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Abstract 
Genetic variants regulating RNA splicing and transcript usage have been implicated in both 
common and rare diseases. Although transcript usage quantitative trait loci (tuQTLs) have now 
been mapped in multiple cell types and conditions, the molecular mechanisms through which 
these variants exert their effect have remained elusive. Specifically, changes in transcript usage 
could arise from promoter choice, alternative splicing or 3ʹ end choice, but current tuQTL studies 
have not been able to distinguish between them. Here, we performed comprehensive analysis 
of RNA-seq data from human macrophages exposed to a range of inflammatory stimuli (IFNɣ, 
Salmonella, IFNɣ + Salmonella) and a metabolic stimulus (acetylated LDL), obtained from up to 
84 individuals. In addition to conventional gene-level and transcript-level analyses, we also 
developed an analytical approach to directly quantify promoter, internal exon and 3ʹ end usage. 
We found that although naive transcript-level analysis often links single genetic variants to 
multiple coupled changes on the transcriptome, this appears to be an artefact of incomplete 
transcript annotations. Most of this coupling disappears when promoters, splicing and 3ʹ end 
usage are quantified directly. Furthermore, promoter, splicing and 3ʹ end QTLs are each 
enriched in distinct genomic features, suggesting that they are predominantly controlled by 
independent regulatory mechanisms. We also find that promoter usage QTLs are 50% more 
likely to be context-specific than canonical splicing QTLs and constitute 25% of the transcript-
level colocalisations with complex traits. Thus, promoter usage might be a previously 
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underappreciated molecular mechanism mediating complex trait associations in a context-
specific manner. 

Introduction 
Genome-wide association studies (GWAS) have discovered thousands of genetic loci 
associated with complex traits and diseases. However, identifying candidate causal genes and 
molecular mechanisms at these loci remains challenging. Complex trait-associated variants are 
enriched in regulatory elements and are therefore thought to act via regulation of gene 
expression levels, often in a cell type- and context-specific manner [1–3]. However, such 
variants are equally enriched among splicing quantitative trait loci (QTLs) [4,5] and incorporating 
splicing QTLs in a transcriptome-wide association study increased the number of disease-
associated genes by 2-fold [6]. In addition to splicing, genetic variants can also alter transcript 
sequence by regulating promoter and 3ʹ end usage, which we refer to collectively hereafter as 
transcript usage QTLs (tuQTLs). Alternative transcript start and end sites underlie most 
transcript differences between tissues [7,8], they are dynamically regulated in response to 
cellular stimuli [9,10] and they are also frequently dysregulated in cancer [11,12]. Moreover, 
experimental procedures designed to capture either 5' or 3ʹ ends of transcripts have identified 
disease-relevant genetic variants that regulate promoter or 3ʹ end usage [13,14]. However, well-
powered RNA-seq-based tuQTL studies performed across cell types [5,6,15–17] and conditions 
[18–20] have thus far not distinguished between promoter usage, splicing and 3ʹ end usage. 
Thus, how these distinct transcriptional mechanisms contribute to complex traits and how 
context-specific these genetic effects are is currently unclear.  
 
In addition to splicing analysis, RNA-seq data can also be used to quantify promoter and 3ʹ end 
usage. The simplest approach would be to first quantify the expression of all annotated 
transcripts using one of the many quantification algorithms (benchmarked in [21]). Linear 
regression can then be used to identify genetic variants that are associated with the usage of 
each transcript of a gene [6,16]. Comparing the associated transcripts to each other can reveal 
which transcriptional changes take place (Fig. 1a). A key assumption here is that all expressed 
transcripts are also part of the annotation catalog. If some of the expressed transcripts are 
missing, then reads originating from the missing transcripts might be erroneously assigned to 
other transcripts that are not be expressed at all (Fig. 1b) [22]. This can lead to individual 
genetic changes being spuriously associated with multiple transcriptional changes. For 
example, a genetic variant regulating promoter usage might also appear to be associated with 
the inclusion of an internal exon (Fig. 1b), although there are no reads originating from that 
exon. Importantly, this is not just a theoretical concern, because 25-35% of the exon-exon 
junctions observed in RNA-seq data are not present in transcript databases [16], and up to 60% 
of the transcripts annotated by Ensembl [23] are truncated at the 5ʹ or 3ʹ end (Figures S1 and 
S2). 
 
