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Abstract 

 
Background 

Several reports have suggested a role for epigenetic mechanisms in ASD etiology. Epigenome-

wide association studies (EWAS) in autism spectrum disorder (ASD) may shed light on 

particular biological mechanisms. However, studies of ASD cases versus controls have been 

limited by post-mortem timing and severely small sample sizes. Reports from in-life sampling of 

blood or saliva have also been very limited in sample size, and/or genomic coverage. We 

present the largest case-control EWAS for ASD to date, combining data from population-based 

case-control and case-sibling pair studies. 

 

Methods 

DNA from 968 blood samples from children in the Study to Explore Early Development (SEED 

1) was used to generate epigenome-wide array DNA methylation (DNAm) data at 485,512 CpG 

sites for 453 cases and 515 controls, using the Illumina 450K Beadchip.  The Simons Simplex 

Collection (SSC) provided 450K array DNAm data on an additional 343 cases and their 

unaffected siblings.   We performed EWAS meta-analysis across results from the two data sets, 

with adjustment for sex and surrogate variables that reflect major sources of biological variation 

and technical confounding such as cell type, batch, and ancestry. We compared top EWAS 

results to those from a previous brain-based analysis. We also tested for enrichment of ASD 

EWAS CpGs for being targets of meQTL associations using available SNP genotype data in the 

SEED sample. 

 

Findings 

In this meta-analysis of blood-based DNA from 796 cases and 858 controls, no single CpG met 

a Bonferroni discovery threshold of p < 1.12x10-7. Seven CpGs showed differences at p < 1x10-5 
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and 48 at 1x10-4. Of the top 7, 5 showed brain-based ASD associations as well, often with larger 

effect sizes, and the top 48 overall showed modest concordance (r = 0.31) in direction of effect 

with cerebellum samples.  Finally, we observed suggestive evidence for enrichment of CpG 

sites controlled by SNPs (meQTL targets) among the EWAS CpGs hits, which was consistent 

across EWAS and meQTL discovery p-value thresholds. 

 

Conclusions 

We report the largest case-control EWAS study of ASD to date. No single CpG site showed a 

large enough DNAm difference between cases and controls to achieve epigenome-wide 

significance in this sample size.  However, our results suggest the potential to observe disease 

associations from blood-based samples. Among the 7 sites achieving suggestive statistical 

significance, we observed consistent, and stronger, effects at the same sites among brain 

samples.  Discovery-oriented EWAS for ASD using blood samples will likely need even larger 

samples and unified genetic data to further understand DNAm differences in ASD. 
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FINDINGS 

 

The etiology of autism spectrum disorder (ASD) may involve epigenetic mechanisms. Indirect 

evidence supporting this hypothesis comes from the observation that children with Rett, Fragile 

X, and Angleman Syndromes often show impaired communication and exhibit repetitive 

behaviors [1–3], two core domains affected in autism. All 3 of these Syndromes are caused by 

epigenetic defects [4–9]. Additional evidence stems from genetic studies of rare variation in non-

syndromic forms of ASD. Although these studies have primarily identified private variants 

associated with ASD, there is now strong evidence that the ASD associated variants converge 

upon three biological pathways, one of which is chromatin remodeling [10–12]. Finally, there is 

direct evidence from case-control postmortem brain studies supporting epigenetic involvement 

in ASD. Several candidate gene-based studies have shown altered epigenetic states associated 

with autism [13–18]. Genome-scale screens have identified changes in DNA methylation 

(DNAm) at specific CpG sites [19, 20] as well as global changes in non-CpG methylation levels 

[21] in postmortem cerebral tissue from individuals with ASD relative to controls. Studies of 

cerebral cortex tissue has revealed genomic spreading of histone H3 lysine 4 methylation and 

histone H3 lysine 27 acetylation marks, away from the promoter region, among a subset of 

individuals with ASD compared to controls [22, 23]. 

 

Examination of the affected tissue, i.e. brain, can provide important insights into potential 

mechanisms of disease etiology; however, there are considerable limitations with these types of 

studies. They suffer from severely small sample sizes, have historically had low genomic 

coverage, and often lack comprehensive unified clinical, demographic, and genomic data. 

