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Summary  

 

High-throughput experimental techniques have made possible the systematic sampling of the 

single mutation landscape for many proteins, defined as the change in protein fitness as the result 

of point mutation sequence changes.  In a more limited number of cases, and for small proteins 

only, we also have nearly full coverage of all possible double mutants. By comparing the 

phenotypic effect of two simultaneous mutations with that of the individual amino acid changes, 

we can evaluate epistatic effects that reflect non-additive cooperative processes. The observation 

that epistatic residue pairs often are in contact in the 3D structure led to the hypothesis that a 

systematic epistatic screen contains sufficient information to identify the 3D fold of a protein.  

To test this hypothesis, we examined experimental double mutants for evidence of epistasis and 

identified residue contacts at 86% accuracy, including secondary structure elements and evidence 

for an alternative all--helical conformation. Positively epistatic contacts – corresponding to 

compensatory mutations, restoring fitness – were the most informative.  Folded models 

generated from top-ranked epistatic pairs, when compared with the known structure, were 

accurate within 2.4 Å over 53 residues, indicating the possibility that 3D protein folds can be 

determined experimentally with good accuracy from functional assays of mutant libraries, at 

least for small proteins. These results suggest a new experimental approach for determining 

protein structure. 

 

Introduction 

 

Experimental work dating back over 20 years has shown that epistasis, non-additive phenotypes 

of combined mutations, within a protein sometimes occur between residues that are spatially 

close in that protein’s 3D structure(s). The reported correspondence between physical proximity 

and non-additive effect was mostly for compensatory epistasis - where the effect of two 
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mutations is less deleterious than expected from the combined effect of the single mutations (1-

3). Until recently, studies of epistasis have been limited to measuring relatively few mutant pairs 

(1-3), but recent investigations have taken advantage of technological advances in sequencing 

ability to assess the phenotypic effects of thousands of mutations simultaneously, generally 

coined “deep mutational scanning” (4-29).  These experiments can measure different phenotypes 

including ligand binding, splicing and catalysis (5, 9, 12, 14, 22, 24, 30), and cellular or 

organismal fitness under selection pressure (6-8, 10, 13, 15, 18, 20, 21). Typically, these scans 

survey all possible single mutations, with  a few that have  surveyed a large number (but small 

minority) of multiple mutations (7, 23), and one study assessed the effects of all double 

mutations across an entire protein domain: the 56-residue IgG binding domain of protein G from 

Streptococcus (GB1) (31). Confirming many earlier lower throughput studies, Olson et al. found 

that epistatic pairs of residues in the GB1 domain of protein G have a tendency to be close in 3D, 

especially those that have positive, compensatory epistasis (31).  

 

Meanwhile, structural biology has also benefited from advances in sequencing. In addition to 

experimental determination (e.g. NMR, X-Ray crystallography and cryo-EM), recent 

computational approaches have also been successful in folding both small and large proteins ab 

initio using residue-residue contacts inferred from natural, evolutionary sequence information 

(32-36). These successful methods use a global model, e.g., inferred from entropy maximization 

to identify residue-residue evolutionary couplings also likely to be close in the protein’s folded 

structure.  Where sufficient related sequences are available, evolutionary couplings provide 

enough information to determine accurate 3D structures for many protein examples, including 

those of large membrane proteins (32, 33), complexes (37), and RNAs (38), as well as proteins 

with alternative conformations (39). These new computational methods, although powerful, are 

limited by the availability of large and diverse sequence families from the natural environment.  

