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Abstract 20 

Recurrent excitatory synapses are shown theoretically to play roles in memory storage 21 

and associative learning, and such recurrent synapses are well described to occur in the 22 

CA3 region of the hippocampus. Here, we report that the CA2 region also contains 23 

recurrent excitatory monosynaptic couplings. Using dual whole-cell patch-clamp 24 

recordings from CA2 pyramidal cells in mouse hippocampal slices under differential 25 

interference contrast microscopic controls, we evaluated monosynaptic excitatory 26 

connections. Unitary excitatory postsynaptic potentials occurred in 1.4% of 502 cell 27 

pairs. These connected pairs were located preferentially in the superficial layer and 28 

proximal part (CA2b) of the CA2 region. These results indicate that recurrent excitatory 29 

circuits are dense in the CA2 region as well as in the CA3 region. 30 
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Introduction  32 

Theoretical studies have suggested that reentrant positive-feedback excitation of the 33 

neuronal network is critical for nonlinear information processing, including memory 34 

storage, associative learning, and pattern separation/completion (Amari et al., 1996; 35 

Hebb, 1949; Hopfield, 1982; Kohonen, 1998). The hippocampal CA3 region is one of 36 

the candidate brain regions that anatomically contain self-associative excitatory 37 

networks and functionally exert such information processing (Guzman et al., 2016; 38 

MacVicar and Dudek, 1981; Miles and Wong, 1986; Nakazawa et al., 2004; Treves and 39 

Rolls, 1994). However, only a few studies have directly measured monosynaptic 40 

recurrent connections in the hippocampus (Deuchars and Thomson, 1996; Guzman et al., 41 

2016; Miles and Wong, 1986), particularly in the CA2 region (Mercer et al., 2012). 42 

The CA2 region of the hippocampus is unique in terms of spatial representation 43 

and social memory (Hitti and Siegelbaum, 2014; Mankin et al., 2015), but it has been 44 

less investigated because it is not included in the classical tri-synaptic pathway and 45 

because the CA2 region is anatomically small, which limits experimental access. 46 

Notably, whether CA2 pyramidal cells are mutually excited at the monosynaptic level 47 

remains controversial. Some reports suggest that the CA2 region contains recurrent 48 

excitatory circuits (Lu et al., 2015) because CA2 neurons elaborate highly arborized 49 

dendrites (Dudek et al., 2016) and because CA2 neurons can initiate sharp wave/ripple 50 

oscillations (Oliva et al., 2016).  51 

In the present study, we directly measured excitatory monosynaptic 52 

connections between CA2 pyramidal cells using double whole-cell patch-clamp 53 

recordings. We observed monosynaptic unitary excitatory postsynaptic potentials 54 
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(EPSPs) between 1.4% of the CA2 pyramidal cell pairs. The CA2-to-CA2 connections 55 

existed preferentially in the CA2b subarea and exhibited a preferential spatial direction. 56 

 57 

Results and Discussion 58 

Recent histological studies have broadened the conventional definition (Lorente de Nó, 59 

1934) of the CA2 region based on specific molecular expressions, such as those of 60 

G-protein signaling protein 14 (RGS14) and striatal-enriched protein tyrosine 61 

phosphatase (STEP) (Dudek et al., 2016; Kohara et al., 2014; Lein et al., 2005; Noguchi 62 

et al., 2017). We also confirmed that RGS14 immunoreactivity indicated the 63 

macroscopic location of the CA2 region in transverse slices of the hippocampus. At the 64 

single cell level, however, RGS14-positive cells were sparse near the CA1/CA2 and 65 

CA2/CA3 borders (Figure 1). This sparsity was found particularly in the ventral 66 

hippocampus. This salt-and-pepper distribution of RGS14-positive cells indicates that a 67 

significant number of non-CA2 pyramidal cells (presumably, CA1 or CA3 pyramidal 68 

cells) are present in the CA2 region. 69 

We investigated recurrent CA2 connectivity by recording unitary EPSPs 70 

between two CA2 pyramidal cells. We visually targeted pyramidal cells using a 71 

differential interference contrast microscope. The recorded neurons were intracellularly 72 

filled with biocytin through patch-clamp pipettes and were then immunostained using 73 

an antibody against RGS14 or STEP (Figure 2A). A train of four action potentials was 74 

evoked at 20 Hz in one of the recorded cells, and the evoked membrane potentials were 75 

monitored for the other cells (Figure 2B). In the 502 pairs tested, we found 7 chemical 76 

synaptic connections and no electrical coupling; that is, the CA2-to-CA2 synaptic 77 

connection probability was 1.4%. The unitary EPSPs had a mean peak amplitude of 78 
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0.43 ± 0.14 mV and a mean transmission failure rate of 54 ± 24% (mean ± SD of 7 79 

connections). Three of the 7 connections exhibited short-term depression in response to 80 

four presynaptic spikes (Figure 3). We also patched 108 CA3 pyramidal cell pairs and 81 

found 3 chemical synaptic connections (2.8%), whose unitary EPSPs had a mean peak 82 

amplitude of 0.75 ± 0.54 mV and a mean failure rate of 45 ± 22% (3 connections). 83 