Importantly, they are based on autopsy-derived tissue and do not reflect epigenetic marks in a 

living individual, are not at optimal developmental timing, and may be influenced by life 

experiences and cause of death. To overcome these barriers, complementary, large population-
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based autism epigenetic studies using accessible tissues, such as blood, from living individuals 

are needed. To date, three genome-scale epigenetic studies of autism in accessible peripheral 

tissues have been performed. One study of peripheral blood from 50 monozygotic twin pairs, 

including 6 pairs discordant for ASD at age 15, examined DNAm at over 27,000 CpG sites in 

promoter regions. The authors found suggestive evidence for epigenetic alterations associated 

with ASD and associated traits within families [24]. Similarly, an investigation of DNAm at CpG 

island regions in lymphoblastoid cell lines, obtained from 7 twin pairs including 3 discordant for 

ASD, found ASD-related DNAm changes at the RORA gene [25].  Both of these studies were 

limited by the small number of samples examined, lack of genome-scale coverage, and specific 

focus on twin pairs with a lack of extension to the general population.  Ectoderm cell lineage 

derived buccal cells, obtained from 47 ASD cases and 48 controls born to mothers aged 35 and 

older, have also shown suggestive epigenetic alterations associated with ASD [26]. While 

suggestive, it is unclear how these buccal-based epigenetic findings relate to a population 

sample and in a larger number of individuals. Thus, more research in accessible tissues from 

larger population-based, non-familial, samples is needed. 

Here, we overcome previous limitations and perform the largest epigenome-scale examination 

of DNAm, to date, among two large U.S. case-control studies of autism: the Study to Explore 

Early Development, phase I (SEED I) and the Simons Simplex Collection (SSC). Both 

measured DNAm at over 450,000 loci in childhood blood samples from either population-based 

cases and controls (SEED I) or discordant sibling pairs (SSC). Meta-analysis across both sets 

included 796 ASD cases and 858 controls. In addition to CpG-specific differential DNAm, we 

explored the set of blood-derived differentially methylated sites for their concordance in post-

mortem brain tissue and their enrichment for genetically-controlled CpG sites. 
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Methods 

 

Study to Explore Early Development (SEED) 

The Study to Explore Early Development is a multi-site case-control study with population-

based ascertainment.  In SEED Phase 1, a total of 3,899 families were recruited across 6 study 

sites (California, Colorado, Georgia, Maryland, North Carolina and Pennsylvania) and classified 

into 3 groups according to child’s diagnosis: an autism spectrum disorder (ASD) group, a 

general population control group (POP), and a (non-ASD) developmental delay group.   Details 

regarding participant recruitment, biospecimen collection, and final outcome classification have 

been previously described [27, 28].  Briefly, eligible children were born in one of the catchment 

areas between September 1, 2003 and August 31, 2006, which corresponded to being aged 2-5 

years at the time of SEED phase I enrollment, resided in the same catchment area at the time of 

initial contact, and were required to live with a knowledgeable caregiver who could communicate 

in English (or in English or Spanish in California or Colorado) [27]. Biospecimens were collected 

when the children were between the ages of 3 and 5 years. Children with possible ASD and 

DDs were ascertained through multiple sources providing services for children with 

developmental disorders including hospitals, individual providers, clinics, and education and 

intervention programs.  Parents with a child with an ASD or DD diagnosis could also contact the 

study directly to enroll.  General population controls were ascertained through random sampling 

of vital records in the catchment areas [27].  This provides a more diverse segment of the 

population than solely recruiting participants from autism clinics. 

 

Primary caregivers completed the Social Communications Questionnaire (SCQ) [29], a screener 

for autism spectrum disorder, during the study invitation phone call.  Children with an SCQ 

score below 11 and without a previous ASD diagnosis were asked to participate in a general 
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developmental evaluation in the clinic using the Mullen Scale of Early Learning (MSEL) [30].  If 

the SCQ score was above 11, the child had previously received an ASD diagnosis, or a clinician 

suspected ASD during the clinic visit, the child additionally completed a full ASD evaluation that 

included the Autism Diagnostic Observation Schedule (ADOS) [31–33]  and the Autism 

Diagnostic Interview Revised (ADI-R) [34, 35]. ASD was confirmed based on scores on the ADI-

R and ADOS, as described in detail elsewhere [36].  Institutional review boards at each study 

site and at the Centers for Disease Control and Prevention (CDC) approved the SEED study.  

