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Abstract 

Background- Plasma lipid levels are heritable and genetically associated with risk of 

coronary artery disease (CAD). However, genome-wide association studies (GWAS) routinely 

analyze these traits independently of one another. Joint GWAS for two related phenotypes can 

lead to a higher-powered analysis to detect variants contributing to both traits. 

Methods and Results- We performed a bivariate GWAS to discover novel loci 

associated with heart disease, using a CAD Meta-Analysis (122,733 cases and 424,528 controls), 

and lipid traits, using data from the Global Lipid Genetics Consortium (188,577 subjects). We 

identified six previously unreported loci at genome-wide significance (P < 5 x 10-8), three which 

were associated with Triglycerides and CAD, two which were associated with LDL cholesterol 

and CAD, and one associated with Total Cholesterol and CAD. At several of our loci, the 

GWAS signals jointly localize with genetic variants associated with expression level changes for 

one or more neighboring genes, indicating that these loci may be affecting disease risk through 

regulatory activity. 

Conclusions- We discovered six novel variants individually associated with both lipids 

and coronary artery disease.  
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Introduction 

Genome-wide association studies (GWAS) for coronary artery disease (CAD) have 

identified numerous susceptibility loci associated with the disease.1–3 These loci account for only 

a fraction of the total heritability for CAD, indicating that additional loci remain to be 

discovered.4 For many CAD-associated regions, an obvious mechanistic connection to heart 

disease is not clear. To identify novel mechanistic connections, a recent trend is to utilize data 

integration, whereby associations for a phenotypic endpoint (like CAD) are jointly statistically 

analyzed with additional data types to better understand the underlying phenotypic association. 

This raises two questions, namely: (i) which datasets should be used, and (ii) what statistical 

procedures should be employed for data integration?  

The community is poised to make substantial progress in the understanding of CAD 

through integration of diverse, publicly available genome-wide datasets. This is due in part to a 

basic understanding of heritable risk factors that contribute risk to CAD.5 Specifically, it is 

known that low-density lipoprotein cholesterol (LDL-C) is a causal risk factor for CAD, and 

emerging evidence supports elevated triglycerides as an additional causal risk factor.6–10 Because 

serum lipid levels are heritable, large-scale association scans for these traits are available, and 

thus can be readily integrated with CAD association data.11,12 In addition, large-scale studies 

have now emerged which map genetic variation associated with changes in gene expression (i.e., 

eQTLs) across major human organs and tissues.13 These data provide an opportunity to link a 

CAD association signal to a putative causal gene and potentially a tissue of action. 

To address the second question, several new statistical approaches have emerged. 

Multivariate studies that combine association data from multiple traits can help interpret the 

underlying associations at existing loci and have higher power for novel locus discovery than 
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univariate studies.14,15 We and others have demonstrated the utility of such approaches through 

their use in identifying novel loci affecting CAD and type 2 diabetes,15 or loci affecting fasting 

insulin, triglyceride levels and HDL cholesterol levels.16 A key advantage of this approach is the 

potential for direct mechanistic insight into how a locus may affect the phenotypic endpoint of 

interest. For example, a locus associated with both cholesterol and heart disease might suggest a 

mechanism of action and therapeutic hypothesis to lower disease risk. However, coincidental 

associations of two traits at a genomic locus may not reflect a unified etiology. Thus, new 

methods have been developed which quantify the evidence that an overlapping association 

pattern across two datasets reflects a single underlying association (i.e., statistical 

colocalization), instead of coincidental overlap in which the associations are due to different 

causal variants.17 

 Here, we report a bivariate GWAS scan to discover novel loci associated with CAD and 

four lipid-related traits: LDL cholesterol (LDL-C), HDL cholesterol (HDL-C), Total Cholesterol 

(TC) and Triglycerides (TG) levels. To focus on a set of loci that potentially point to a shared 

causal variant and cognate gene of interest across traits, we applied statistical colocalization for 

the lipid and CAD association signals with each other and with gene expression datasets. We 

report six novel genome-wide significant loci where the GWAS association signals statistically 

colocalize: three affecting CAD and TG levels, two affecting CAD and LDL-C levels and one 

affecting CAD and TC. Of these loci, four signals also colocalized with eQTL signals from 

GTEx,13 indicating gene expression may be influencing disease risk at these loci. 
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Results and Discussion 

