRNA-gene interactions were derived from miRTarBase v.4.5 (70) and 

miRecords (April 2013) (60); gene evolutionary origin was assessed as described in 

D’Antonio et al., 2011 (18) using gene orthology from EggNOG v.4 (71); and gene 

expression in 30 normal tissues was retrieved from GTEx v.1.1.8 (72). Except gene 

length, duplication and ohnologs, all other systems-level properties had missing 

information for some of the 17,078 altered genes (Supplementary Table 1). To account 

for this, median imputation for continuous properties and mode imputation for 

categorical properties were implemented. Specifically, for each property median or 

mode values were calculated for known cancer genes and the rest of mutated genes. 

All missing values were replaced with their corresponding median or mode values. 

 
Application of sysSVM to EACs 
The three steps of sysSVM were applied to 261 EACs (Figure 1A, Figure 1B, 

Supplementary Text). In step 1, all 34 features derived from molecular and systems-

level properties (Supplementary Table 1) were mapped to the 17,078 altered genes in 

the cohort. Each feature was scaled to zero mean and unit variance to correct for the 

different numerical ranges across them. In step 2, 476 known cancer genes with 

damaging alterations (Supplementary Table 3) were used as a set of true positives for 

model selection. To optimise the parameters of the four kernels (linear, radial, sigmoid 

and polynomial) a grid search using 10,000 iterations of a three-fold cross validation 

was performed. At each iteration, the 476 known cancer genes were randomly split 

into 2/3 (around 317 genes) used as a training set and 1/3 (around 159 genes) used 

as the test set. At each increment of 100 cross validation iterations, the four best 

models (one per kernel) were chosen based on the median and variance of the 

sensitivity distribution across all previous iterations of cross-validation. The selection 

of the 100 sets of best models from all 10,000 cross-validation iterations was repeated 

5 times, where all iterations were randomly re-ordered. In step 3, the resulting 500 

best models were trained with the whole training set and used to rank the remaining 

16,602 unique genes in each patient. A score was measured to combine the 

predictions from the four kernels and the genes not expressed in normal esophagus 

according GTEx annotation were excluded. These produced 500 lists of top 10 genes. 

Out of 500 best models, 38 had a unique set of parameters resulting in 24 unique lists 
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of top 10 genes (Supplementary Table 4). These 24 lists ranged between 898 and 952 

genes, with a core set of 598 genes shared across all of them. The most frequent top 

10 list occurred 207 times (952_A, 41.4%, Supplementary Table 4). It was followed by 

952_B (32.2%, 161 times) and 951_A (8.6%, 43 times). These three lists accounted 

for 82.2% of the 500 sets of top 10 genes, they shared 950 genes and were predicted 

by models differing in only one parameter (gamma in the polynomial kernel, 

Supplementary Table 4). Furthermore, the most frequent list was always predicted by 

the same set of best models. Therefore, 952_A represented a robust set of prediction 

and was considered as the final list of helper genes (Supplementary Table 5). 

 
Identification of perturbed processes and patient clustering 
To identify the perturbed biological processes in the EAC cohort, both predicted cancer 

helper genes and known cancer driver genes were used. A manual revision of 476 

known cancer genes altered in the ICGC cohort was performed and genes were 

considered as known drivers if (a) their somatic alteration had been previously 

associated with EAC, (b) they had a loss-of-function alteration and their tumour 

suppressor role had been reported in other cancer types (73), (c) they had a gain-of-

function alteration and their oncogenic role had been reported in other cancer types 

(73). The resulting 202 known cancer drivers (Supplementary Table 3) and 952 cancer 

helpers were used for the gene set enrichment analysis against Reactome v.58 (74), 

composed of 1,877 pathways and 10,131 genes. After excluding pathways in levels 1 

and 2 of Reactome hierarchy and those with less than 10 or more than 500 genes, 

1,155 pathways were retained. These contained 9,061 genes, including 155 known 

drivers and 648 helpers. Gene set enrichment was assessed using a one-sided 

hypergeometric test and the resulting P values were corrected for multiple testing 

using the Benjamini & Hochberg method (Supplementary Table 6). Enriched pathways 

within the sets of known drivers or helpers were subsequently used to cluster samples 

taking into account the proportion of perturbed processes shared between samples. 