Informed consent was obtained from all enrolled participants. For this study, we measured 

methylation among a subset of SEED Phase 1 individuals (n=980) with genome-wide 

genotyping data, a complete caregiver interview, an ASD or POP classification, and a sufficient 

amount of DNA available for methylation measurements. 

 

A complete description of the SSC, which enrolled and collected biospecimens from children 

and adolescents aged 4-18 years, can be found elsewhere [37]. Briefly, a geneticist and a 

clinical psychologist were appointed as co-principal investigators at each site. Probands were 

evaluated with a battery of diagnostic measures, including the Autism Diagnostic Interview – 

Revised (ADI-R) [34] and the Autism Diagnostic Observation Schedule (ADOS) [31]. Other 

instruments provided additional measures of the core features of autism, as well as of 

intellectual ability (verbal and nonverbal), adaptive behavior, emotional and behavior problems, 

motor function, and language. A description of instruments employed can be found at 

https://sfari.org/ssc-instruments. A comprehensive family medical history was obtained that 

included the proband’s prenatal and perinatal history, developmental milestones, 

immunizations, medications, dietary supplements, and common behavioral treatments. 

Emphasis was placed on common ‘‘comorbidities’’ including gastrointestinal complaints, sleep 

irregularities, and seizures. In addition, questions were asked about genetic, autoimmune, and 

psychiatric disorders in members of the extended family. Probands were excluded who were 
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younger than 4 years of age or older than 18. Probands were also excluded for conditions that 

might compromise the validity of diagnostic instruments, such as nonverbal mental age below 

18 months, severe neurological deficits, birth trauma, perinatal complications, or genetic 

evidence of fragile X or Down syndromes. A complete description of exclusion/inclusion 

criteria can be found at http://sfari.org. Measures of adaptive function, behavior-emotional 

problems, and symptoms of autism were examined in parents and siblings as well as probands. 

Thus, the SSC represents a unique, well-described sample of able children and adolescents 

with relatively severe ASD, as indicated by ADI-R and ADOS Calibrated Severity Scores [38].  

 

Reliability of Data: to maximize the consistency of clinical observations across sites, each 

clinician was trained in administration of the ADOS and ADI-R to achieve research reliability as 

judged by expert clinicians. Most clinicians who had not previously received research training 

required 4–6 months of practice. Videotapes of interviews were exchanged to ensure that 

reliability requirements were met and maintained throughout the study. Error rates were very 

low, averaging less than 0.50 errors/1000 data points. Most errors could be corrected 

immediately, resulting in an unusually clean data set for a multisite study of this size. During 

each visit, a blood sample was collected from each study participant and DNA was extracted 

from blood cells, while plasma was stored for future use. 

 

DNA methylation data quality control (QC) and processing 

For the SEED samples, genomic DNA was isolated from 980 whole blood samples using the 

QIAsymphony midi kit (Qiagen). For each sample, 500 ng of DNA was bisulfite treated using the 

96-well EZ DNA methylation kit (Zymo Research). Samples were randomized within and across 

plates, and across two main processing dates to minimize batch effects, and run on the Illumina 
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HumanMethylation450 BeadChip. Background correction and dye-bias equalization was 

performed using the function preprocessNoob() [39, 40] in the minfi R package [41].  We 

included 12 cross-plate duplicates for quality control purposes; pairwise correlation metrics for 

the duplicate samples ranged from 0.990 to 0.997 with a mean correlation value equal to 0.995. 