These parameters of the CA3 pairs are similar to those reported in previous studies of 84 

CA3 connections (Guzman et al., 2016; Miles and Wong, 1986), and they did not differ 85 

significantly from those of the CA2 connections in the present study (P > 0.05, 86 

Student’s t-test).  87 

During the whole-cell recordings, we measured the physical distances between 88 

the somata of two recorded cells in the images taken with a differential interference 89 

contrast microscope. The inter-soma distances were not correlated with the connection 90 

probability (Figure 4). This result appears similar to the previously reported spatial 91 

patterns of CA3 connectivity (Guzman et al., 2016) but is different from those of 92 

neocortical connectivity, in which more adjacent pairs had a higher probability of 93 

connections (Peng et al., 2017; Perin et al., 2011; Song et al., 2005). When considering 94 

the connectivity, however, one needs to consider the anatomical size of the CA2 region; 95 

the majority of CA2 cell pairs have inter-soma distances of less than 100 µm; thus, we 96 

cannot rule out the possibility that this sampling restriction masked the distance 97 

dependence. 98 

CA1 and CA3 pyramidal cells are heterogeneous along both transverse 99 

(Ishizuka et al., 1990; Lee et al., 2015; Lu et al., 2015; Sun et al., 2017) and radial axes 100 

(Kohara et al., 2014; Lee et al., 2014; Valero et al., 2015). Similar heterogeneity has also 101 

been reported in the CA2 region (Oliva et al., 2016). We thus investigated whether 102 
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CA2-to-CA2 connections are spatially biased in the CA2 stratum pyramidale. For one 103 

of the 7 connections, we failed to accurately identify the relative loci of the recorded 104 

cells in the RGS14-positive CA2 region. Thus, we analyzed the remaining 6 pairs. The 105 

relative location of each recorded cell was determined in the CA2 stratum pyramidale, 106 

which was rectangularly standardized according to the RGS14-positive or 107 

STEP-positive areas (Figure 5A). In this cell map, we noticed two structural tendencies. 108 

First, the directions from presynaptic cells to postsynaptic cells were spatially biased 109 

(Figure 5B; V = 2.05, P = 0.02, n = 6 pairs, V-test). A given CA2 pyramidal cell tended 110 

to make a synaptic connection with a CA2 pyramidal cell that was more proximal to the 111 

CA3 regions. This tendency suggests that compared to distal CA2 cells, more proximal 112 

CA2 pyramidal cells receive more recurrent inputs from other CA2 pyramidal cells.  113 

Second, the connected pairs were located preferentially in the superficial layer 114 

and the proximal side of the CA2 region (Figure 5C). The difference between the 115 

superficial and deep layers of the stratum pyramidale has not been well studied in the 116 

CA2 region. A recent study demonstrated that the CA2 deep layer initiates sharp 117 

wave/ripple oscillations (Oliva et al., 2016). Recurrent excitation is proposed as one of 118 

the substrates of sharp wave/ripple generation (Traub et al., 1989), but our results 119 

indicate that the recurrent connections of the CA2 pyramidal cells are nearly exclusively 120 

located in the superficial layer. The generation of sharp waves/ripples is a complex 121 

process, including dense recurrent circuits, timed interneuron activation (Stark et al., 122 

2014) and extrahippocampal controls (Buzsaki, 2015). The CA2 region may trigger 123 

sharp waves/ripples independently of local recurrent excitation.  124 

We found that the proximal CA2 (CA2b) subarea, but not the distal CA2 125 

(CA2a) subarea, has dense recurrent connections, similar to the CA3 region. According 126 
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to the most recent definition (Dudek et al., 2016; Lein et al., 2005), the CA2b subarea 127 

encompasses the stratum lucidum and receives monosynaptic inputs from the dentate 128 

gyrus (Kohara et al., 2014; Sun et al., 2017); however, the unitary EPSP sizes are 129 

smaller in CA2 pyramidal cells than in CA3 pyramidal cells (Sun et al., 2017). In 130 

addition, CA2 pyramidal cells receive strong excitatory inputs from layer III neurons in 131 

the entorhinal cortex (Chevaleyre and Siegelbaum, 2010). These extrahippocampal 132 

inputs contribute to the unstable dynamics of CA2 neuronal activity (Lee et al., 2015; 133 