The Jaccard index (A) was calculated by deriving the proportion of shared perturbed 

processes between all possible sample pairs as: 

  𝐴,- = 𝑃, ∩ 𝑃- ∕ 𝑃, ∪ 𝑃-    

 

where Pi and Pj are the perturbed processes in samples i and j, respectively.  
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Complete linkage hierarchical clustering using Euclidean distance between each row 

was performed on the resulting matrix. Clusters were visualised using 

ComplexHeatmap R package (75). To identify the optimal number of clusters, the 

median silhouette value of the samples for between 3 and 20 clusters was measured 

as a measure of clustering robustness (76). 

 
Analysis of RNA sequencing data 
Purified total RNA was extracted from 92 EACs from the ICGC cohort and sequenced 

as described previously (10). RNA sequencing reads were then aligned to human 

reference genome hg19 and expression values were calculated using Gencode v19. 

The summariseOverlaps function in the R GenomicAlignments package was used to 

count any fragments overlapping with exons (parameters mode=Union, singleEnd, 

invertStrand and inter.feature were set according to the library protocol, 

fragments=TRUE, ignore.strand=FALSE). Gene length was derived as the number of 

base pairs in the exons after concatenating the exons per gene in non-overlapping 

regions. FPKM (Fragments Per Kilobase Million) were calculated for each gene as: 

 

𝐹𝑃𝐾𝑀 =	
𝑔𝑒𝑛𝑒	𝑟𝑒𝑎𝑑	𝑐𝑜𝑢𝑛𝑡

(𝑙𝑖𝑏𝑟𝑎𝑟𝑦	𝑠𝑖𝑧𝑒/1000000)×(𝑔𝑒𝑛𝑒	𝑙𝑒𝑛𝑔𝑡ℎ/1000)
 

 
Cell lines 
Overexpression and editing experiments were carried out using the FLO-1 esophageal 

adenocarcinoma cell line obtained from the ECACC General Cell Collection. Cells 

were grown at 37°C and five per cent CO2 in DMEM + 2mM Glutamine + 10% FBS 

(Biosera) + 1/10,000 units of penicillin–streptomycin. Gene knockdown experiments 

were performed on OE19 cells obtained from the Francis Crick Institute cell services, 

OE33 cells obtained from the ECACC General Cell Collection and MFD1 cells 

obtained from the OCCAMS Consortium. OE19 and OE33 cells were grown in RPMI 

+ 2mM Glutamine + 10% FBS (Biosera) + 1/10,000 units of penicillin–streptomycin. 

MFD1 cells were grown in DMEM + 2mM Glutamine + 10% FBS (Biosera) + 1/10,000 

units of penicillin–streptomycin. All cells were maintained at 37°C and five per cent 

CO2, validated by short tandem repeat analysis and routinely checked for mycoplasma 

contamination. 
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Gene overexpression 
The vectors pCMVHA E2F1 (77) (Item ID 24225, Addgene), pLX_TRC317 

(TRCN0000481188, Sigma-Aldrich) and pcDNA3.1+/C-(K)-DYK (Clone ID: 

OHu19407D, Genscript) were used to induce E2F1, MCM7, and PAK1 

overexpression, respectively. Cells were transfected according to the manufacturer’s 

protocol and selected with either G481/Geneticin (E2F1, PAK1) or Puromycin 

(MCM7). Empty vectors carrying G418 (pcDNA3.1+/C-(K)-DYK, Genscript) or 

Puromycin (Item ID 85966, Addgene) resistance were used as controls. The RNA from 

transfected cells was used to assess gene overexpression via quantitative RT-PCR 

using predesigned SYBR green primers (Sigma-Aldrich; Supplementary Table 7) and 

Brilliant III Ultra-Fast SYBR Green QRT-PCR Master Mix (Agilent Technologies). The 

average expression level across triplicates (e) was relativised to the average 

expression level of β-2-microglobulin (c): 

 

𝑟 = 𝑒 − 𝑐 

where r is the relative gene expression. The fold change (fc) between the relative gene 

expression after overexpression and the relative gene expression in the control 

condition (rc) was calculated as: 

𝑓𝑐 = 	2 	NOP	NQR  

Each sample was assessed in triplicate and each experiment was repeated in 

biological duplicate. 