Samples were removed if they had low overall intensity (median unmethylated or methylated 

signal < 11) or had a detection p-value > 0.01 in more than 1% of probes (N = 7), or if reported 

sex did not match predicted sex generated via the minfi function getSex() (N = 3). Probes were 

removed if they had a detection p-value > 0.01 in more than 10% of samples (n = 702) and then 

if they had been previously identified as being ambiguously mapped [42] (n = 29,146). Following 

QC, the analytic data included DNAm for 455,664 sites on 970 samples.  We further removed 2 

samples who were missing a final outcome classification, leaving a total of 453 cases and 515 

controls used for association analyses. 

For the SSC samples, five hundred nanograms of human genomic DNA was sodium bisulfite-

treated for cytosine to thymine conversion using the EZ DNA Methylation Gold kit (Zymo 

Research). A total of 728 samples (from 364 families) were randomized within and across plates 

to minimize batch effects, and run on the Illumina HumanMethylation450 BeadChip. Additional 

details have been previously described [43]. Similar quality control procedures as used for the 

SEED samples were used for the SSC samples. After background correction and dye-bias 

equalization, samples were removed for low overall intensity (median unmethylated or 

methylated signal < 11) or for detection p-value > 0.01 in more than 1% of probes (N = 42). 

Probes were removed if they had a detection p-value > 0.01 in more than 10% of samples (n = 

483) and then if they had been previously identified as being ambiguously mapped (n = 29,213). 

These steps resulted in an analytic data set with 455,816 sites on 686 samples, consisting of 

343 proband-sibling pairs. 
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Finally, for all SEED and SSC samples we estimated cell type proportions for 6 different cell 

types (granulocytes, monocytes, CD4 T cells, CD8 T cells, B cells, and natural killer cells) using 

the estimateCellCounts() function in the minfi R package. Estimation incorporated reference 

data from 60 samples generated from 6 healthy adult men [44].  

 

Genotype data quality control and processing 

Whole genome genotyping data was available for 943 of the 970 SEED 1 samples which 

passed DNAm quality control steps. After genotype measurement using the Illumina 

HumanOmni1-Quad BeadChip, standard quality control measures were applied, including 

removal of samples with < 95% SNP call rate, sex discrepancies, relatedness (Pi-hat > 0.2), or 

excess hetero- or homozygosity, and removal of markers with < 98.5% call rate, or that were 

monomorphic. Phasing was performed using SHAPEIT [45] followed by SNP imputation via the 

IMPUTE2 software [46], using 1000 Genomes Project samples as reference. Principle 

components to account for ancestry were determined via the EigenStrat program [47].  

 

Epigenome-wide Association testing and meta-analysis 

For the SEED data, we used linear regression modeling of the M-value (the ratio of methylated 

to total signal determined at every probe in every sample) [48] as a dependent variable and 

ASD status, sex, and surrogate variables (SVs) (described below) as independent variables. We 

implemented this model using the lmFit() function in the limma R package [49], separately for 

each of the DNAm probes that passed QC. For the SSC data, we implemented a generalized 

estimating equation (GEE) model using the gee() function in the gee R package [50] to account 

for the correlation inherent to the familial structure in the data.  We used a fixed correlation 

structure of 0.5 for each sibling pair, and regressed M-value onto ASD status, sex and SVs.  
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To account for sources of technical and biological variability in our association analyses, we 

estimated surrogate variables (SVs) [51] in the cleaned SEED and SSC dataset to include as 

covariates in our downstream analyses. SVs have been shown to capture and adjust for 

differences related to batch effects and cell type proportions across samples in a wide variety of 

simulated settings [52], and to remove the effects of unwanted sources of technical and 

biological variation [51]. In order to explicitly address the strong confounding effect of sex 

resulting from the high degree of male bias in ASD diagnosis, we removed sex chromosomes, 

where DNAm values strongly correlate to sex, before SV estimation, and included sex along 

with ASD status in the model used for SV estimation. We then used a data-driven procedure 

individually in the SEED and SSC data to select the number of SVs to include in the association 

models.  

First, to examine the relationship between each SV and known sources of technical and 

biological variation, we estimated the association between each estimated SV and cell type 

composition, principal components of genetic ancestry, and processing batch. We then 

generated a visual representation of the degree of association with these variables using a heat 

map (Additional File 1: Figures S1a, S2a).  

