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We study how the spatial structure of connectivity shapes synchronization in a system of coupled
phase oscillators on a mammalian whole-brain network at the mesoscopic level. Complex structural
connectivity of the mammalian brain is believed to underlie the versatility of neural computations.
The Allen Mouse Brain Connectivity Atlas constructed from viral tracing experiments together with
a new mapping algorithm reveals that the connectivity has a significant spatial dependence: the
connection strength decreases with distance between the regions, following a power law. However,
there are a number of residuals above the power-law fit, predominantly for long-range connections.
We show how these strong connections between distal brain regions promote rapid transitions be-
tween highly localized synchronization and more global synchronization as the amount of dispersion
in the frequency distribution changes. This may explain the brain’s ability to switch rapidly between
global and modularized computations.

I. INTRODUCTION

Structural neural connectivity and its implications on
the brain function have been a long-sought subject in
neuroscience. Many previous studies have been limited
either to small networks of few cells or coarser connec-
tivity among larger brain regions [1–9], often binarized
and without spatial information. Recent development of
the Allen Mouse Brain Connectivity Atlas from antero-
grade florescent viral tracing experiments [10] provides
us the unique opportunity to investigate precise weighted
anatomical connectivity of the mammalian whole brain
network. Combining the mesoscopic connectivity data
with spatial information of the network, we seek a parsi-
monious representation of the weighted whole-brain net-
work that captures salient network properties. Specif-
ically, we investigate whether the network can be com-
pactly represented solely based on the spatial dependence
of the network topology.

Biological networks are inherently spatially-
constrained. Recent studies have shown that geographic
constraints play a critical role in generating graph
properties of real-world neuronal networks [5, 11–20],
which cannot be fully captured by classical generative
network models such as the small-world network [2] and
the scale-free network [21]. Yet, many of the studies are
limited to binarized networks [11, 12, 17, 19, 20], and
are focused explicitly on comparing graph theoretical
measures [11, 13–20]. In this paper, we examine spatial
embedding of the weighted whole-brain connectivity,
and ask whether spatial dependence alone can depict
the full computational capability of the brain network
by studying dynamics of the network.

By analyzing the latest connectivity data from a new
mapping algorithm, we find that the network connectiv-

∗ email: hannahch@uw.edu
† email: stefanm@alleninstitute.org

ity strongly depends on its spatial embedding, with spa-
tially close brain regions strongly connected and distal
regions weakly connected. We study the precise rela-
tionship between connectivity and distance, and inves-
tigate possible computational roles of positive residual
connection strengths that are not captured by the spa-
tial dependence. To probe possible implications of the
residual connections on the network dynamics, we con-
struct a network of phase oscillators with the data-driven
adjacency matrix, and compare its dynamics to those of
the oscillator network with the connections strictly de-
pendent on distance. We analyze spatial structures of
synchronization by measuring the order parameter for
varied amounts of dispersion in intrinsic oscillator fre-
quencies. We further examine the strong connections
between distal brain regions, by studying network dy-
namics when fractions of the strong residual connections
are added to the spatially constrained network. Finally,
we relocate the positive residuals to connections between
nearby brain regions, increasing the connection strengths
for the spatially close brain regions while eliminating
strong distal connections. The network restructured this
way maintains overall connection strength of the brain
network but has the network structure different from that
of the brain network. By comparing dynamics of such re-
structured network and the data-driven whole brain net-
work, we show that the spatial locations of the strong
positive residuals are important.

II. RESULTS

A. Spatial dependence of the mouse whole-brain
connectivity

The mesoscopic mouse whole-brain connectivity was
constructed based on viral tracing experiments available
on Allen Mouse Brain Connectivity Atlas [10], with a
recently developed interpolative mapping algorithm [22].
This produced a weighted and directed structural con-
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nectivity matrix with 244 brain regions as nodes. The
data-driven mouse brain network is shown in Fig 1A, left
column.

We analyzed the relationship between the connection
strength and spatial distance between brain regions in the
data set. In accordance with previous studies on brain
networks [5, 15–20], the connectome strongly depends on
the spatial embedding; connections are stronger between
spatially close regions and weaker between distal regions.
Specifically, the connection strengths decrease with dis-
tances between brain regions following a power law (Fig
1B) rather than an exponential relationship, in agree-
ment with previous studies on Allen Mouse Brain Con-
nectivity data [18, 22].