Overview of Bivariate Scan 

Using a bivariate GWAS scan approach, we identified six novel loci associated with 

lipid levels and heart disease. As input into this scan, we used data from a meta-analysis of 

coronary artery disease, which combined results from the CARDIOGRAM+C4D consortium 

(88,192 CAD cases and 162,544 controls)2 and the UK BioBank (34,541 cases and 261,984 

controls)3 and GWAS results for each of four lipid traits: HDL-C, LDL-C, Total Cholesterol, 

and Triglycerides, from the Global Lipid Genetics Consortium (188,577 individuals).12 Our trait 

covariances and bivariate p-values appeared calibrated (Supplementary Table 1, 

Supplementary Figure 1) and had a strong correlation with single-trait P-values, as would be 

expected (Supplementary Figures 2 and 3). In addition, the top hits from our scan included 

established lipid and CAD associated loci, including PCSK9 (significant for CAD paired with 

LDL-C and TC), APOE (CAD paired with all four lipids traits), and LPL (CAD paired with 

HDL-C and TG). 

We performed several filtering steps to identify variants with non-trivial associations (P < 

5 x 10-8) not yet established from individual trait scans. We first removed loci from our set with 

prior reported associations with either CAD or the lipid trait under consideration.1,11,18–20 Next, 

we narrowed our set of variants to those that were nominally associated with both traits from 

single-trait association data (P < 5 x 10-3 for the lipid trait and CAD). To focus on sites where we 

could hypothesize that the same causal variant contributes to both the lipid and CAD signals, we 

filtered out variants where the patterns of association for both traits did not statistically overlap 

(COLOC PP4/(PP3+PP4) < 0.5, Methods, Supplementary Table 2). After these filters, we 

observed two loci associated with LDL-C and CAD, three with CAD and Triglycerides and one 
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with CAD and TC (Table 1). Sentinel SNPs at these loci were not strongly linked to a 

nonsynonymous variant (Methods), consistent with a gene regulatory mechanistic hypothesis to 

explain phenotypic variability.21 We subsequently focus on associations with eQTLs or relevant 

prior phenotypic connections. One additional lead SNP, rs7033354, is associated with LDL-C 

and CAD (P = 1.16 x 10-8,  Table 1, Supplementary Figure 4).22 

 

The monogenic diabetes gene glucokinase is associated with TG and CAD 

 Our first variant, rs2908290, is associated with TG and CAD (Bivariate P = 1.6 x 10-8) 

and is in an intron of the GCK (glucokinase) gene (Table 1, Figure 1). Although this SNP is not 

an eQTL in any assayed tissue, prior evidence supports GCK as the causal gene at this locus. 

Glucokinase phosphorylates glucose as the first step of glucose metabolism and is an established 

gene for maturity-onset diabetes of the young (MODY), a monogenic disorder causing early 

onset diabetes.23 It has been robustly associated with metabolic phenotypes in GWAS, including 

fasting glucose, glycated hemoglobin and type 2 diabetes (T2D).15,19,24,25 A mutation in the 

promoter of GCK was previously found to be associated with CAD in a candidate gene 

analysis,26 however, their variant is in very low linkage with our lead variant (European LD 

r2=0.05).  

The association signals at this locus are complex and suggest the possibility of several 

causal variants. Bien et al. found evidence of two independent associations at this locus for 

fasting glucose, with rs2908290 as the lead SNP of the second association.27 In line with this, we 

found evidence of three independent genome-wide significant causal variants for glycated 

hemoglobin, a marker of long-term elevated glucose, within 100kb of our lead SNP using 

approximate conditional analysis (Methods).25 However, none of the three lead variants are 
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strongly linked with rs2908290, indicating the possibility of many different casual variants for 

various metabolic traits at this locus. To examine if the TG and CAD signal at rs2908290 

statistically overlap, we performed a colocalization analysis on a window 100kb to either side of 

this SNP, to exclude a nominally significant SNP several hundred kb upstream of GCK. The TG 

and CAD GWAS showed strong evidence of statistical overlap (COLOC PP4 = 0.87). Long-term 

overexpression of GCK has been shown to cause both hyperinsulinemia and 

hypertriglyceridemia in mice28, which is broadly consistent with the pattern of genetic 

associations observed at this site (Supplementary Table 3).   