We next examined the influence of iterative inclusion of SVs as adjustment variables in our 

association regression models. To do this, we first ran a case-control association model with 

adjustment for the strongest estimated SV [51], then progressively included the next strongest 

SV in the analysis and continued this procedure until all estimated SVs were included. For each 

model, we recorded the inflation factor, or lambda, calculated via the estlambda() function from 

the GenABEL R package [53], and visualized the relationship between number of SVs adjusted 

for and lambda values (Additional File 1: Figures S1b, S2b).  We chose the number of SVs to 

include in the model by considering both the number of SVs at which the estimated lambda 

values began to plateau and where the known potential confounders appeared to be captured 
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by one or more SVs. We chose to include 19 SVs in the SEED association analysis and 14 in 

the SSC analysis.  

After completing each association analysis, we then performed a meta-analysis using the 

METAL software [54] on the 445,068 probes that were present in both the SEED and SSC 

cleaned datasets. Our approach weighted individual study effects by sample size and also took 

into account the direction of effect. We also computed the false discovery rate (FDR) using the 

Benjamini-Hochberg method [55].   We also determined statistical power for this meta-analysis 

a priori using an estimation method specifically designed for epigenome-wide association 

studies [56].   

Comparison of blood EWAS hits to brain-based DNAm 

We sought to compare the consistency of top EWAS results from the blood-based meta-

analysis to our previous analysis of post-mortem brain samples from ASD cases and controls 

[19]. These data consist of DNAm from three brain regions: cerebellum, prefrontal cortex, and 

temporal cortex. For the CpG sites reaching suggestive levels of significance (p < 1x10-4) in the 

meta-analysis, we computed mean differences between cases and controls in each of these 3 

brain regions. We then computed Pearson correlations and quadrant count ratios between the 

blood effect sizes and 3 lists of brain effect sizes. We computed quadrant count ratios as the 

sum of concordant effect sizes (both positive or both negative) minus the sum of discordant 

effect sizes, all divided by the total number of effect sizes being compared.  

Methylation quantitative trait loci (meQTL) query and meQTL target enrichment test 

We were interested in exploring the propensity of CpG sites that reached a level of suggestive 

significance in the EWAS meta-analysis to be significantly associated with nearby SNPs. We 

used joint DNAm and genotype data to define SNPs associated DNAm, sometimes referred to 
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as “methylation quantitative trait loci (meQTLs)”, and the CpG sites under genetic control, or 

“meQTL targets”. We then tested for enrichment of meQTL targets in the top ranked CpG sites 

from the meta-analysis.  

In lieu of applying our SV selection method (see ‘Association testing and meta-analysis’) to 

every SNP-CpG association test in the meQTL query, we conducted separate meQTL queries 

in each processing batch of the SEED data (NBatch1 = 606; NBatch2 = 362). In each batch, we first 

used a data-driven procedure we have described in detail previously [57] to select three key 

parameters for the meQTL query: the SNP minor allele frequency threshold for inclusion, the 

CpG variability threshold for inclusion, and the maximum distance between SNP and CpG site 

to be considered for analysis. Briefly, this procedure selects parameters to ensure 80% power to 

detect a 5% DNAm difference with each addition of the minor allele, at a Bonferroni-defined 

significance threshold. We then performed the meQTL query in each batch using the 

MatrixEQTL R package, adjusting for sex, the first 5 principle components to account for genetic 

ancestry, and the first 2 principle components derived from the cell composition estimates. We 

then defined SNP-CpG association pairs based on results that can gain 100% power in the 

parameter survey (“permissive”), 90% power (“intermediate”), and 80% power (“stringent”). If a 

SNP-CpG association pair was significant at a designated threshold in each batch, the CpG site 

was labeled a meQTL target under that threshold for the downstream enrichment analysis.  