We constructed adjacency matrices for the ipsilateral
and the contralateral networks based on the power-law
relationship, as shown in Fig 1A, middle column. While
the general trend of decrease in connection strength with
distance is clear and well-predicted by a power law, there
are also a number of residual connection strengths that
are not captured by the power-law relationship (Fig 1A,
right column).

To understand the structure and effects of the residual
connection weights that are not captured by the power-
law dependence on distance, we had a closer look at these
residuals. For both ipsilateral and contralateral connec-
tions, a long, positive tail is observed in the distribu-
tion of residual connections weights, suggesting strong
distal connections above the power-law dependence on
distance (Fig 2A, B). The strongest 20 residual connec-
tions are plotted in Fig 2C. We observed that for ip-
silateral network, connections from preparasubthalamic
nucleus (PST) to subthalamic nucleus (STN), laterodor-
sal tegmental nucleus (LDT) to Barrington’s nucleus (B),
dorsal motor nucleus of the vagus nerve (DMX) to gracile
nucleus (GR), cuneate nucleus(CU) to gracile nucleus
(GR), and locus ceruleus (LC) to Barrington’s nucleus
(B) are few examples of the strong distal connections un-
explained by the power-law dependence on distance. For
contralateral connectivity, on the other hand, many of
the strongest residuals above the power-law relationship
include the connections between the same regions in dif-
ferent hemispheres as well as connections to and from
hippocampal areas.

B. Phase oscillators and network coherence
measures

Do these positive residual connections between distal
regions have any computational significance? In other
words, can we capture the full computational capacity
of the mesoscopic brain network with connectivity gov-
erned by strictly distance-dependent rules, with the resid-
uals removed? To test this, we compare dynamics of the
data-driven brain network to those of an artificial, strictly
distance-dependent network generated by the power-law
relationship. Specifically, we built a network of coupled

phase oscillators whose coupling strengths are described
by the weighted adjacency matrix of the data-driven
brain network or the power-law distance-dependent con-
nectivity. Each of these Kuramoto-type phase oscillators
corresponds to a brain area. The phase of region i, rep-
resented by θi, is described by:

θ̇i = ωi + k
N∑
j=1

Aij sin (θj − θi) (1)

where ωi denotes the natural frequency, and k describes
the coupling coefficient. Aij is the adjacency matrix
of the network. For the case of the data-driven brain
network, Aij = J1,2

ij where J1,2
ij indicates the adja-

cency matrix obtained from viral tracing data, for the
ipsilateral-only (J1

ij) or both ipsilateral and contralat-

eral (J2
ij) connections. For simulations of the artificial,

distance-dependent network, Aij = K1,2
ij indicates the

adjacency matrix constructed by making the connection
weights strictly follow the power-law dependence on dis-
tance, for the ipsilateral-only (K1

ij) or both ipsilateral

and contralateral (K2
ij) connections. N denotes the num-

ber of nodes of the network. We use either N = 244 or
N = 488, for simulations of one hemisphere with ipsi-
lateral connections only and simulations of both hemi-
spheres with ipsilateral and contralateral connections, re-
spectively. The natural frequencies ωi were randomly
chosen from a symmetric, unimodal distribution g(ω).
In this paper, we used a Gaussian distribution with the
mean at 0 and the standard deviation σ for g(ω), as done
in other studies [23–26]. Note that we can use zero mean
without loss of generality as the mean frequency can be
shifted by introduction of the change of variables. We
also tried an uniform distribution with the zero mean
bounded by σ, which yielded the same results as with
Gaussian distributions.