Lu et al., 2015; Mankin et al., 2015). The CA3 network contains clustered circuit motifs 134 

(Guzman et al., 2016). The neocortex also contains rich clustered connections (Peng et 135 

al., 2017; Perin et al., 2011; Song et al., 2005). In CA2 pyramidal cells, we did not find 136 

bidirectionally connected pairs. This may be because the numbers of pair recordings are 137 

simply not enough. 138 

A previous study reported a very low connection probability (0.22%) between 139 

CA2 pyramidal cells (Mercer et al., 2012); however, this study did not identify CA2 140 

pyramidal cells histologically using the CA2 cell markers (RGS-14 or STEP). Given 141 

that CA2 pyramidal cells are sparse even in the CA2 pyramidal cell layer, the authors 142 

may have underestimated the true CA2 connectivity. Another possibility is that they 143 

might have focused more on the CA2a subarea, which was conventionally defined as 144 

"the CA2 region". This sampling bias could also lead to an underestimation of the CA2 145 

connectivity. 146 

The CA2 region was reported to contain a higher density of GABAergic 147 

interneurons than the CA1 or CA3 region (Leranth and Ribak, 1991; Mercer et al., 148 

2007). Interestingly, within the CA3 region, the CA3a subarea receives more inhibitory 149 

inputs and has denser recurrent connectivity than the CA3b subarea (Sun et al., 2017). 150 
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These observations suggest similar circuit properties of the CA2b and CA3a subareas. 151 

The high density of recurrent excitatory connections may be counter-balanced by strong 152 

inhibitory inputs and maintain the excitatory-to-inhibitory balance in the CA2 local 153 

circuit.  154 

 155 

Methods 156 

Animal experiment ethics 157 

Experiments were performed with the approval of the Animal Experiment Ethics 158 

Committee at the University of Tokyo (approval no. P29-9) and according to the 159 

University of Tokyo guidelines for the care and use of laboratory animals. Institute of 160 

Cancer Research (ICR) mice (SLC) were housed in cages under standard laboratory 161 

conditions (12 h light/dark cycle, ad libitum access to food and water). All efforts were 162 

made to minimize the animals’ suffering and the number of animals used. 163 

 164 

Acute slice preparation  165 

Acute slices were prepared from the hippocampi of ICR mice (17-26 postnatal days). 166 

The mice were anesthetized with isoflurane and then decapitated. The brains were 167 

removed and placed in an ice-cold oxygenated solution consisting of (in mM) 222.1 168 

sucrose, 27 NaHCO3, 1.4 NaH2PO4, 2.5 KCl, 1 CaCl2, 7 MgSO4, and 0.5 ascorbic acid. 169 

The brains were sliced horizontally at a thickness of 400 µm using a VT1200S 170 

vibratome (Leica). The slices were allowed to equilibrate at room temperature for at 171 

least 0.5 h while submerged in a chamber filled with oxygenated aCSF consisting of (in 172 

mM) 127 NaCl, 26 NaHCO3, 1.6 KCl, 1.24 KH2PO4, 1.3 MgSO4, 2.4 CaCl2, and 10 173 
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glucose. The slices were mounted in a recording chamber and perfused at a rate of 1.5–3 174 

ml/min with oxygenated aCSF. 175 

 176 

In vitro electrophysiology 177 

All recordings were performed at 32−34°C. Whole-cell recordings were collected from 178 

up to four CA2 pyramidal cells using a MultiClamp 700B amplifier and a Digidata 1550 179 

digitizer controlled by pCLAMP10.6 software (Molecular Devices). Borosilicate glass 180 

pipettes (3−6 MΩ) were filled with a solution containing (in mM) 135 K-gluconate, 4 181 

KCl2, 0.3 EGTA, 10 HEPES, 10 Na2-phosphocreatine, 4 MgATP, 0.3 Na2GTP and 2.0 182 

biocytin. The signals were gained 10-fold, low-pass filtered at 1 kHz and digitized at 20 183 

kHz. The existence of synaptic connectivity was assessed by averaging 50 successive 184 

traces in which 4 spikes at 20 Hz were induced by current injection in presynaptic cells.  185 