The overcome the issue of missing transcript annotations, recent tuQTL studies have focussed 
on quantifying transcription at the level of individual exons [15,24,25], introns [25] or exon-exon 
junctions (Fig. 1c) [6,16,25]. While these approaches often discover complementary genetic 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2018. ; https://doi.org/10.1101/319806doi: bioRxiv preprint 

https://doi.org/10.1101/319806
http://creativecommons.org/licenses/by/4.0/


 

3 

associations [16,25], they do not explicitly reveal the transcriptional mechanism (promoter 
usage, alternative splicing or 3ʹ end usage) underlying the genetic associations. The most 
successful approach to differentiate between distinct transcriptional mechanisms has been 
‘event-level’ analysis where reference transcripts are split into independent events (e.g. 
promoters, splicing events and 3ʹ end) whose expressions is then quantified using standard 
transcript quantification methods (Fig. 1c). This approach was pioneered by MISO [26] and was 
recently used to identify promoter usage QTLs in the GEUVADIS dataset [9]. Despite its 
success, MISO covers only a subset of promoter events (alternative first exons) and its event 
annotations have not been updated since it was first published. Thus, there is a need for a 
method that is able to detect comprehensive set of promoter, splicing and 3’ end usage QTLs in 
an uniform manner. 
 
In this study, we re-analysed RNA-seq data from human macrophages exposed to three 
inflammatory stimuli (18 hours IFNɣ stimulation, 5 hours Salmonella infection and IFNɣ 
stimulation followed by Salmonella infection). We also collected a new dataset of macrophages 
stimulated with acetylated LDL (acLDL) for 24 hours. We mapped genetic associations at the 
level of total gene expression, full-length transcript usage and exon-exon junction usage in each 
experimental condition. In addition to existing quantification methods, we also developed a 
complementary approach (txrevise) that stratifies reference transcript annotations into 
independent promoter, splicing and 3ʹ end events. Using txrevise, we found that promoter and 3ʹ 
end usage QTLs constituted 55% of detected tuQTLs, exhibited genetic architectures that were 
distinct from canonical expression or splicing QTLs and often colocalised with complex trait 
associations. Promoter usage QTLs were also 50% more likely to be context-specific than 
canonical splicing QTLs. Thus, context-specific regulation of promoter usage might be a 
previously underappreciated molecular mechanism underlying complex trait associations. 

Results 

Quantifying transcript usage in stimulated macrophages 
We analysed RNA-seq data from human induced pluripotent stem cell (iPSC)-derived 
macrophages exposed to three inflammatory stimuli (18 hours IFNɣ stimulation, 5 hours 
Salmonella infection, and IFNɣ stimulation followed by Salmonella infection) and one metabolic 
stimulus (24 hours acLDL stimulation). While the gene expression analysis of the IFNɣ + 
Salmonella dataset from 84 individuals has previously been described [3], the acLDL data from 
70 individuals was newly generated for the current study. The acLDL dataset allowed us to 
assess how our results generalise to weaker non-inflammatory stimuli. Both datasets included 
independent unstimulated control samples (denoted as ‘naive’ and ‘Ctrl’). In each condition, we 
quantified gene expression and transcript usage using the following established quantification 
approaches: (i) gene-level read count quantified with featureCounts [27], (ii) full-length transcript 
usage quantified with Salmon [28] (Fig. 1c), and (iii) exon-exon junction usage quantified with 
Leafcutter [6] (Fig. 1c).  
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Inspired by event level analysis proposed by MISO [9,26], we also developed a complementary 
approach (txrevise) to stratify reference transcript annotations into independent promoter, 
splicing and 3ʹ end events. To achieve this, txrevise identifies constitutive exons shared 
between all transcripts of a gene and uses those to assign non-constitutive exons to promoter, 
internal exon or 3’ end events (Fig. 1c). Since up to 60% of the transcripts annotated by 
Ensembl [23] are truncated at the 5ʹ or 3ʹ end (Figure S1), txrevise extends truncated transcripts 
by copying over exons from the longest transcript of the gene (Figure S2). This step eliminates 
a large number of implausible alternative promoters and 3ʹ ends that lack experimental 
evidence. To make the approach suitable for genes with non-overlapping transcripts, we also 
select a subset of transcripts that share the largest number of exons between them (Figure S3). 
Finally, to ensure that the new alternative promoter and 3ʹ end events do not capture splicing 
changes, txrevise masks alternative exons that are not the first or last exons (Figure S4). The R 
package as well as custom transcriptional events constructed by txrevise are available from 
GitHub (https://github.com/kauralasoo/txrevise). 
  