We investigated the dynamics of the data-driven net-
work and the power-law generated network using Eq. 1,
and measured the network coherence by calculating the
“universal” order parameter, recently proposed in [26].
Unlike the original order parameter proposed by Ku-
ramoto [27, 28] (see Eq. 2 in Methods), the universal
order parameter [26] can be used to quantify coherence
in more general, weighted networks of oscillators, without
assuming all-to-all connectivity. The universal order pa-
rameter accounts for the network topology and its influ-
ence on the phase coherence. Therefore, we can compare
network coherence in topologically different weighted net-
works even when their total connections strengths are
not the same. Furthermore, the universal order parame-
ter captures partially phase-locked states accurately. To
quantify different degrees of network coherence and to vi-
sualize localized and global synchrony, we measured the
universal order parameter both for the whole network of
oscillators (Eq. 3 in Methods) as well as for subnetworks
of different spatial scales (Eq. 4 in Methods). By comput-
ing the order parameter for the subnetworks, we describe
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FIG. 1. Connectivity matrices constructed from viral injection data and the power-law dependence on distance
(A) Connectivity matrix from viral tracing data (left); Reconstructed connectivity from the power-law dependence on distance
between nodes (middle); residual connection strengths of the data-driven network above the power-law distance dependence. We
show 244 brain regions divided in to coarser major brain divisions defined in the 3-D Allen Mouse Brain Reference Atlas. These
divisions are: Isocortex, Olfactory Bulb, Hippocampus, Cortical Subplate, Striatum, Pallidum, Thalamus, Hypothalamus,
Midbrain, Pons, Medulla, and Cerebellum. (B) Connection strengths as a function of distance between brain regions. The
connections obtained from experiments (gray) are fit by a power law (red) on the log scale with base 10 (right panel). Inset:
Goodness of fit.

FIG. 2. Residual connection weights unexplained by the power-law distance dependence (A) Distributions of
the connection strengths from the data (blue) and the residual connection strengths (red). (B) Residual connection weights
as a function of distance between nodes. (C) Directed pairs of brain regions with large positive residual connections. These
represent strongly-connected distal regions. For reference on the acronyms of the regions, see the Allen Mouse Brain Reference
Atlas.

the order parameter as a function of distance.

Obtaining an explicit, analytical relationship between
the order parameter and generalized network structures
has been a challenging problem in studies of phase os-
cillators on complex networks [29, 30]. While analyt-
ical expressions for the order parameter as a function
of the adjacency matrix have been derived in previous
works, these mean-field approaches are based on strong
assumptions of a large network with sufficiently high av-
erage degree, valid only near the onset of synchroniza-
tion [24, 25, 27, 31, 32]. Existing analytical approaches,
therefore, are not applicable to the complex mesoscopic

brain network of a finite size. We thus address the rela-
tionship between the network coherence and the network
structure by computing the order parameter based on
numerically obtained time series of the oscillators.

The initial conditions for Eq. 1 were set to zero frequen-
cies, and Eq. 1 was integrated numerically using 4th order
Runge-Kutta method, with discrete time step ∆t = 1
for Nt = 103 steps, until a stationary state is reached.
We confirmed that a stationary state is obtained with
Nt steps, by testing larger (up to Nt = 104) numbers
of time steps which did not alter the results. The data
from the first Nt/2 steps are discarded in measuring the
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order parameter. We computed the order parameter us-
ing Eq. 4 in Methods for varied amounts of perturba-
tion represented by standard deviation σ of the natu-
ral frequency distribution, with fixed coupling coefficient
k = 0.2. Note that increasing the coupling coefficient k
with fixed σ has qualitatively the same effect as decreas-
ing σ with k fixed, as the ratio of k/σ determines the
network coherence. For each amount of dispersion σ, we
performed 5 independent runs with different configura-
tions of the intrinsic frequencies randomly sampled from
the probability distribution g(ω), and plotted the average
and the standard deviation of the order parameter, as a
function of distance between nodes (Fig 3B) as well as a
function of dispersion amount in the intrinsic frequencies
σ (Fig 3C).

C. Sensitivity of the network coherence

In Fig 3A, we show the phase difference cos(θj − θi)
between pairs of nodes (i,j) plotted against time and
distance between the pairs. Interestingly, for the same
amount of change in perturbation ∆σ, the real brain net-
work switches between an asynchronous state and global
synchrony, while the power-law governed network fails
to make such a drastic change in synchronization state.
This difference is manifested in the order parameter. Fig
3B shows the universal order parameter (Eq. 4) for sub-
networks of different spatial ranges. In the data-driven
brain network, increasing the frequency dispersion σ re-
sults in a transition from global synchrony to localized co-
herence (Fig 3B, left column, Data). However, in the ar-
tificially generated, strictly distance-dependent network,
the same amount of perturbation change does not induce
such a leap in the network coherence state as in the real
brain network (Fig 3B, right column, Power law).