 

By analogy to the success of computational approaches determined from natural sequence 

variation, we reasoned that the strongest epistatic pairs of residues determined from large-scale 

genetic experiments may be sufficient to fold a protein into its native, functional three-

dimensional structure.  Here we test this idea by computing the epistasis of all possible double 

mutants as reported by Olson et al. (31), who assayed more than 500,000 sequences for fitness in 

a binding assay. We find that the positional pairs that contain the strongest compensatory 

epistatic effects in GB1 are sufficient to reveal its secondary structural elements and its native 

three-dimensional fold, with local epistatic contacts also signaling a possible alternative 

secondary structure consistent with the triple-helical bundle as demonstrated in prior fold-

switching studies (40-43).  These results indicate that deep mutational scans can provide a new 

method of assaying protein structure.  
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Results 

 

Residue pairs that are epistatic are close in 3D  

To explore whether pairs of residues that are most epistatic are close in the 3D structure, we 

analyzed the experimental data from Olson et al. (31) that systematically tested all single and 

almost all pairwise mutations of the 56 amino acid GB1 domain of Streptococcal protein G 

(1045 singles and 535,917 double mutations). In these experiments, the pooled proteins were 

assayed for binding to human immunoglobulin IgG, and fitness was approximated by changes in 

sequence read ratios using mRNA tags on the proteins. We filtered out reads with the highest 

probability of noise, discarding 3% of the double mutants (those with fewer than 20 reads before 

selection).  We then estimated the epistasis for each double mutant using a correction for the 

assay resolution, reproducing the epistasis scores computed in the original report (31) (Supp. 

Figure 1, Supp. Table 1, Methods). We then mapped the pairs of epistatic residues onto known 

three-dimensional structures of the GB1 protein, i.e., the 14 solved 3D structures of wild-type 

GB1 (Figure 1, Supp. Table 2). 95% of the top 20 (86% of the top L/2 pairs where L = sequence 

length) of residues contain any atoms within 5Å of each other in the NMR structure 2gb1(44) 

(Table 1), with similar precisions when compared against other wildtype crystal structures (Supp. 

Table 2) (45).  We observed compensatory epistasis (positive epistasis) to be more informative 

than negative epistasis for 3D structure contacts (31) by comparing positive and positive epistatic 

pairs to contacts in known structures (Supp. Table 2, Methods). Here, we report results for 

contacts predicted by the largest positive, negative, and absolute epistasis for comparison. 

 

Epistasis scores between nearby residues reveal secondary structure  

By analogy to previous work using evolutionary sequence alignments to determine secondary 

structure (39), we used the strength of the epistasis  between residues i to i+1, i+2, i+3, and i+4 

to explore the secondary structure of the domain.  This approach using only information 

contained has the advantage of being unsupervised and capable of revealing alternative states ( in 

contrast to the successful existing methods available by training from known structures, e.g., 

PredictProtein (46) and PsiPred (47)). The secondary structure we computed from the local 

epistasis scores is almost identical to those in known structures of GB1, a four-stranded -sheet 

with one -helix, differing only in an offset at the start of the second and third -strands and a 

weaker signal for the second  strand compared to the other three (Figure 1). Visualization of the 

interactions of these elements also reveals typical secondary structure element interactions, such 

as long-range (in sequence) strand-strand contacts (Figure 1). From the contact maps of the most 

positive epistatic pairs, we observe two antiparallel -strand hairpin contacts (strands β1-β2 and 

strands β3-β4) and one parallel -strand contact (strands β1-β4), consistent with a  sheet with 

strand order β2-β1-β4-β3 (Figure 1). These predicted epistatic pairs define the strand-strand 

register to within +/-1 residue and provide insight into the overall 3D topology of the protein. 
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Our analysis also reveals a signal for alternative secondary structural elements, with a propensity 

towards two helices in positions 235-240 and 268-280 in addition to the existing middle helix in 

the GB1 domain.  This competing signal suggests three consecutive helices as an alternative to 

the four -strands plus one helix secondary structure of GB1 (Figure 1, Supp. Table 3).  

Intriguingly, the three helices match the secondary structure of a mildly mutated GB1 structure 

with different overall 3D fold (40-42), which is topologically similar to the structure of the GA 

domain of the same protein that binds human serum albumin – a different partner (43).  