 
Fig. 1. Challenges of quantifying transcript usage from RNA-seq data. Transcript quantification 
seeks to estimate the most likely configuration of known transcripts that best explains observed 
read counts supporting the inclusion of each exon. (a) In scenario A, each copy of the G allele 
increases the usage of transcript 2 by 10%. Since both expressed transcripts (transcript 1 and 
transcript 2) are annotated, we successfully detect the change and conclude that the G allele 
increases the expression of the proximal promoter of the gene. (b) In scenario B, each copy of 
the G allele still increases the usage of transcript 2 by 10%. However, since transcript 2 is 
missing from the annotations, reads originating from transcript 2 are now falsely assigned to 
transcript 3. Since transcript 3 also contains alternative second exon, we now falsely conclude 
that in addition to promoter usage, the G allele is also associated with increased inclusion of 
exon 2, even though there are no reads mapping to exon 2. Furthermore, the magnitude of the 
genetic effect is underestimated, because the reads assigned to transcript 3 are assumed to be 
evenly distributed across the promoter and the alternative exon. (c) Top panel: Two hypothetical 
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transcripts that differ from each other at the promoter, at an internal exon and at the 3ʹ end. 
Middle panel: Leafcutter uses reads mapping to exon-exon junctions to identify alternatively 
excised introns. Bottom panel: txrevise uses the exons shared between transcripts (dark blue) 
as a scaffold to construct three independent transcriptional events from the two original 
transcripts. 

Genetic effects on transcript usage 
Depending on the experimental condition and quantification method, we detected between 1500 
and 3500 QTLs at the 10% false discovery rate (FDR) (Fig. 2a). Leafcutter consistently detected 
the lowest number of QTLs per condition, while txrevise detected approximately 30% more 
associations than other methods (Fig. 2a), 55% of which affected promoter or 3ʹ end usage 
instead of internal exons (Figure S5). However, this increase in QTLs can be partially explained 
by the fact that txrevise detected multiple associations for ~24% of the genes while the full-
length tuQTL analysis was limited to single lead association per gene (Figure S6). Some of 
these additional QTLs are likely to represent independent causal variants, such as the three 
independent tuQTLs detected for the IRF5 gene (Figure S7). Alternatively, as discussed below, 
additional associations could also be caused by transcriptional coupling where promoter or 3ʹ 
end choice directly influences the splicing of an internal exons or vice versa [29].  
 
Different quantification methods may be biased towards discovering events with specific 
genomic properties, which is not captured by the number of QTLs detected. To address this, we 
quantified how often were the lead QTL variants (FDR < 0.01) from different methods in high 
linkage disequilibrium (LD) (R2 > 0.8) with each other (see Methods). Consistent with previous 
reports that tuQTLs are largely independent from eQTLs [5], we found that only 11-24% of the 
lead variants detected at the read count level replicated at the transcript level (R2 > 0.8, 
irrespective of the replication p-value), independent of which quantification method was used 
(Fig. 2b). In contrast, ~50% of the Leafcutter QTLs were also detected by txrevise or full-length 
transcript usage approaches. Similarly, the tuQTLs detected by txrevise and full-length 
transcript usage quantification were in high LD more than 60% of the time (Fig. 2b). Finally, we 
found that while 44% of the txrevise internal exon QTLs were in high LD with Leafcutter QTLs, 
this decreased to ~20% for promoter and 3ʹ end QTLs (Figure S5), suggesting that Leafcutter is 
less suited to capture those events. Thus, different quantification approaches appear to capture 
complementary sets of genetic associations.  