Such trend can be also visualized in the order param-
eter for the whole network. The overall universal order
parameter increases with decreasing frequency dispersion
in both the data-driven and the power-law networks (Fig
3C). However, the change in order parameter is signif-
icantly larger in the data-driven brain network. This
trend appears in both the single hemisphere network with
only ipsilateral connections and the whole brain network
with both ipsilateral and contralateral connections. For
comparison, Kuramoto’s original order parameter (Fig
3C, dotted) was also plotted. Because the original Ku-
ramoto’s order parameter assumes the same all-to-all
connectivity and does not measure coherence scaled to
the overall degree of the network, we see that the Ku-
ramoto order parameter is lower than the universal or-
der parameter for the power-law network. Nevertheless,
for either type of order parameter, we observe that the
data-driven brain network spans a larger range of coher-
ence states than the power-law governed network. This
indicates that in the real brain network, a small pertur-
bation in intrinsic frequencies induces a rapid transition
between highly localized network synchrony and a more

globally synchronized state, while in the network with
connections strictly following a power-law dependence
on distance, such a rapid transition between local and
global coherences is not possible. Therefore, the resid-
ual connection strengths that are not explained by the
spatial dependence rule may have some computational
significance, enabling even small perturbations to induce
a switch between global and modularized computations.

D. Effects of strong long-range connections

We next examined what aspects of the residual connec-
tion strengths confer the network ability to span a wide
range of coherence states. In previous studies on cou-
pled oscillators, it has been found that even a small frac-
tion of shortcuts in a small-world network significantly
improves synchronization of the network [23, 29]. Mo-
tivated by this, we hypothesized that positive residual
connections, namely, strong connections between distal
brain regions, underlie the rapid transition between lo-
calized and global network synchronies. We tested this
hypothesis by re-introducing small fractions of the pos-
itive residuals to the power-law distance-dependent net-
work. As manifested in Fig 4, adding just a small frac-
tion (top 5 percentile) of the strongest positive residuals
to the power-law generated network recovers the steep
decrease in order parameter with growing perturbation
(Fig 4, cyan). As the fraction of positive residuals in-
cluded in addition to the power-law network increases,
the trend in the order parameter resembles more of that
of the real brain network (Fig 4, red).

Does the location of these strong connections have any
significance in emergence of the rapid phase transition?
To test whether the sensitivity of the network coher-
ence to frequency dispersion can be recovered by simply
adding the positive residuals anywhere to increase the
overall connection strength of the power-law network, we
studied the dynamics of the network constructed by relo-
cating the positive residuals. We generated two networks
with positive residuals relocated. In one of them, the
positive residuals above the power-law relationship were
positioned at random locations on the network (shuffled).
In the other, the positive residual connections were relo-
cated and added to connections between spatially close
regions, by distributing the total positive residual con-
nection strength among the connections between nodes
within 500µm. The resulting networks thus maintain
the total connection strengths of the real brain network,
but have altered network structures. When the locations
of the positive residuals are shuffled and thus there are
strong connection weights between distal brain regions,
the dependence of network synchronization on σ remains
similar to that of the data-driven network, as portrayed
by the order parameter in Fig 5 A,C, in gray and Fig 5
B,D, left. In other words, although the precise network
structure is different from that of the data-driven net-
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FIG. 3. Local and global synchronization of the data-driven brain network and the power-law network (A)
Phase differences cos(θj − θi) between pairs of nodes (i,j) as a function of time (x-axis) and distance between the pairs (y-
axis) for the data-driven and power-law networks. For both networks, the same set of natural frequencies generated from
normal distributions with zero mean and standard deviation σ was used. (B) Universal order parameter r for subnetworks
at different spatial scales, for the data-driven and the artificial power-law networks under different amounts of perturbation.
Order parameter r is averaged over 5 generations of sets of natural frequencies. (C) Universal order parameter (solid) and
Kuramoto’s original order parameter (dotted) for the whole networks of the data-driven connectivity (red) and the power-law
distance-dependent connectivity (blue), as a function of perturbation amount σ. Coupling coefficient is fixed at k = 0.2. Lines
and shades correspond to the mean and the standard deviation over multiple generations of intrinsic frequencies, respectively.
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eral+contralateral connections.

work, the network with shuffled residuals maintains its
sensitivity to perturbation, rapidly changing between lo-
calized and globally coherent states. However, when the
positive residuals are relocated to proximal connections,
the network coherence is no longer sensitive to small
perturbations in the frequency distribution (Fig 5 A,C,
green; B,D, right), in spite of the unaltered total connec-
tion strengths. Unlike the network with randomly relo-
cated residuals, the network with positive residuals re-
located to proximal connections lack strong connections

between distal brain regions.