However, this signal seems specific to local epistasis. By contrast, there are a small number of 

high-scoring evolutionary couplings (derived from natural sequences) that are uniquely 

consistent with the tertiary structure of the three -helical fold.  Hence it seems that the 

evolutionary sequence evidence more strongly reveals a potential three -helical fold than the 

double mutation experiments.  This could be explained by the nature of the experimental 

selection to bind IgG rather than serum albumin.  It seems that more research is needed both to 

tease out how the fold switching might be encoded in the sequence and to understand its 

biological relevance.  

 

Three-dimensional folds from epistasis experiments alone  

We then tested the efficacy with which epistasis-predicted contacts can guide folding towards 

correct three-dimensional structure. Using 10 to sequence length 56 of the most positively 

epistatic pairs as residue-residue distance constraints, as well as secondary structure constraints, 

we folded the open chain according to a distance geometry and simulated annealing protocol in 

the “Crystallography and NMR software Suite”, CNS (48) (Methods).  We used additional 

rounds of simulated annealing in CNS to further refine structures.  Resultant 3D models were 

ranked by the number of satisfied residue-residue constraints and realistic distances between 

beta-strands (Supp. Figure 2, Methods).  The top-ranked model is 2.4 Å C- rmsd over 53 

residues (TM-align score of 0.57) compared to 2gb1 (45, 49), and therefore in excellent overall 

agreement with the known experimental structure (Figure 2).  Removing 4 false positives from 

the 28 (L/2) contacts further improves the folding to 1.9 Å C- rmsd, which unsurprisingly 

suggests that folding can be improved by better detecting epistatic pairs not likely to be in direct 

contact.  These false positives may contain information relevant to biological function; all four 

pairs involve residues at the immunoglobin-binding interface (Figure 2).  Additionally, these 

models are likely to be improved by adding additional strand-strand constraints (as in (33)).   

 

Comparison to evolutionary couplings from natural evolution  

We then examined whether evolutionary couplings, derived from the alignment of natural 

sequences alone, provide overlapping or orthogonal information to epistatic-derived contacts 

from in vitro fitness assay experiments. Obtaining high-quality evolutionary couplings relies on a 

protein having a traceable evolutionary history large enough to provide many related sequences 

that are sufficiently diverse.  We built multiple alignments with different levels of 
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permissiveness in including distantly related sequences, and calculated the top-scoring L/2 (L = 

sequence length, 56) evolutionary couplings to compare against the epistasis-derived pairings.  

We were only able to identify 9 high-confidence evolutionary couplings (Methods), though 

multiple lower-ranked couplings were true contacts in the wildtype structure (Supp. Figure 3).  

We see that the top-ranked positive epistatic pair is represented in this group of high-scoring 

evolutionary couplings (Methods, Supp. Figure 4).  However, this group of evolutionary 

couplings does not share a strong commonality with the most positive epistatic contact 

predictions (Supp. Figure 4).  These findings indicate that although high-ranking evolutionary 

couplings do have some overlap with high-ranking epistatic-based contact predictions, they 

provide non-identical and complementary sources of information. While the precise mechanistic 

details require further investigation, it is clear that the selection processes in natural evolution in 

many species and across many generations give rise to different details of inter-residue 

constraints than do screening or selection assays in the laboratory. 

 

Discussion 

 

First folding from epistatic pairs  

This work was inspired by the comprehensive biophysical description of pairwise epistasis by 

Olson et al. (31) and makes use of their rich dataset screening an exhaustive library of residue 

pair mutants in an ingenious binding assay. Consistent with their observation that strongly 

epistatic pairs can be explained by contact interactions in the protein structure, we demonstrate 

that top-ranked epistatic pairs can be used to predict the correct protein fold to remarkable 

accuracy.  

 

Few epistatic pairs suffice 

The number of epistatic pairs sufficient for folding is surprisingly small (e.g., 37 contact pairs 

out of 1485 residue pairs tested) and less than the 20-40% randomly sampled subsets of correct 

contacts needed to reach fold accuracy of 4Å-2Å positional rmsd (50) in benchmark tests. The 

reason might be that the functionally and structurally most constrained pairs occupy strategic 

positions for the folding process and/or the stability of the protein structure so that knowledge of 

only a sparse set of interaction constraints leads to the correct fold. 