Transcriptional coupling between promoter usage, splicing and 3ʹ 
end usage 
Although multiple instances of transcriptional coupling have been previously observed (reviewed 
in [29]), its genome-wide prevalence is still poorly understood. Proximal genetic variants 
predominantly regulate transcript usage in cis. Thus, a single causal variant associated with 
multiple transcriptional events could provide evidence for transcriptional coupling in the absence 
of full-length mRNA sequencing data [30]. To test this, we first focussed on the tuQTLs detected 
by full-length Ensembl transcripts. We compared the transcript with the smallest tuQTL p-value 
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against the most highly expressed transcript (see Methods). This revealed that 97% of the 
tuQTLs were seemingly associated with at least two transcriptional changes (e.g. alternative 
promoter and internal exon) and >50% were simultaneously associated with all three 
transcriptional changes (different promoter, internal exons and 3ʹ end) (Figure S8). In contrast, a 
recent full-length mRNA sequencing experiment estimated coupling to occur between 
approximately 10% of the events [30], suggesting that our naive estimate is strongly inflated by 
the use of incomplete transcript annotations (Fig. 1a, b).  
 
To estimate the extent to which incomplete transcript annotations can cause false signals of 
transcriptional coupling, we turned to txrevise and Leafcutter analyses that directly quantified 
the usage of multiple independent transcriptional events per gene. Both approaches detected 
multiple significant tuQTLs for only a minority of the genes (txrevise - 24%; Leafcutter - 10%) 
(Figure S6). Furthermore, among the genes with multiple tuQTLs, 50% of the Leafcutter and 
30% of the txrevise associations had independent lead variants (R2 < 0.2), confirming that true 
transcriptional coupling seems to be rare (Figure S6). Moreover, some of the apparent coupling 
events in the txrevise analysis could be explained by technical biases such as large eQTL 
effects (Figure S9) or positional biases in the RNA-seq data (Figure S10). Our results suggest 
that, although most genetic variants modulate individual transcriptional events, high numbers of 
spurious associations between genotype and multiple transcriptional changes are detected 
when expression is quantified at the level of full-length transcripts. 