 186 

Histology 187 

CA2 pyramidal cells were perfused intracellularly with 2 mM biocytin for whole-cell 188 

recordings. After the recordings, the slices were fixed for at least 20 h at 4°C in 0.1 M 189 

Na3PO4, pH 7.4, containing 3% (w/v) formaldehyde. The sections were incubated with 190 

2 μg/mL streptavidin-Alexa Fluor 594 conjugate and 0.2% Triton X-100 for 6 h, 191 

followed by incubation with 0.4% NeuroTrace 435/455 blue-fluorescent Nissl Stain 192 

(Thermo Fisher Scientific; N21479) overnight. The tissue sections were incubated 193 

subsequently with mouse primary antibodies for RGS-14 (NeuroMab; N133/21; 1:500) 194 

or STEP (Cell Signaling Technology; 4396S; 1:500) for 16 h at 4°C, followed by 195 

incubation with a secondary goat antibody to mouse IgG (Thermo Fisher Scientific; 196 

A-11001; 1:500) for 6 h at 4°C.  197 
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 291 

Figure 1 | Distributions of CA2 pyramidal cells along the longitudinal axis of the 292 

mouse hippocampus. A) A whole hippocampus was sectioned transversely at the 293 

dorsal, middle, and ventral areas, indicated by the broken white lines. B-D) The 294 

transverse sections at the dorsal (B), middle (C), and ventral (D) areas were labeled with 295 

an anti-RGS14 antibody (green, a CA2 marker) and NeuroTrace 435/455 Nissl Stain 296 

(blue). The bottom photos are magnified images of the CA2 parts, indicating that the 297 

CA2 borders next to the CA1 and CA3 regions are ambiguous because of the sparse 298 

distribution of the CA2 pyramidal cells, particularly in the ventral hippocampus. 299 
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 301 

 302 

Figure 2 | Monosynaptic recurrent connection of a CA2-CA2 pair. A) Top: 303 

Confocal images of a synaptically connected pair of CA2 pyramidal cells that were 304 

filled with biocytin (red). Middle: The CA2 region was immunostained for RGS14 305 

(green). Bottom: RGS14 was expressed in the recorded cells. B) Unitary EPSPs of the 306 

connected pair. Top: Mean trace of a train of current injection-induced action potentials 307 

of the presynaptic cell (blue, averaged for 50 traces). Middle: Representative 308 

postsynaptic membrane responses recorded in the current-clamp mode for the 309 

successive trials (black). Bottom: an average of 50 recorded traces for the postsynaptic 310 

cell.  311 
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 313 

 314 

Figure 3 | Unitary EPSP properties of all connected pairs. Top: Percentages of 315 

synaptic failures in the responses to a presynaptic spike train (4 pulses at 20 Hz) for 7 316 

connected pairs. Train stimuli were repeated 50 times. Center: Synaptic efficacies 317 

across the 50 trains (including failure events). Bottom: Synaptic potencies (without 318 

failure events). 319 
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 321 

 322 

Figure 4 | Lack of correlation of CA2-CA2 connections with their inter-cell 323 

distances. The top histogram indicates the distributions of the distances between the 324 

centroids of the cell bodies of all recorded pairs. The center histogram indicates the 325 

same distribution as the top, but for only the synaptically connected pairs. The bottom 326 

graph plots the connection probabilities (i.e., the center histogram divided by the top 327 

histogram) as a function of the inter-soma distance (red). The black line is the mean 328 

connection probability (1.4%). The gray area is the 95% confidence interval estimated 329 

by 10,000 randomly resampled surrogates. 330 
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 332 

 333 

Figure 5 | Spatial bias of CA2-CA2 connections. A) The stratum pyramidale of the 334 

CA2 region was normalized as a rectangle according to RGS14-positive or 335 

STEP-positive areas. Gray dots and lines indicate the soma location of the recorded 336 

CA2 pyramidal cells and their potential connections (unconnected), respectively. Red 337 

lines represent the synaptic connections (n = 6). Red filled and open circles indicate the 338 

soma location of the presynaptic and postsynaptic cells, respectively. B) A polar plot of 339 

the inter-soma directions of the synaptically connected pairs. Each black line indicates 340 

the direction from the soma of one presynaptic cell to the soma of its postsynaptic cell. 341 

The red arrow represents the mean vector of all 6 connected pairs. V = 2.05, P = 0.02, 342 

V-test. C) Cumulative distributions of the midpoints between two soma locations of 343 

connected pairs (red line) and unconnected pairs (black line) along the transverse axis 344 

(left) and the radial axis (right). The gray areas indicate the 95% confidence intervals 345 

estimated by Kaplan-Meier method.   346 
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