As it is known that GCKR (glucokinase regulator) inhibits the activity of GCK, we next 

investigated the CAD association at the common variant in this gene, Pro446Leu. Previous 

functional studies have shown that this variant diminishes the capability of GCKR to inhibit 

GCK, which results in increased glycolic flux and liver metabolites that may promote de novo 

lipogenesis29, providing a mechanism to explain the observed human genetic associations of 

decreased fasting glucose and T2D risk but increased triglyceride levels12,15,24,29,30. In addition to 

these established associations, we observed a modest association of higher CAD for carriers of 

the triglyceride-increasing allele (OR = 1.018, P = 1.9 x 10-3, Supplementary Table 3). This 

observed effect is consistent with the predicted combined effect of elevated triglycerides and 

lower fasting glucose levels on CAD risk (Predicted OR = 1.022, Methods). These data 

cumulatively suggest that genetic disruption of GCK influences diabetes and cardiovascular 

disease risk through known, causal intermediates.   
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Locus associated with TG and HDL-C may regulate genes affecting tyrosine catabolism or 

platelet traits 

 The second locus is associated in our bivariate scan with both TG and CAD (Bivariate P 

= 2.35 x 10-9), with HDL-C and CAD (Bivariate P = 8.78 x 10-8, Figure 2), and is also an eQTL 

for several nearby genes. The lead variant, rs895953, is in an intron of the SET1B gene and, to 

our knowledge, has no prior established GWAS associations for related traits. Our sentinel SNP 

is an eQTL for three genes in the region in multiple tissues (Supplementary Table 4) including 

RHOF (Ras Homolog Family Member F, Filopodia Associated) and HPD (4-

Hydroxyphenylpyruvate Dioxygenase). In contrast to epidemiological expectation, the major 

allele of this variant is associated with an increase in Triglycerides, but a reduced risk of CAD. 

There is strong evidence of colocalization between RHOF and HPD expression and the 

TG signal (Supplementary Table 4). The CAD colocalization was weaker due to an unlinked 

CAD signal nearby (European LD r2=0.0, Figure 2, 3rd panel denoted by the arrow) which would 

violate the assumptions of the approach used to quantify colocalization. To confirm that the 

CAD signal overlapping the lipids and eQTL signals was not due to this secondary signal, we 

performed an approximate conditional analysis (Methods), conditioning on the top SNP from 

the nearby peak (rs10849885). The association strength for our sentinel SNP improved slightly 

(Punconditional = 9.1 x 10-4 to Pconditional = 3.6 x 10-4) upon conditioning, consistent with the lack of 

linkage disequilibrium between our sentinel SNP and the secondary CAD signal. Furthermore, 

the probability of colocalization between the eQTLs for RHOF, HPD, and each GWAS signal, as 

well as between the lipid and CAD GWAS signals themselves, also increased when we 

performed a colocalization analysis using a 200kb window in this region, which excludes the 

secondary CAD signal (Supplementary Table 2, Supplementary Table 4). These results are 
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consistent with the hypothesis that a single causal variant underlies the GWAS signals and the 

expression association for RHOF and HPD at this locus. 

Review of the literature suggests that one or both genes are plausible candidate genes for 

the CAD and lipid associations. HPD is involved in the catabolism of tyrosine, and has been 

associated with 2-Hydroxyisobutyrate levels, though this previous variant is not strongly linked 

with ours (European LD r2=0.03 between our lead SNP and that from Suhre and Raffler et 

al.),31,32. 2-Hydroxyisobutyrate concentration is a known biomarker for insulin resistance and 

adiposity.33,34 However, literature may also support the hypothesis that RHOF as causal. This 

gene lies in an GWAS association for platelet count, platelet volume, and reticulocyte fraction of 

red cells.22 Platelet biology has been implicated in lipid metabolism and atherosclerosis, 

suggesting rs895953 could be affecting CAD risk through platelet-related pathways.35,36 

  

Locus associated with LDL-C and CAD may affect actin remodeling 

A locus tagged by the sentinel SNP rs3741782 was associated with LDL-C and CAD 

(Bivariate P = 3.2 x 10-9) and fell within an intron of the CORO1C gene (i.e., Coronin, Actin 

Binding Protein 1C, Figure 3). This SNP is an eQTL for CORO1C in visceral adipose tissue and 

in the adrenal gland, and for SSH1 (i.e., Slingshot Protein Phosphatase 1) in whole blood, with 

strong evidence of colocalization of theses eQTL peaks with the CAD and LDL-C GWAS 

signals (Supplementary Table 4). Both SSH1 and CORO1C regulate actin reorganization.37,38 It 

has been demonstrated that uptake and degradation of lipoproteins by macrophages requires an 

actin cytoskeleton,39 and oxidization of the associated lipids in macrophages can result in foam 

cells, which contribute to atherosclerosis.40 However, to our knowledge, it is unknown whether 