 

Gene editing 
To induce ABI2 and NCOR2 gene knock-out (KO), the vector-free CRISPR-mediated 

editing approach was used as previously described (41). Briefly, cells were co-

transfected using lipofectamine CRISPR max (Life technologies) with a 69-mer 

tracrRNA (Sigma-Aldrich), three gene-specific crRNAs (Sigma-Aldrich, 

Supplementary Table 7) and GeneArt Platinum Cas9 nuclease (Life technologies). To 

avoid off-target editing, all crRNAs used were verified to map only the gene of interest 

with a perfect match and additional hits in the genome with at least three mismatches. 

Control cells were transfected with the same protocol but using three non-targeting 

crRNAs. Gene editing was confirmed with Illumina Miseq sequencing. The regions 
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surrounding the targeted sites were amplified from genomic DNA of edited cells with 

primers containing Illumina adapters (Supplementary Table 7) using Q5 Hot Start 

High-Fidelity 2X Master Mix (New England Biolabs). DNA barcodes were added with 

a PCR reaction before pooling the samples for sequencing on Illumina MiSeq with the 

250 base-pair paired-end protocol. Sequencing reads were merged into single reads 

and aligned to the human reference genome hg19 using BBMerge and BBMap 

functions of BBTools (78), obtaining an average of 78,864 aligned reads per 

experiment. SNVs and small indels in the regions corresponding to each crRNA 

(Supplementary Table 7) were called using the CrispRVariants package in R (79) and 

the percentage of edited alleles was estimated as the percentage of variant reads in 

each experiment. 

 
Gene knockdown 
Inducible gene knockdown was carried out using lentiviral pTRIPZ-TurboRFP (MCM7) 

or pSMART-TurboGFP (PSMD3) shRNA vectors (Dharmacon). For each gene, three 

shRNA vectors were tested (Supplementary Table 7). Virus was produced by co-

transfecting HEK293T cells with pTRIPZ or pSMART constructs alongside psPAX2 

and pMD2.G vectors (Addgene) using Fugene HD (Promega). Viral supernatant was 

collected at 24 and 48 hours and used for two rounds of infection of OE19, OE33 or 

MFD1 cells, using 8μg/ml hexadimethrine bromide (Sigma-Aldrich). Infected cells 

were selected after 48 hours with 2μg/ml puromycin for 7 days. To induce shRNA 

expression, cells were treated with 1μg/ml doxycycline (Sigma-Aldrich) for 16 hours. 

Gene expression with or without doxycycline was assessed by qRT-PCR using 

predesigned SYBR green primers (Sigma-Aldrich; Supplementary Table 7). Cells with 

the highest level of knockdown were then sorted by FACS to isolate medium 

expressing cells (the middle 30% of cells based on TurboRFP or TurboGFP 

fluorescence). Gene expression after sorting was measured by qRT-PCR 24 hours 

post-induction with 0-1μg/ml doxycycline, to determine the concentration of 

doxycycline required to reduce expression to levels equivalent to FLO-1 cells. The 

determined concentrations of doxycycline used for proliferation assays were 

0.05μg/ml for OE19 PSMD3 shRNA3, 0.25μg/ml for OE33 PSMD3 shRNA3, 

0.25μg/ml for MFD1 PSMD3 shRNA3, 0.75μg/ml for MFD1 MCM7 shRNA3. 

 
Cell proliferation 
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Cell proliferation was measured every 24 hours for three or four days, starting three 

hours after seeding the cells (time zero) using crystal violet staining, CellTiter 96 Non-

Radioactive Cell Proliferation Assay (Promega) or CellTiter-Glo Luminescent Cell 

Viability Assay (Promega). Briefly, 4.5x103 cells/well were seeded on 96-well plates in 

a final volume of 100μl per well. For inducible shRNA-expressing cells, doxycycline 

was added 48 hours prior to the start of the assay, and culture media replaced every 

24-48 hours with fresh media containing doxycycline. For the CellTiter 96 Non-

Radioactive Cell Proliferation Assay, 15 μl of the dye solution was added into each 

well and cells were incubated at 37°C for two hours. The converted dye was released 

from the cells using 100μl of the solubilisation/Stop solution and absorbance was 

measured at 570nm after one hour using the Paradigm detection platform (Beckman 

Coulter). For the CellTiter-Glo Luminescent Cell Viability Assay, 100μl of the CellTiter-

Glo reagent was added into each well and luminescence was measured after 30 

minutes using the Paradigm detection platform (Beckman Coulter). For all proliferation 

assays, four replicates per condition were measured at each time point and each 

measure was normalised to the average time zero measure for each condition. Each 

experiment was repeated at least twice. Conditions were compared using the two-

tailed Student’s t-test. 