This shows that the location of strong connections
above the power-law dependence on distance is critical
for generating a steep change in order parameter; how-
ever, the precise positions of the strong connections do
not have to match those of the data-driven network, as
long as there is a sufficient amount of strong connections
between distal nodes. In sum, the spatial structure of
the network connectivity plays a key role in maintain-
ing the brain’s ability to change its computational states
with small perturbations, and such sensitivity cannot be
achieved by simply matching the total network connec-
tion strengths. However, the structure does not have to
precisely match that of the real brain network. What is
critical to maintain, rather, is some strong connections
between distal regions.

III. CONCLUSION

In this paper, we studied synchronization of a spa-
tially constrained model of a weighted whole-brain net-
work at mesoscale, constructed from viral tracing exper-
iments. We found that the connectivity has a signifi-
cant spatial dependence, with the connection strength
decreasing with distance between the regions following a
power law. However, by studying the network dynam-
ics of phase oscillators, we found that a network gener-
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FIG. 5. Synchronization measured when the network structure is altered but the overall degree remains the same
as the data-driven network. (A,C) Whole network order parameter r as a function of perturbation amount σ, for the network
generated by adding the residual connection weights to random locations (gray) and the network constructed by relocating
positive residuals (averaged) to connections between spatially close regions (< 500µm) (green). The order parameter for the
data-driven brain network (red) is shown for comparison. (B,D) Order parameter as a function of spatial scale of subnetworks,
for the networks constructed by shuffling locations of residual connections (left) and by relocating positive residuals to nearby
connections (right). Measures for a single hemisphere with ipsilateral connections (A, B) and both hemispheres with ipsilateral
and contralateral connections (C, D) are shown.

ated by the simple spatial constraints alone cannot re-
produce the full computational versatility of the meso-
scopic whole-brain network. Rather, we need to con-
sider additional complexities of the network structure to
capture their possibly significant roles in neural compu-
tation. Specifically, we found that residual connections
not explained by the power-law dependence on distance
have a long positive tail, corresponding to strong con-
nections between distal brain regions. By computing the
recently proposed universal order parameter, we showed
that these strong distal connections underlie sensitive de-
pendence of network synchrony on perturbation, poten-
tially responsible for the brain’s exceptional ability to
change its computational states depending on stimulus
and behavioral context. Furthermore, our analyses on a
network constructed by adding a small fraction of strong
positive residuals to the spatially-constrained connectiv-
ity, as well as a network with the positive residuals relo-
cated to random locations and proximal connections, re-
veal the key element underlying the rapid switch between
global and modularized synchronies – strong connections
between distal brain regions. In other words, the net-
work’s sensitivity to perturbation cannot be reproduced
by simply manipulating the overall connection strengths,
as locations of positive residual connections should be
taken into consideration. A spatially-constrained model
plus an idiosyncratic sparse matrix which features strong

connections between distal regions, provides a parsimo-
nious representation of the measured connectivity.

We hypothesize that the sharp transition between lo-
cally and globally synchronized states in the data-driven
network, which is absent in the spatially-constrained
power-law model, may underlie the brain’s ability to
rapidly switch between global and modularized compu-
tations [33]. Such feature is known to be impaired in the
brain under pathological conditions such as Alzheimer’s
disease, suggested by studies showing more modular
structures and decreased global efficiency in brain con-
nectivity constructed from EEG, MEG, fMRI, and diffu-
sion tensor tractography [34–37]. Moreover, there is an
experimental evidence for disruption of long-range con-
nections in Alzheimer brain network [36], in agreement
with our model results. A more detailed future study on
genetically-controlled mouse models of Alzheimer’s dis-
ease will shed light on the possible link between changes
in structural connectivity and impairment in rapid phase
transitions of the whole-brain network.