 

Design of more efficient libraries for structure determination from pair mutation scans 

As only a small subset of a complete double mutant scan carries the majority of information 

about pairwise proximity, it may be possible to obtain fold predictions from significantly less 

exhaustive experiments, if one can design – and generate at reasonable cost - a library of mutants 

with a higher yield of strongly epistatic pairs.  Such design can be guided by various sources of 

information, such as prediction of secondary structure and residue surface exposure, 

conservation patterns from natural sequences, and physio-chemical or statistical residue-residue 

interaction potentials. Synthesis of designed libraries, however, is currently very costly for 
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proteins larger than about 70 residues. A practical compromise for larger proteins may be the 

random ligation of designed libraries for 70-residue fragments. 

 

Beyond 3D structure 

Similar to observations by Olson et al. (31), we find that the strongest epistatic residue pairs map 

to near one of the two main interaction sites of the GB1 protein domain with the Fab fragment of 

immunoglobulin IgG (PDB ID 1IGC, PMID 7966308). These epistatic interactions appear to 

stabilize the interaction of the C-terminus of the -helix with two of the beta strands and nearby 

loops. It is plausible that reliable formation and stability of this part of the structure is 

particularly important for binding in the complementary pocket on the IgG, causing a small 

number of strong epistatic signals in the Olsen et al. binding screen. Future scans of this type 

may therefore not only provide 3D folds by also indicate binding site or active sites, according to 

the type of assay used. 

 

A new experimental method for protein structure determination 

Overall, high throughput selection or screening experiments systematically probing epistasis of 

sequence changes contain a wealth of information on interactions constrained by protein function 

and can provide sufficient information to determine a protein fold. Structure determination by 

systematic mutational scans followed by epistasis analysis is a new opportunity, complementing 

the classic experimental methods for protein structure determination such as crystallography, 

NMR or cryo-EM. To make this type of epistasis method broadly applicable for structure 

determination raises the challenges of the definition of assays for particular proteins, generally 

efficient experimental methods for reading out protein fitness for each sequence, as well as 

coping with much larger libraries for larger proteins. 

 

 

Methods 

 

Calculation of epistasis 

Olson et al. synthesized a majority (535,917/536,085) of all possible double mutants, and all 

single mutants (1,045) in the GB1 domain of protein G (31).  The fitness of each individual 

mutant was defined as the ratio of sequence reads before and after selection, normalized by the 

ratio for the wild-type sequence. Epistasis was defined as the logged ratio between double 

mutant fitness and the product of the fitness of constituent single mutants. 

 

 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/320721doi: bioRxiv preprint 

https://doi.org/10.1101/320721
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

As Olson et al. found that non-specific absorption to Ig-G beads led to a fitness of approximately 

0.01, all fitness values smaller than this were set to 0.01. Similarly, in the calculation of epistasis, 

when the product of single mutant fitnesses is smaller than 0.01, it is also fixed to 0.01. The input 

counts of double mutants vary between 1-64,627.  As an additional filtering step, we excluded all 

mutants with fewer than 20 pre-selection read counts from analysis as lower input counts 

sensitize measurements to noise. This filtering step removes ~3% of the synthesized double 

mutants. The fitness and epistasis values of every measured double mutant can be found in 

Supplementary Table 1. 

 
 

Secondary structure estimation 

In order to determine secondary structure from the epistasis measurements, we adapted a method 

from Toth-Petroczy et al. that predicts  and  propensities from local evolutionary couplings 

(39).  In  strands, every other position is proximal, whereas in  helices every third and fourth 

position is proximal. For each position i, we therefore calculated a  strand score defined by the 

maximum epistasis measured between position i and i+2, i-2 minus that between i and i+1, i-1.  

We then calculate an  score according to the maximum epistasis measured between position i 

and i+3, i-3, i+4, i-4. Secondary structure was then attributed wherever the mean  (from i-4 to 

i+4) or mean  score (from i-2 to i+2) was greater than the average over the sequence. 