We tested for enrichment of meQTL targets in ASD-associated CpG sites. We examined this 

using two ASD EWAS meta-analysis p-value thresholds (p<1x10-3 and p<1x10-4) and the three 

meQTL p-value thresholds. In each enrichment test, we accounted for the two main features of 

CpG sites likely to affect results: the degree of variability in DNAm at that CpG and the number 

of SNPs in the boundary considered. To do this, we binned each CpG site by decile according 

to these factors. For each EWAS/meQTL threshold scenario, we compared the proportion of 

meQTL targets among ASD-related CpGs to a null distribution of randomly selected CpGs, 
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equal in count to the number of ASD-associated sites, matched on the same variability and 

nearby SNP decile. We defined a fold enrichment statistic as the count of meQTL targets in the 

ASD-associated CpGs divided by the mean proportion of meQTL targets from the null set, and 

an enrichment p-value as the number of null CpG sets with a count of meQTL targets that was 

equal to or exceeded the count in the ASD-associated CpG list.  

Results 

ASD EWAS meta-analysis in blood 

We performed a meta-analysis over the 445,068 probes that were present in both the SEED 

(Additional File 2: Table S1) and SSC (Additional File 2: Table S2) cleaned datasets. Figure 

1A shows the range of p-values and effect sizes detected in our meta-analysis. No CpG sites 

reached a Bonferroni level of significance, and effect sizes were modest (1.12x10-7; Figure 1A). 

The genomic inflation factor (λ) was 1.03, with a slight separation from expectation at the tail 

(Figure 1B). A total of 48 CpG sites met or exceeded a p-value < 1x10-4 and 7 CpG sites (Table 

1) reached a significance level of p < 1x10-5. We have provided a full list of summary statistics 

for both SEED and SSC for all 445,068 probes (Additional File 3: Table S3). Based on our 

analytic sample size, we had 80% power to detect a 3.8% DNAm difference between cases and 

controls at a Bonferonni level of significance.  

Consistency of blood EWAS hits in brain 

We considered the consistency of signal for the 48 blood-based CpGs with suggestive 

significance (p-value < 1x10-4), among results from three different brain regions with data 

available from our previous analysis of post-mortem brain samples and ASD [19]. The 

cerebellum exhibited a moderate degree of concordance in effect size and direction (r = 0.31; 

QCR = 0.33); although prefrontal cortex (r = 0.02; QCR = 0.125) and temporal cortex (r = -0.10; 
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QCR = -0.125) showed only minimal concordance (Additional File 4: Table S4, Additional 

File 5: Figure S3). When considering the 7 CpG sites with more stringent blood-based p-values 

< 1x10-5, the direction of effect was consistent for at least 5 of these 7 in all three brain region 

results, with typically larger effect sizes (Table 2).  The CpG site with the largest effect size in 

blood (cg09671955) displayed consistent, and larger, effect sizes in all three brain regions 

(Table 2, Additional File 4: Table S4).  

meQTL target enrichment test 

When considering all CpGs associated with ASD at a liberal p < 1x10-3 EWAS threshold, we 

found significant meQTL target enrichment (penrichment = 0.041) (Table 3). All other combinations 

of EWAS and meQTL p-values displayed suggestive levels of significance (0.089 ≤ penrichment ≤ 

0.243) and a consistent direction of effect towards enrichment. Also, tests conducted for CpGs 

meeting the more stringent EWAS p-value threshold (1x10-4) displayed a consistently greater 

effect size than their corresponding tests from the more liberal EWAS threshold.  

 

Discussion 

 

We provide the largest study to date investigating the relationship between ASD and DNAm. A 

case-control meta-analysis of peripheral blood samples from the Study to Explore Early 

Development and the Simons Simplex Collection revealed that none of the 455,068 CpG sites 

investigated were associated with ASD at a genome-wide significant threshold. However, 48 

CpG sites reached suggestive significance levels at p < 1x10-4, including 7 CpGs at p < 1x10-5. 

Associations with ASD at these sites display moderate concordance with post-mortem brain 

sample results from a previous study and display evidence for enrichment of SNP-controlled 

CpG sites, or meQTL targets.  
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Given the potential involvement of epigenetic mechanisms in ASD [4–12], and the availability of 

blood samples from existing studies, this was an important project to pursue. In contrast to our 

null findings in blood samples, previous work using brain samples has shown specific DNAm to 

be associated with ASD [15, 19, 20]. The difference in tissue type might explain the inconsistent 

results across these studies. Nonetheless, a previous study of ASD and DNAm in peripheral 

blood [24] using the earlier 27K Illumina array reported numerous differentially methylated sites. 