 

Flow cytometry 
EdU incorporation and MCM loading were assessed using a modified version of the 

protocol described in Galanos et al., 2016 (80). Briefly, in each condition, 3x106 cells 

were pulsed for 30 minutes with 10µM EdU (Invitrogen) before washing in 1% 

BSA/PBS. Chromatin fractionation was performed by incubating on ice for 10 minutes 

in CSK buffer (10mM HEPES, 100mM NaCl, 3mM MgCl2, 1mM EGTA, 300mM 

sucrose, 1% BSA, 0.2% Triton-X100, 1mM DTT, cOmplete EDTA-free protease 

inhibitor cocktail tablets, Roche). Cells were then fixed in 4% formaldehyde/PBS for 

10 minutes at room temperature before washing in 1% BSA/PBS. Cells were 

permeabilised and barcoded (81) by incubating in 70% ethanol containing 0-15µg/ml 

Alexa Fluor 488 (Thermo Fisher) for 15 minutes, then washed twice in 1% BSA/PBS. 

Barcoded cells were subsequently pooled before incubating in primary antibody 

(mouse monoclonal anti-MCM7: Santa Cruz Biotechnology sc-56324, or rabbit 

polyclonal anti-MCM3: Bethyl Laboratories A300-192A) diluted 1:100 in 1% BSA/PBS 

for 1 hour. After washing in 1% BSA/PBS, samples were incubated for 30 minutes in 
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secondary antibody (Alexa Fluor 555-conjugated donkey anti-mouse: A-31570, or 

donkey anti-rabbit: A-31572) diluted 1:500 in 1% BSA/PBS, then washed again in 1% 

BSA/PBS. EdU labelling with Alexa Fluor 647 azide was performed using Click-iT EdU 

flow cytometry assay kit (Invitrogen, C10424) following the manufacturer’s instructions 

before washing samples in 1% BSA/PBS. Samples were then incubated in 1% 

BSA/PBS containing RNase and 10mg/ml DAPI for 15 minutes before analysing with 

a BD LSR II Fortessa flow cytometer (BD Biosciences). Lasers and filters used include: 

407nm laser with 450/50 bandpass filter; 488nm laser with 505 longpass and 530/30 

bandpass filters; 561nm laser with 570 longpass and 590/30 bandpass filters; 640nm 

laser with 670/14 bandpass filter. Compensation was performed manually with single 

colour controls, using BD FACSDiva software (BD Biosciences). FlowJo 10.3 software 

was used to analyse MCM loading onto chromatin and EdU incorporation. Cells were 

gated to remove debris using FSC-A/SSC-A, then gated to isolate singlets using DAPI-

H/DAPI-A (Supplementary Figure 9). The cells were then separated by gating the 

barcoded populations using 488-A/DAPI-A. Cells were finally separated into cell cycle 

gates (G1, S1-4, G2) based on EdU-647-A and DAPI-A (Supplementary Figure 9), 

and the geometric mean fluorescence intensity was obtained for each channel (MCM-

555 or EdU-647).  
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Figure 1. Cancer helper genes in 261 EACs 
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a. Schematic workflow of the sysSVM algorithm.  

b. Application of sysSVM to 261 EACs. Genes with somatic damaging alterations 

(n=116,989) were extracted from 261 EACs and divided into training (known cancer 

genes, blue) and prediction (rest of altered genes, green) sets. sysSVM was trained 

on the properties of known drivers and the best models were used for prediction. All 

altered genes were scored in each patient individually and the top 10 hits were 

considered as the cancer helper genes in that patient, for a total of 2,608 helper genes, 

corresponding to 952 unique hits (red). 

c. t-distributed Stochastic Neighbour Embedding (t-SNE) plot of 116,989 altered 

genes in 261 EACs. Starting from the 34 properties used in sysSVM, a 2-D map of the 

high-dimensional data was built using Rtsne package 

(https://github.com/jkrijthe/Rtsne) in R. Curves are coloured according to the density 

of 4,091 known cancer genes (blue) used as a training set and the rest of altered 

genes are coloured according to their sysSVM score. 