 

3D folding constraints and selection 

To generate 3D folds of GB1 that place epistatic positions in proximity, we used the 

Crystallography and NMR System (CNS) package (51).  An extended chain model was 

generated for GB1 and used as the starting fold.  We used varying numbers of long-range (>= 5 

amino acids apart in the sequence) epistasis-predicted contacts as 2-4 Å distance constraints on 

the most distal heavy atom of each side chain.  Distance and dihedral angle constraints for the 

secondary structure were placed as described in previous work (32, 33) using the correct 

secondary structure regions from the crystal structure 1pga (45).  The standard version of CNS’s 

distance geometry - simulated annealing script was used to calculate 10 models for each number 

of top-scoring epistatic constraints between 10 and 56, and an additional level of simulated 

annealing based on the default <anneal.inp> script in CNS was run on each of these intermediate 

models using 20 or 30 epistatic constraints.  This algorithm produced 4100 total folded model 

candidates. 

 

Model ranking  

From the contact maps, we were able to recover the topology of the  strands, including high-

scoring contacts between strand 1 and 2, 1 and 4, and 3 and 4.  We ranked each model based on 

how many of the top L/2 (28) epistatic constraints were satisfied added to how many contacts 

between interacting strands we observed.  As a control, we ranked the crystal structure and found 

it scored the highest compared to all of the predicted structures.  The top-scoring models from 
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this ranking were compared with the wildtype structures to report the resulting TM and rmsd 

scores, also finding the best ranking model by our criterion to have the lowest rmsd.   

 

Evolutionary couplings of GB1 from natural sequence variation 

Multiple sequence alignments of the GB1 domain (Uniprot P06654, residues 225-290) were 

generated using five iterations of jackhammer (52) against the April 2017 Uniref100 dataset (53).  

Evolutionary couplings were calculated as described previously (32, 33) on an alignment 

including 59,327 sequences (14,441 effective sequences after down-weighting sequences with > 

80% sequence identity) with 56/66 residues containing fewer than 30% gaps in aligned columns. 

A mixture model approach was used to identify residues most likely to be in the lognormal tail of 

the score distribution. 9 evolutionary couplings were found to have a >90% of falling in the tail 

and are therefore most likely to be true contacts (39). 

 

Comparing evolutionary couplings to epistasis experiment 

Positive epistasis scores were calculated by taking the most positive value over all possible 

mutations at each pair of residues at positions i and j, where |i-j| >= 5 to select only long-range 

contacts.  The chance of having the highest positive epistatic score in the group of evolutionary 

couplings randomly was computed as 0.022 (28/N where N = 1275 possible long-range contacts, 

derived using the hypergeometric distribution probability of encountering our single top-ranked 

pair in 28 random draws over a population of 1275 without replacement.)  We compared the top 

L/2 evolutionary couplings to a null model wherein couplings fall randomly in the epistasis 

distribution. Therefore, feature distributions were generated by randomly sampling groups of 28 

(i,j) pairs from this set 500,000 times, and computing either the top-ranked, mean, or median 

epistasis value of this subset. Although the average epistatic score for the top L/2 evolutionary 

couplings was greater than 96% of random groups of pairs of the same size, the median of the 

evolutionary couplings group was indistinguishable from the distribution of medians from 

random samples (Supp. Figure 4).    

 

When classifying contacts as unique in one fold versus common in another, we require atoms in 

one residue to be within 5Å of any atom in another residue but also more than 8Å apart from that 

residue in the alternative structure.   
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Figure 1 
 

 
Figure 1. Amino acid residue contact prediction of the GB1 protein domain from epistatic 

couplings. Top: Top positive epistatic pairs (black) up to L/2 long-range  (|i-j|  5) contacts (L: 

length of protein, 37 contacts total, 83% true positives) that are used to determine the topological 

arrangement of secondary structure elements (orange arrows). Contact predictions are precise 

where the epistatic pair (black) agrees with the contacts in the crystallographic structure 