In this paper, we infer the dynamics of the mesoscopic
brain network by constructing a network of phase oscilla-
tors with the coupling strengths determined by the struc-
tural connectivity obtained by viral tracing experiments.
Thus, while the structural connectivity is based on ac-
tual data, the dynamics we conferred on the network are
arbitrary. Building a more realistic, data-driven dynamic
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network based on imaging experiments such as calcium-
imaging or ECOG will be a crucial future extension of
our study of connecting the network structures to the
network dynamics. However, our simulations with phase
oscillators, despite their generality, still make valuable
predictions on computational roles of spatial structures
of the mesoscopic whole-brain network, underlining the
importance of distal connections on the network dynam-
ics.

IV. METHODS

A. Mouse whole-brain connectivity data

The mesoscopic mouse whole-brain connectivity was
obtained from Allen Mouse Brain Connectivity Atlas
(http://connectivity.brain-map.org/), constructed based
on anterograde viral tracing experiments in wild type
C7BL/6 mice [10]. Based on the experimental data, a
recently developed interpolative mapping algorithm was
used to construct a model of whole brain connectivity at
the 100 µm-voxel scale [22]. The voxel-based connection
strengths were averaged over each brain region to pro-
duce a connectivity matrix with 244 brain regions per
hemisphere as nodes, larger than the adjacency matrix
of 213 pairs of nodes previously obtained from the linear
model in [10]. For elements of the connectivity matrix,
we use the normalized projection density, defined as the
connection strength between two regions divided by the
volume of the source and target regions. In order to ac-
count for the size of the source region, we also studied
the relationship between the connection strength divided
only by the size of the target region and the distance be-
tween two regions. In this case, however, the fit to either
a power law or an exponential function was not very good
which is not surprising given that the connection strength
that are not fully normalized with respect to the size of
the source and the target is not an intrinsic quantity. For
more details on the viral tracing experiments and the in-
terpolative algorithm used to construct the connectivity
matrix, see [10] and [22]. The connectivity matrix was
first normalized to have values between 0 and 1. For the
ipsilateral connection matrix, the diagonal entries were
set to 0 removing self-connectivity, as done in [4, 20].

B. Dependence of connection strengths on
interregional distance

We fitted connection strengths as a function of inter-
regional distance, where the distance between each pair
of nodes was determined by computing the Euclidean
distance in 3-dimensional coordinates between the cen-
troids of the brain regions. Specifically, power-law func-
tions for relationships between connection strength and
interregional distance were fitted by using least squares
on the log scale. For each of the ipsilateral and con-

tralateral connectivity matrices, we found α and β by

fitting the data to Ãij = α · d−βij + εij , where Ãij de-
notes the connection strength from node j to node i, dij
indicates the distance between nodes i and j, and εij
is the residual error. We obtained α = 6.92 × 106 and
β = 2.886 for ipsilateral connectivity, and α = 6.71× 105

and β = 2.685 for contralateral connectivity (Fig 1B). In
agreement with previous studies on Allen Mouse Brain
Connectivity data [18, 22], we found that the power law
explains the relationship slightly better than the expo-
nential dependence (ipsilateral r-square: 0.264 vs 0.257,
rmse: 1.089 vs 1.095; contralateral r-square: 0.167 vs
0.135, rmse: 1.124 vs 1.146 ).

We also investigated the power-law constrained net-
work where the relationship between connection strength
and interregional distance was found on the real scale, us-
ing nonlinear least squares (Levenberg-Marquardt algo-
rithm), which has a poorer explanatory power than linear
least squares on the log-scale (r-square: 0.264 vs 0.157
(ipsilateral) / 0.167 vs 0.131 (contralateral)). While this
method generated a different power-law function from
the one found by least squares on the log-log scale, the
dynamics on the power-law network obtained by using
nonlinear least squares maintained the same core char-
acteristics, distinct from the data-driven brain network–
the order parameter is less sensitive to the dispersion
amount in intrinsic frequencies.

C. Order parameter

In this section, we describe order parameters that were
proposed previously [24, 25, 27, 28], demonstrating ad-
vantages of the recently developed universal order pa-
rameter [26] in our analysis.