CORO1C or SSH1 participate in this mechanism. 
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Locus associated with TG and CAD may regulate expression of FBRSL1 

A fourth locus, tagged by sentinel SNP rs12423664 (Bivariate P = 1.2 x 10-8), is located 

in an intron of FBRSL1 (i.e., Fibrosin Like 1). Evidence has shown that the protein encoded by 

this gene may be a member of the polycomb repressive complex 1 (PRC1), which regulates gene 

expression via epigenetic markers.41,42 Our lead SNP is an eQTL for this gene in both pancreas 

and whole blood. Our sentinel variant is partially linked to a previous GWAS association with 

red blood cell count (European LD r2=0.52 between rs34390795 and our sentinel SNP).22  

Available evidence suggests that the eQTL association may underlie the lipid and CAD 

association. Colocalization analysis supports a shared underlying causal variant between the 

lipid, CAD signal, and the eQTL (Supplementary Table 1, Supplementary Table 4). That 

being said, the underlying lipid GWAS was not as density genotyped as the CAD and eQTL 

scans (Figure 3). Indeed, the lead GWAS variant for CAD (Eueopean LD r2=0.08 between 

rs4883525 and rs12423664), along with several other top CAD variants were not assayed in the 

lipid GWAS data. We expect larger-scale imputation studies for the lipids scan should enable 

more well-powered colocalization analysis at this locus.   

 The Fibrosin-Like 1 protein has been found to have lower expression in human hearts 

with dilated cardiomyopathy, relative to control hearts.43 In the eQTL signal colocalizing with 

our bivariate peak, the alternative allele (A) of our lead SNP is associated with lower expression 

of this gene, though this association was observed in pancreas, not heart.13 This same allele is 

associated with increased lipid levels and an elevated risk of heart disease. These results indicate 

that Fibrosin Like 1 may play a role in healthy heart processes, and thus reduced expression of 

this gene may increase risk of heart disease. However, the diverse biological processes that 
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PRC1 may influence make it difficult to interpret how this gene may be affecting triglycerides 

and heart disease. 

 

Variant affecting blood pressure, CAD and Total cholesterol 

 Our final variant, rs1378942, is associated in our bivariate scan with CAD and total 

cholesterol (Bivariate P = 2.22 x 10-8), and also nominally associates with LDL-C (Figure 5). 

The lipid traits strongly colocalize with each other and moderately colocalize with the CAD 

locus (Supplementary Table 4). In addition, this index SNP has an established association with 

systolic blood pressure (P = 6 x 10-23),44 with moderate to strong evidence of colocalization 

between both lipid traits, CAD and SBP (Supplementary Table 5). The ‘A’ allele of this SNP 

increases LDL and TC while decreasing SBP and CAD, pointing to SBP as the directionally 

consistent causal phenotype for the CAD association.  

rs1378942 is an eQTL for CSK (C-terminal Src Kinase), in both subcutaneous adipose 

and the left ventricle of the heart, and CYP1A1 (Cytochrome P450 Family 1 Subfamily A 

Member 1) in Subcutaneous Adipose and Muscle Skeletal, among several other genes.13 The 

eQTL signals for these two genes have moderate to strong evidence of colocalization with the 

CAD and TC GWAS peaks, although visual inspection shows that there may be more than one 

causal eQTL variant for the CSK eQTL association (Supplementary Figure 5, Supplementary 

Table 4). siRNA knockdown of CSK was found to increase blood pressure, suggesting it is as a 

possible causal gene for SBP at this locus.45 However, CYP1A1 is another possible causal gene. 

Although the substrate of the gene is not firmly established, members of the cytochrome p450 

family are known to affect cardiovascular disease risk through effects on a diverse set of 

processes, including lipid metabolism and vasoconstriction.46 
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Conclusion 

Using a bivariate approach, we identified six novel variants associated with both CAD 

and one or more lipid traits, demonstrating the power of bivariate GWAS approaches to 

discover novel loci influencing phenotypes of interest, with potential candidate genes identified 

via integration with gene expression data. These loci are of particular interest, because they 

provide human genetic association evidence of altering CAD risk through lipid levels. However, 

other scenarios are also possible: namely, a variant may not affect CAD directly through lipid 

levels, and could instead influence other processes by which lipid and CAD risk levels are 

altered independently of one another.  