Our study, despite a much higher sample size, did not observe associations at these same 

sites. However, their reported differentially methylated sites were based on a ranking that 

integrated both degree of statistical significance and effect size; none of their single CpG 

associations achieved statistical significance at a Bonferroni correction level. Also, they did not 

explicitly account for potential confounding by cell type proportions or address potential batch 

effects in their analytic pipeline, as this was not yet commonplace in EWAS pipelines at the time 

of their report.  We used a rigorous, data-driven method to account for these factors and control 

the genome-wide Type I error rate. It is also possible that true differentially methylated positions 

for ASD exist in blood, but have smaller effects sizes than we were powered to detect.  Recent 

EWAS discoveries have indeed found replicable very small effect sizes, particularly in 

environmental health [58].  

 

Importantly, our study is based on a case-control design using samples post-onset of ASD, 

rather than biosamples taken early in development. Thus, our ability to examine ASD etiologic 

mechanisms is limited.  However, there are many recent examples where blood-based 

epigenetic work in brain-based disorders can be useful, despite such a limitation [57, 59–63].  

For example, DNAm under genetic control (meQTL targets) can inform genetic associations 

observed for ASD. Further, consideration of aggregated sets of CpGs associated with ASD, 

rather than single sites, can elucidate pathways of interest [57]. In our own analysis, the most 
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differential blood-based CpGs had consistent effect sizes and directions, although weaker, 

among brain-based results, particularly for cerebellum.  Blood-based CpGs were also 

moderately enriched for meQTL targets. These results suggest that blood DNAm can be 

reflective of DNAm in affected tissues, and suggest genetic control of DNAm as a mechanism 

for this occurrence, at least in an ASD context. More precise evidence is needed, but given the 

easy accessibility of blood for DNAm measurements versus brain [61], the utility of blood-based 

DNAm research in ASD is worthy of additional consideration. 

 

In summary, our work is the largest study of DNAm and ASD to date. Our results point to the 

need for even larger studies to take place in the future, and argue for an ongoing investigation 

of the role of genetic factors in contributing to DNAm differences in ASD. To this end, we have 

provided our full summary statistics and meta-analysis results. The need for greater sample 

sizes mimics the initial stages of genetic variation discovery in ASD, for which large mega-

analyses are starting to pay dividends [64].  
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ASD: autism spectrum disorder; DNAm: DNA methylation; EWAS: epigenome-wide association 
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Tables 
 
 
Table 1. CpG sites identified from meta-analysis as being suggestively associated (1x10-5) with ASD 

Probe ID CHR Position SEED p 
SEED 
Mean 
Diffa 

SSC p 
SSC 
Mean 
Diff1 

METAL p FDR Nearest 
Geneb Location 

cg21151899 22 42337657 1.74E-06 0.78 2.75E-02 0.54 3.82E-07 0.16 CENPM Intronic 
cg03731974 16 86531598 2.59E-04 0.09 8.03E-04 0.08 7.29E-07 0.16 FENDRR Intronic 
cg09962502 2 96971189 1.89E-04 -0.05 2.53E-03 -0.08 1.58E-06 0.21 SNRNP200 Exonic 
cg01798266 1 1.53E+08 2.06E-05 -0.43 1.93E-02 -0.13 1.90E-06 0.21 PGLYRP4 Exonic 
cg01716316 17 40897182 1.28E-03 -0.09 1.09E-03 -0.13 4.94E-06 0.44 EZH1 111 bp 
cg16234726 14 1.02E+08 3.41E-04 -0.2 8.42E-03 -0.37 9.13E-06 0.5 DIO3 69 Kb 
cg09671955 1 1.69E+08 7.20E-03 -0.47 2.25E-04 -1.25 9.33E-06 0.5 CCDC181 65 bp 

a Mean Difference values computed as mean in cases – mean in controls 

b Location within gene or distance to nearest gene 
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Table 2. Suggestively associated (p < 1x10-5) CpGs sites in peripheral blood and their 
corresponding effect sizes in three brain regions 