In order to quantify a transition from incoherence to
synchronization in the original model of phase oscillators
with all-to-all connectivity, Kuramoto introduced an or-
der parameter (rKuramoto) that measures the average of
phase differences of all pairs of oscillators [27, 28], such
that:

r2Kuramoto ≡
〈 1

N2

N∑
i,j=1

ei(θi−θj)
〉
t

=
1

N2

N∑
i,j=1

〈
cos (θi − θj)

〉
t
.

(2)

< ... >t denotes the average over time. However, this
unweighted order parameter is not a good measure when
comparing collective synchronizations in two networks
described by different connectivity matrices, as it does
not capture the topology of the networks.

To extend the use of order parameter to more general,
weighted networks of oscillators, Restrepo et al [24, 25]
proposed an order parameter which is defined as the av-
erage of local order parameters which measure the coher-
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ence of the inputs to each node. This parameter, how-
ever, does not capture partially phase-locked states well.
Recently, Schroeder et al [26] proposed a new, “univer-
sal order parameter” which overcomes the shortcomings
of the previous order parameters. This newly proposed
universal order parameter is defined as:

r ≡ 1∑N
i=1 ki

N∑
i,j=1

Aij
〈
Re(ei(θi−θj))

〉
t

=
1∑N
i=1 ki

N∑
i,j=1

Aij
〈

cos (θi − θj)
〉
t

(3)

where ki =
∑N
j=1Aij is the input strength of node i.

Note that in unweighted binary networks, this measure
represents in-degree [4]. This order parameter accounts
for the network topology and its influence on the phase
coherence, enabling a fair comparison between two topo-
logically different weighted networks even when their to-
tal connection strengths are not matched. As this uni-
versal order parameter accurately captures partial syn-
chrony within the network, different degrees of synchro-
nization can be measured by order parameter of the
whole network.

Furthermore, degree of coherence as a function of spa-
tial extent can be obtained by computing the order pa-
rameter for subnetworks of different spatial scales. The
order parameter r can be described as a function of dis-

tance d:

r ≡ 1∑N
i=1 ki

N∑
i=1

∑
j∈γ(i,d)

Aij
〈
Re(ei(θi−θj))

〉
t

=
1∑N
i=1 ki

N∑
i=1

∑
j∈γ(i,d)

Aij
〈

cos (θi − θj)
〉
t

(4)

where γ(i, d) indicates the set of nodes within spatial
distance d from node i. ki =

∑
j∈γ(i,d)Aij is the to-

tal connection strength of node i when the subnetwork
composed of nodes within distance d from node i is con-
sidered. The order parameter of the whole network is
obtained when d = size of the network (11752µm for ip-
silateral and 11955µm for contralateral connectivity).

ACKNOWLEDGEMENT

We thank Joseph Knox for providing the connectivity
matrix used in this analysis. We also thank Kameron
Harris for many helpful comments and suggestions. This
work was supported by the Allen Institute for Brain Sci-
ence. We wish to thank the Allen Institute founders,
Paul G. Allen and Jody Allen, for their vision, encour-
agement, and support. Part of this work was done while
H.C. was visiting the Simons Institute for the Theory of
Computing.

[1] D. J. Felleman and D. C. Van Essen, Cerebral Cortex
1(1), 1 (1991).

[2] D. J. Watts and S. H. Strogatz, Nature 393(6684), 440
(1998).

[3] D. Basset, D. Greenfield, A. Meyer-Lindenberg, D. Wein-
berger, S. Moore, and E. Bullmore, PLOS Computa-
tional Biology 6, e1000748 (2010).

[4] M. Rubinov and O. Sporns, NeuroImage 52, 1059 (2010).
[5] M. Schmidt, R. Bakker, C. Hilgetag, M. Diesmann, and

S. van Albada, Brain Struct Funct 223(3), 1409 (2017).
[6] D. Bock, W.-C. Lee, A. Kerlin, M. Andermann, G. Hood,

A. Wetzel, S. Yurgenson, E. Soucy, H. Kim, and R. Reid,
Nature 471(7337), 177 (2011).

[7] L. Glickfeld, M. Andermann, V. Bonin, and R. Reid,
Nature Neuroscience 16(2), 219 (2013).