d. Distribution of damaging alterations in 952 cancer helpers. Overall, these genes 

acquire 2,608 damaging alterations. 

e. Expression of helper genes in EACs where they are amplified as compared to EACs 

where they are copy number neutral. FPKM values from RNA-Seq were available from 

92 EACs. Out of the 952 helper genes, 389 had at least one amplification across these 

samples, for a total of 751 amplification events. Significance was assessed using the 

Wilcoxon rank-sum test. 

f. Recurrence of cancer helpers across 261 EACs. Only samples acquiring alterations 

with a damaging effect are considered. 
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Figure 2. Perturbed processes in 261 EACs 

 
a. Scatterplot of 51 universal pathways enriched in known drivers and helpers. For 

each pathway, the number of EACs with altered drivers and the number of EACs with 
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altered drivers and helpers is shown. The size of dots is proportional to the additional 

EACs with perturbations in these pathways because of altered helpers only. 

b. Schematic of the procedure to cluster EACs according to pathways enriched in 

known drivers or helpers. Enriched pathways are mapped to individual EACs and the 

Jaccard index is calculated as the proportion of shared pathways over the total 

pathways in each pair of samples (i, j). Hierarchical clustering is then performed.  

c. Clustering of 261 EACs according to pathways enriched in known drivers and 

helpers. Five clusters were identified using known drivers (1D-5D) and six using 

helpers (1H-6H). Cluster-matching coloured lines show where EACs clustered by 

pathways enriched in helpers map in the driver clusters. 
d. Mutational status of selected known drivers across 261 EACs. Drivers enriched in 

clusters of helpers are highlighted. Significance was assessed using the Fisher’s exact 

test, after correcting for False Discovery Rate (FDR). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2018. ; https://doi.org/10.1101/321612doi: bioRxiv preprint 

https://doi.org/10.1101/321612
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 38 

Figure 3. Features of EAC clusters driven by pathways enriched in helpers 

 
a. For each helper cluster (1H-6H) indicated are the molecular features (mutational 

signatures, number of genes with damaging mutations, undergoing amplification or 

deletion), the distribution of stage 2 tumours and the tobacco smoking habits of the 

patients that show significant associations with one of the six clusters of helpers. 

Enrichment in number of altered genes, tumour staging and smoking habits was 

assessed using Fisher’s exact test. Distributions of mutational signatures were 
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compared using Wilcoxon rank-sum test. FDR = false discovery rate after correction 

for multiple testing. 

b. Kaplan-Meier survival curves of EACs in cluster 4H (n = 37) and the rest of EACs 

(n = 224). Analysis was performed using survival and survminer R packages with 

default parameters. Significance was measured using the log-rank test 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 17, 2018. ; https://doi.org/10.1101/321612doi: bioRxiv preprint 

https://doi.org/10.1101/321612
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 40 

Figure 4. Cancer helper role of E2F1 and MCM7 
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a. E2F1 and MCM7 expression in EACs where they are amplified (11 samples each) 

as compared to EACs where they are copy number neutral (81 samples each). 

Significance was assessed using the Wilcoxon rank-sum test. 

b. E2F1 and MCM7 mRNA expression in FLO-1 cells assessed by qRT-PCR. 

Expression was relativised to β-2-microglobulin and normalised to control cells.  

c. Proliferation curve of FLO-1 cells overexpressing E2F1 or MCM7 as compared to 

the corresponding control cells.  

d. Assessment of EdU (5-ethynyl-2'-deoxyuridine) incorporation by flow cytometry in 

E2F1 overexpressing cells as compared to control cells. Cells were separated into G1, 

S and G2 phases, and S phase cells were subdivided into 4 gates from early to late S 

phase (S1-S4, Supplementary Figure 9). The geometric mean fluorescence intensity 

of EdU was measured for the cells in each gate and differences between EdU intensity 

were assessed using the Mann-Whitney U test. Three biological replicates were 

performed and a representative experiment is shown. 