Probe ID CHR Position 
SEED 
Mean 
Diffa 

SSC 
Mean 
Diffa 

Weighted 
Average 
Mean Diffb 

PFCa,c TCa,d CERa,e 

cg21151899 22 42337657 0.78 0.54 0.68 1.60 4.07 1.64 

cg03731974 16 86531598 0.09 0.08 0.08 0.20 -7.18 0.74 

cg09962502 2 96971189 -0.05 -0.08 -0.06 -2.50 -0.43 -1.34 

cg01798266 1 1.53E+08 -0.43 -0.13 -0.31 -2.70 -0.91 0.87 

cg01716316 17 40897182 -0.09 -0.13 -0.1 -0.30 -0.02 0.39 

cg16234726 14 1.02E+08 -0.2 -0.37 -0.27 0.50 -0.3 -0.03 

cg09671955 1 1.69E+08 -0.47 -1.25 -0.79 -1.40 -1.38 -5.11 

a
 Mean Difference values computed as mean in cases – mean in controls 

b
 Average of SEED and SSC mean difference values weighted by sample size (NSEED = 968, 

NSSC = 686).  

c
 Prefrontal cortex data from Ladd-Acosta et al. [19]  

d
 Temporal cortex data from Ladd-Acosta et al. [19] 

e
 Cerebellum data from Ladd-Acosta et al. [19] 
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Table 3. Enrichment statistics for meQTL targets in ASD-related CpG sites 
  meQTL p-value thresholdb 

  Permissivec Intermediated Stringente 

ASD EWAS p-valuea 1x10-3 1.20 (0.041) 1.11 (0.218) 1.11 (0.243) 

1x10-4 1.46 (0.134) 1.71 (0.089) 1.50 (0.205) 

Enrichment fold statistics and p-values based on 1,000 permutations are reported. 
a
ASD to DNAm association p-value defined from meta-analysis 

b
SNP to CpG association p-value thresholds 

c
p-values in each methylation processing batch that allowed for 100% power to detect a 5% 

methylation difference with each addition of minor allele (see Methods). 

d
p-values in each methylation processing batch that allowed for 90% power to detect same 

methylation difference 

e
p-values in each methylation processing batch that allowed for 80% power to detect same 

methylation difference. 
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Figure legends 
 
Figure 1. Meta-analysis results of epigenome-wide association analysis for ASD in 
peripheral blood in SEED in SSC samples. Panel A) Volcano plot depicting meta-analysis p-

value (log base 10 scale) on y-axis and average of mean difference values in SEED and SSC 

samples weighted by sample size on x-axis. Panel B) Quantile-quantile plot (λ = 1.03).  
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Additional Files 
 
Additional File 1 – Figures S1-S2. Depiction of surrogate variable selection process for 
SEED (S1) and SSC (S2). Panel A: Heatmap indicating degree of association with known 

potential technical variables or confounders with estimated surrogate variables. Panel B: 

Inflation factor (lambda) calculated for progressively including surrogate variables in association 

models. The number of surrogate variables to include in the ultimate association testing model 

was to determine to be that which properly controlled the inflation factor and adequately 

captured known technical variables or confounders. See Methods for additional explanation.  

 

Additional File 2 – Tables S1-S2. Demographic characteristics for samples in the SEED 
(S1) and SSC (S2) datasets.  
 

Additional File 3 – Table S3. Full summary statistics and meta-analysis results for all 
445,608 CpG sites that were present in both the cleaned SEED and SSC datasets.  
 
Additional File 4 – Table S4. Concordance between suggestively associated (p < 1x10-4) 
CpG sites in peripheral blood and their corresponding effect sizes in three brain regions 
 
Additional File 5 – Figure S3. Quadrant plots depicting concordance in effect sizes 
between suggestively associated (p < 1x10-4) CpG sites in peripheral blood and three 
brain regions. A) Prefrontal cortex B) Temporal Cortex C) Cerebellum. Points in red indicate 

those sites with p < 1x10
-5

 in peripheral blood. 
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