(minimum atom-atom distance between two residues; dark blue, 5 Å cutoff; light blue, 8 Å 

cutoff) and less precise or incorrect otherwise. Bottom: Secondary structure propensity from 

local epistasis values (vertical axis):  helical score (blue),  strand score (red). Scores are mean 

centered with arbitrary units (values in Supp. Table 3). 
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Figure 2 

 
Figure 2. Predicted 3D fold model of the GB1 protein domain (gray) generated from positive 

epistatic couplings, compared to the crystal structure (a, PDBid: 2gb1 in blue).  The predicted 

structure is within 2.4 Å of the known structure over 53/56 residues, with a template modeling 

(TM) score of 0.57.  Top-scoring epistatic pairs (b, green lines on 2gb1) are used as constraints 

to fold the protein. However, four of these epistatic pairs are not close within the known 

structure, and interestingly all involve sidechains that contact immunoglobin when bound (c, 

GB1 in grey with red highlighted residues, IgG in tan, PDBid: 1fcc (54)). 
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Table 1. 

 top 20 pairs Top 30 pairs top 40 pairs top 50 pairs top 100 pairs 

Positive epistasis 95% 87% 83% 72% 62% 

Negative epistasis 25% 27% 30% 38% 31% 

Absolute epistasis 40% 40% 40% 44% 37% 

 

Table 1. Percentage of correctly predicted contacts (true positives) using various forms of 

epistasis. The percent of predicted contacts according to residues with any atom within 5 Å 

(NMR structure 2gb1). Three forms of epistasis are considered for prediction: i,j pairs 

corresponding to mutations with the largest positive, negative, or absolute measure epistasis. 
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Supplementary information 

 
Supplementary figure 1: 

Mean epistasis for all mutations at positions i,j. Values scaled by 3 to meet the colorscale used 

by Olson et al. Figure 3b. More negative average epistasis is shown as green, more positive as 

orange. 

 
 

Supplementary figure 2: 

The root mean square distance of backbone carbons in the CNS models to those of a gb1 crystal 

(pdb id: 1pga), plotted versus ranking score. The 150 constraints are obtained from the top L/2 

epistasis pairs, and all possible interactions between the beta strands implicated by the secondary 

structure and topology inferred by epistasis-predicted contacts (see Figure 1). 1pga is shown in 

red, with 0 rmsd, satisfying 68 constraints. 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/320721doi: bioRxiv preprint 

https://doi.org/10.1101/320721
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

 

Supplementary figure 3: 

Top L/2 evolutionary couplings (black) and top L/2 positive epistasis pairs (red), plotted on top 

of the contacts (<5A, dark blue; <8A, light blue) of a gb1 structure (pdb id: 2gb1). To 

differentiate the couplings from epistatic pairs, lower and upper triangles are plotted respectively. 
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Supplementary figure 4: 

The top L/2 evolutionary couplings compared against the largest values of positive epistasis at all 

pairs of positions i,j. a. The measured max positive epistasis at each of the top L/2 couplings  

(black) and the mean of those values (red) versus the overall distribution of max positive 

epistasis across all i,j-s (blue) with mean (yellow). b. The distribution of max positive epistasis 

for 500,000 samplings of 28 (L/2) random i,j pairs (blue). The max positive epistasis value 

among the evolutionary couplings (red). c. The distribution of mean positive epistasis values 

(blue) and mean of the evolutionary couplings (red). d. The distribution of median positive 

epistasis values (blue) and median of the evolutionary couplings (red). 

 

 
 

 

 

 

Supplementary table 1: 

Calculated fitness and epistasis values for all double mutants- raw input and output counts are 

included from Olson et al. 

 

Supplementary table 2: 

True positives of the top positive, negative and absolute epistasis pairs versus all <5A crystal 

contacts from wild-type and mutant gb1. 

 

Supplementary table 3: 

Alpha and beta secondary structure scores computed from epistasis values, as described in 

Methods. 
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