Quantification of MCM complex loading onto chromatin in MCM7 overexpressing or 

control cells via staining of MCM7 (e) or MCM3 (f). Cells were pulsed with EdU, and 

chromatin fractionation was performed before staining for MCM7 or MCM3 to detect 

the MCM complex bound to chromatin. Cells were separated into cell cycle phases 

using EdU and DAPI intensity (see Methods and Supplementary Figure 9). MCM7 or 

MCM3 fluorescence intensity during S phase illustrates the unloading of the MCM 

complex from chromatin. The geometric mean fluorescence intensity of MCM staining 

was measured for the cells in each cell cycle gate and differences in MCM intensity 

were assessed using Mann-Whitney U test. Representative data from one of three 

biological replicates are shown. Pseudocolour plots corresponding to panels E, F and 

G are shown in Supplementary Figure 9. 

g. MCM7 mRNA expression levels in MFD-1 and FLO-1 cells. Expression was 

relativised to β-2-microglobulin and normalised to FLO-1 cells. 

h. MCM7 expression levels in MFD-1 cells after transduction with a lentiviral vector 

carrying an inducible shRNA against MCM7. Expression was assessed in the absence 

of doxycycline and after 96 hours of doxycycline treatment, relativised to β-2-

microglobulin and normalised to FLO-1 cells. 

i. Proliferation curve of MFD-1 cells with or without doxycycline-induced MCM7 

knockdown. 
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For all qRT-PCR experiments, two biological replicates were performed, with reactions 

performed in triplicate. For all proliferation assays, at least two biological replicates 

were performed, each with four technical replicates. Proliferation was assessed every 

24 hours and each time point was normalised to time zero. Mean values at 72 hours 

were compared by two-tailed Student’s t-test. 
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Figure 5. Cancer helper role of NCOR2, ABI2, and PAK1 

 
a. Function of NCOR2 as part of the nuclear receptor co-repressor complex, whose 

activity results in chromatin deacetylation and transcriptional repression. 

b. Editing of the NCOR2 gene using three pooled crRNAs where cells are transiently 

co-transfected with Cas9 protein, crRNAs and tracrRNA (41). The editing efficiency 

was measured using Miseq and the range of edited alleles and cells was derived 

considering the two opposite scenarios where all three crRNAs edit the same 

alleles/cells or different alleles/cells, respectively. 

c. Proliferation curve of NCOR2 or NTC edited FLO-1 cells. Proliferation was assessed 

every 24 hours and each time point was normalized to time zero. Mean values at 72 

hours were compared by two-tailed Student’s t-test. Three biological replicates were 

performed, each with four technical replicates. 
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d. Manual curation of the helpers contributing to the Rho-GTPase effectors pathway. 

Heatmap indicates the number of samples with alterations in each gene. ABI2 (blue) 

and PAK1 (red) were selected for experimental validation. 

e. Induced alterations in ABI2 and PAK1 genes. Editing of ABI2 was performed and 

assessed as described for NCOR2. PAK1 mRNA expression in FLO-1 cells was 

assessed by qRT-PCR, relativised to β-2-microglobulin and normalised to control 

cells. Experiments were done in triplicate in two biological replicates. 

f. Proliferation curves of FLO-1 cells after ABI2 editing or PAK1 overexpression. Three 

biological replicates were performed, each with four technical replicates. Proliferation 

was assessed every 24 hours and each time point was normalised to time zero. Mean 

values at 72 hours were compared by two-tailed Student’s t-test. 
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Figure 6. EAC cell dependence on PSMD3 alteration 

 
a. Heatmap of proteasome subunits predicted as helpers in 261 EACs. 

b. PSMD3 basal mRNA expression levels in FLO-1, MFD-1, OE19 and OE33 cells. 

Expression was relativised to β-2-microglobulin and normalised to FLO-1 cells.  

c. PSMD3 expression levels in MFD-1, OE19 and OE33 after transduction with a 

lentiviral vector carrying an inducible shRNA against PSMD3. Expression was 

assessed in absence of doxycycline and after 96 hours of doxycycline treatment, 

relativised to β-2-microglobulin and normalised to FLO-1 cells. 

d. Proliferation curves of MFD-1, OE19 and OE33 cells with or without doxycycline 

treatment to reduce PSMD3 expression to levels comparable to those of FLO-1 cells.  

For all proliferation assays, at least two biological replicates were performed, each 

with four technical replicates. Proliferation was assessed every 24 hours and each 

time point was normalised to time zero. Mean values at 96 hours were compared by 

two-tailed Student’s t-test. 
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