Our results speak to the complexity of interpreting functional mechanisms of associated 

variants. Three of our loci suggest the possibility of several different regulatory targets, 

indicating these loci may not affect CAD and lipids through a single regulatory mechanism. 

Instead, these loci may harbor regulatory variants for several genes, which independently affect 

lipid levels and therefore CAD. Alternatively, as shown in the case of rs3741782, these 

regulatory targets may be involved in the same biological pathway. Furthermore, conditional 

analyses reveal that several of the GWAS and eQTL signals may harbor more than one causal 

variant, as has been previously demonstrated for several metabolic-related loci.47,48 

The combination of lipid and heart disease associations and their colocalization with 

eQTLs for genes involved with cardiometabolic process supports the potential therapeutic 

potential of the loci found in our bivariate scan. Further functional experimental work will be 

required to verify and elucidate these candidates’ association with lipid and CAD pathways. 
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Methods 

GWAS Data Collection 

Our CAD GWAS data was from a meta-analysis that was performed using the UK 

BioBank and several prior CAD GWAS studies.3 Lipid GWAS data was obtained from the 

Global Lipids Genetics consortium.12 The joint analysis of Metabochip and GWAS data was 

used for all four lipid traits. 

To generate z-scores for the lipid traits with genomic control correction, we used the 

following expression: 

𝑍 = Φ−1 (
𝑝

2
)

β

|β|
  

where Φ-1 is the inverse-cumulative distribution function of the normal distribution, p is the 

genomically-controlled p-value and 𝛽 is the effect size of the single-trait association, as was 

done in Zhao et al..15  

Bivariate Scan 

To perform the bivariate scan, alleles were first harmonized using the harmonise_data 

function in MRbase (https://github.com/MRCIEU/TwoSampleMR). A set of LD-independent 

variants was obtained using plink with the command --indep-pairwise 1000 5 0.2, 49  using 1000 

Genomes phase 3 data from Europeans for linkage information. This set of independent variants 

was used to estimate the means and covariance matrix of the bivariate normal distribution of the 

z-scores. These parameters were then used to calculate a p-value for each SNP contained in both 

GWAS datasets using a chi-squared test with two degrees of freedom (code available at 

https://github.com/WWinstonZ/bivariate_scan).  

Clusters of significantly associated variants were produced using the --clump-r2 0.2 

command in R. To focus on novel loci, we filtered out variants that had a P < 5 x 10-8 for either 
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trait in our GWAS datasets, as these represented known loci. We additionally filtered out 

variants with a P > 5 x 10-3 in one of the two traits to focus on variants with convincing evidence 

of association with both traits. We further removed GWAS variants that were within 1MB and r2 

> 0.2 of a significant loci associated with CAD or the relevant lipid trait in the GWAS catalog 

(downloaded 2/20/18),19 Nelson et al.,1 Klarin et al.,20 Lu et al.18 or Liu et al.11  We used the 

annovar package to search for functional mutations in r2 >= 0.8 of each lead SNP.50 

GTEx Data Collection 

eQTL data from the GTEx consortium version 7 was downloaded for the following 

tissues: Adipose Subcutaneous, Adipose Visceral Omentum, Artery Aorta, Artery Coronary, 

Artery Tibial, Heart Atrial Appendage, Heart Left Ventricle, Liver, Muscle Skeletal, Pancreas, 

Thyroid and Whole Blood.13 We focused on this subset of tissues, as (i) the most plausible for 

our collection of phenotypes and disease endpoints, and (ii) eQTL discovery power, based on the 

sample size. 

Locus Characterization 

We performed colocalization analysis of the GWAS using the coloc.abf() function from 

the coloc package (https://github.com/chr1swallace/coloc).17 A threshold of PP4/(PP3+PP4) 

greater than 0.5 was used for colocalization, with default region size of 500kb on either side of 

the SNP of interest. 

We also conducted a colocalization analysis between eQTL signals and our top bivariate 

GWAS hits using coloc. We performed coloc analysis between both the lipid GWAS and the 

eQTL signal, and the CAD GWAS and the eQTL signal. A threshold of PP4/(PP3+PP4) ≥ 0.8 

was used for “strong” evidence of colocalization and ≥ 0.5 was used for “moderate” evidence. 
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We performed the coloc analysis on any significant eQTL signal in GTEx at our bivariate SNP 

of interest in any of the aforementioned tissues. 