[8] D. Kleinfeld, A. Bharioke, P. Blinder, D. Bock, K. Brig-
gman, D. Chklovskii, M. Denk, W. Helmstaedter,
J. Kaufhold, W.-C. Lee, H. Meyer, K. Micheva, M. Ober-
laender, S. Prohaska, R. Reid, S. Smith, S. Kaemura,
P. Tsai, and B. Sakmann, Journal of Neuroscience
31(45), 16125 (2011).

[9] J. White, E. Southgate, J. Thomson, and S. Brenner,
Philosophical Transactions of the Royal Society of Lon-
don B: Biological Sciences 314(1165), 1 (1986).

[10] S. W. Oh, J. Harris, L. Ng, and et al., Nature 508, 207
(2014).

[11] M. Kaiser and C. Hilgetag, Physical Review E 69, 036103
(2004).

[12] J. Ozik, B. Hunt, and E. Ott, Physical Review E 69,
026108 (2004).

[13] M. Barthelemy, Physics Reports 499, 1 (2011).
[14] L. Daqing, K. Kosmidis, A. Bunde, and S. Havlin, Na-

ture Physics 7, 481 (2011).
[15] M. Ercsey-Ravasz, N. Markov, C. Lamy, D. Van Essen,

K. Knoblauch, and Z. Toroczkai, Neuron 80, 184 (2013).
[16] H. Song, H. Kennedy, and X.-J. Wang, PNAS 111, 6580

(2014).
[17] F. Klimm, D. Bassett, J. Carlson, and P. Mucha, PLOS

Computational Biology 10, e1003491 (2014).
[18] M. Rubinov, R. Ypma, C. Watson, and E. Bullmore,

PNAS 112, 10032 (2014).
[19] R. Betzel, A. Avena-Koenigsberger, J. Goni, Y. He,

M. de Reus, and A. Griffa, Neuroimage. 124, 1054
(2016).

[20] S. Henriksen, R. Pang, and M. Wronkiewicz, eLife 5,
e12366 (2016).

[21] A.-L. Barabasi and R. Albert, Science 286(5439), 509
(1999).

[22] J. Knox, K. Harris, N. Graddis, J. Whitesell, H. Zeng,
J. Harris, E. Shea-Brown, and S. Mihalas, bioRxiv
doi.org/10.1101/293019 (2018).

[23] H. Hong, M. Y. Choi, and B. J. Kim, Physical Review
E 65, 026139 (2002).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319830doi: bioRxiv preprint 

https://doi.org/10.1101/319830


9

[24] J. G. Restrepo, E. Ott, and B. R. Hunt, Physical Review
E 71, 036151 (2005).

[25] J. G. Restrepo, E. Ott, and B. R. Hunt, Chaos 16,
015107 (2005).

[26] M. Schroeder, M. Timme, and D. Witthaut, Chaos 27,
073119 (2017).

[27] Y. Kuramoto, Springer-Verlag, Berlin (1984).
[28] S. H. Strogatz, Physica D 143, 1 (2000).
[29] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and

C. Zhou, Physics Reports 469, 93 (2008).
[30] F. Rodrigues, T. Deron, P. Ji, and J. Kurths, Physics

Reports 610, 1 (2015).
[31] T. Ichinomiya, Phys. Rev. E 70, 026116 (2004).

[32] F. Dorfler and F. Bullo, SIAM J. Applied Dynamical Sys-
tems 10, 1070 (2011).

[33] M. Bertolero, B. Yeo, and M. D’Esposito, PNAS
112(49), E6798 (2015).

[34] Y. Sun, Q. Yin, R. Fang, X. Yan, Y. Wang, A. Beze-
rianos, H. Tang, F. Miao, and J. Sun, Plos One 9(5),
e96505 (2014).

[35] C.-Y. Lo, P.-N. Wang, K.-H. Chou, J. Wang, Y. He, and
C.-P. Lin, Journal of Neuroscience 30(50), 16876 (2010).

[36] B. Tijms, A. Wink, W. de Haan, W. van der Flier,
C. Stam, P. Scheltens, and F. Barkhof, Neurobiology
of Aging 34, 2023 (2013).

[37] W. de Haan, W. van der Flier, T. Koene, L. Smits,
P. Scheltens, and C. Stam, NeuroImage 59, 3085 (2012).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/319830doi: bioRxiv preprint 

https://doi.org/10.1101/319830