 Linkage disequilibrium for our analyses other than those using plink was calculated with 

LDlink (https://analysistools.nci.nih.gov/LDlink/) using EUR populations from the 1000 

Genomes Project.51 Locus plots were generated using LocusZoom also using EUR populations.52 

We used the COJO method,53 implemented in GCTA,54 to perform our conditional 

analyses. In each case, we conditioned the lead GWAS SNP in our bivariate scan on the lead 

SNP of the nearby GWAS signal from which we were testing independence. To estimate the 

number of independent effects for the GCK locus, the stepwise model selection method in COJO 

with default parameters was used. 

Predicted effect of GCKR on CAD risk 

We calculated the expected change in CAD risk due to the T2D and TG associations of 

rs1260326 at the GCKR locus. The odds ratio of CAD associated with 1 standard deviation 

change in triglycerides has been estimated as 1.28,55 corresponding to a β of ln(1.28)=0.247. The 

corresponding change in CAD risk accompanying the TG β of this SNP of -0.11 

(Supplementary Table 3) is then -0.11 * 0.247 = -0.027. The effect of a 1 standard deviation 

change in T2D on CAD risk is estimated to be 1.11,56 corresponding to a β of ln(1.11) = 0.104. 

The 0.049 standard deviation change in T2D risk associated with rs1260326 is then expected to 

cause a CAD β of 0.104*0.049=0.0051. Assuming an additive model, the predicted effect of 

rs1260326 on CAD is then -0.027 + 0.0051 = -0.022, which is close to the observed effect of      -

0.018, corresponding to an odds ratio of 0.98.  
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Table 1: Significant loci by bivariate scan with colocalization of the CAD and lipid trait GWAS 

signals 

Variant chr 

Position 

(Mb) 

Lipid 

Trait 

EA/

OA EAF 

Bivariate 

P 

Lipid 

Beta 

Lipid 

s.e. 

Lipid 

P 

CAD 

OR 

CAD 

95% CI CAD P 

rs895953 12 122.2 TG† T/G 0.81 2.4x10-9 0.022 0.0043 8.6x10-8 0.98 0.97-0.99 9.1x10-4 

rs3741782 12 109.0 LDL A/G 0.69 3.2x10-9 -0.020 0.0039 6.3x10-7 0.97 0.96-0.99 3.3x10-6 

rs7033354 9 16.9 LDL T/C 0.63 1.2x10-8 -0.019 0.0038 1.4x10-6 0.98 0.97-0.99 7.4x10-6 

rs12423664 12 133.0 TG A/G 0.13 1.2x10-8 0.026 0.005 8.2x10-8 1.03 1.01-1.05 5.2x10-4 

rs2908290 7 44.2 TG A/G 0.38 1.6x10-8 0.017 0.0034 1.5x10-6 1.02 1.01-1.03 1.4x10-5 

rs1378942 15 75.0 TC A/C 0.62 2.2x10-8 0.012 0.0037 9.1x10-6 0.98 0.97-0.99 1.8x10-5 

 

*EA: Effect Allele, OA: Other Allele, OR: Odds Ratio, CI: Confidence Interval, EAF: Effect 

Allele. Position is aligned to hg19. Frequency (EUR in 1000 Genomes). 

† In addition to the TG association, this SNP is nominally associated with HDL (Bivariate P = 

8.78 x 10-8) 
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Figure 1: GWAS signals for Triglycerides (TG), CAD and T2D at the GCK locus.15,25 
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Figure 2 GWAS and eQTL associations at the SET1B locus. Triglyceride, HDL-C and CAD 

signals are the GWAS signal corresponding to the respective traits. eQTL associations are for 

expression of the gene in Adipose Subcutaneous. 
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Figure 3: GWAS and eQTL Associations at the CORO1C locus. LDL-C and CAD signals are 

the GWAS signal corresponding to the respective traits. CORO1C eQTL signal is for expression 

in adipose, and SSH1 is for expression in whole blood. 
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Figure 4: GWAS and eQTL Associations at the FBRSL1 locus. Triglyceride (TG) and CAD 

signals are the GWAS signal corresponding to the respective traits. FBRSL1 eQTL is signal is 

for expression of the gene in pancreas. 
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Figure 5: GWAS Associations at the CSK locus. Total Cholesterol (TC), LDL-C and SBP 

(systolic blood pressure) and CAD signals are the GWAS signal corresponding to the respective 

traits.  
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