Genomic properties of transcript usage QTLs 
To characterise the genetic associations detected by different quantification methods, we 
compared the relative enrichments of the identified QTLs across multiple genomic annotations. 
We constructed genomic tracks for eight annotations: open chromatin measured by ATAC-seq 
[3], promoter flanking regions (-2000 bp to +200 bp), 5ʹ UTRs, coding sequence (CDS), introns, 
3ʹ UTRs, polyadenylation sites [31], and eCLIP binding sites for RNA binding proteins involved 
in splicing regulation (splicing factors) [32]. We then used the hierarchical model implemented in 
fgwas [33] to estimate the enrichment of each genomic annotation among the QTLs detected by 
each quantification method. Consistent with the limited overlap between eQTLs and tuQTLs 
(Fig. 2b), we found that eQTLs were strongly enriched in sites of open chromatin (Fig. 2c; log 
enrichment of 3.31, 95% CI [3.15, 3.47]), whereas all transcript-level QTLs were enriched at the 
binding sites of splicing factors detected by eCLIP (Fig. 2c, mean log enrichment of 2.29). 
Importantly, when all txrevise tuQTLs were pooled, the enrichment patterns were broadly similar 
to tuQTLs detected by full-length Ensembl transcripts (Fig. 2c). This suggests that txrevise 
events and full-length transcripts capture similar genetic associations but txrevise facilitates 
more accurate identification of the underlying transcriptional event (i.e. promoter, internal exon 
or 3ʹ end usage) (Fig. 2b). Finally, compared to Leafcutter, full-length transcript usage and 
txrevise QTLs were both more strongly enriched at 3ʹ UTRs (Fig 2c, mean log enrichment of 
1.85), suggesting that they capture changes in 3ʹ UTR length that do not manifest at the level of 
junction reads and are thus missed by Leafcutter. 
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If the coupling between promoter usage, splicing and 3ʹ end choice is as rare as suggested by 
txrevise, then this should be reflected by the genomic features that the associated variants are 
enriched in. Conversely, pervasive coupling between distinct transcriptional mechanisms would 
predict that the associated variants would share most of their genomic properties. To assess 
this, we repeated the fgwas analysis on the promoter, internal exon and 3ʹ end QTLs detected 
by txrevise as well as Leafcutter splicing QTLs. We found that Leafcutter and internal exon 
QTLs showed broadly similar enrichment patterns, with a strong enrichment at the binding sites 
of splicing factors (Fig. 2d, mean log enrichment of 2.53). In contrast, promoter and 3ʹ end 
usage QTLs were specifically enriched at promoters (Fig. 2d; log enrichment of 2.76, 95% CI 
[2.59, 2.95]) and 3ʹ UTRs (Fig 2d; log enrichment of 3.60, 95% CI [3.43, 3.76]), respectively (Fig. 
2d), and showed only a modest enrichment at the binding sites of splicing factors (Fig. 2d; mean 
log enrichment of 1.17). Compared to other events, promoter usage QTLs were relatively more 
enriched in open chromatin regions (log enrichment of 1.58, 95% CI [1.42, 1.74]) and were also 
65% more likely to overlap chromatin accessibility QTLs in macrophages [3] (R2 > 0.9) (Fisher’s 
exact test p-value = 3.87x10-5). Thus, promoter usage, splicing and 3ʹ end usage appear to be 
regulated by largely independent sets of genetic variants enriched in distinct genomic regions.  
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Fig. 2 Diversity of QTLs detected by different quantification methods. In panels a-c, all txrevise 
QTLs from promoters, internal exons and 3ʹ ends have been pooled to facilitate comparison with 
eQTLs as well as Leafcutter and full-length transcript usage QTLs. (a) Number of QTLs 
detected by read count, full-length transcript usage, Leafcutter and txrevise methods in each 
condition (N, naive; I, IFNɣ; S, Salmonella, I+S, IFNɣ + Salmonella). (b) Sharing of QTLs 
detected by four quantification methods. The numbers on the heatmap show the fraction of 
QTLs detect by one method that were replicated by the three other methods (R2 > 0.8 between 
lead variants). Only QTLs with FDR < 0.01 were included in the analysis. (c) Enrichment of 
genomic annotations at QTLs detected by the four quantification methods. (d) Comparison of 
Leafcutter tuQTLs to promoter, internal exon and 3ʹ end usage QTLs detected by txevise. 
Genomic annotations used for enrichment analysis: promoter - promoter flanking regions (-2000 
bp to +200 bp); 5ʹ UTR, coding, intron, 3ʹ UTR - corresponding regions extracted from Ensembl 
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transcripts; poly(A) - experimentally determined polyadenylation sites (+/- 25 bp) [31]; open 
chromatin - open chromatin regions from macrophages [3]; splicing factor - experimentally 
determined binding sites of splicing factors detected by eCLIP [32]. The points on panels c and 
d show the natural logarithm of enrichment for each annotation and the lines represent the 95% 
confidence intervals from fgwas [33]. 

Colocalisation with complex trait associations 
To assess the relevance of different QTLs for interpreting complex trait associations, we 
performed statistical colocalisation analysis with GWAS summary statistics for 33 immune-
mediated and metabolic traits and diseases (see Methods). We found that 47 of 138 colocalised 
QTLs influenced total gene expression level (Fig. 3a) (PP3+PP4>0.8, PP4/PP3>9; PP3, 
posterior probability of a model with two distinct causal variants; PP4, posterior probability of a 
model with one common causal variant). In contrast, the remaining 91 colocalised QTLs were 
associated with at least one of the transcript-level phenotypes (full-length transcript usage, 
txrevise or Leafcutter) but not with total gene expression (Fig. 3a). Similarly, 44 of 91 transcript-
level colocalisations were detected only by a single transcript quantification approach (Fig. 3a). 
An important caveat of this analysis is that it does not directly test if the colocalisations are 
specific to one quantification method or simply missed by others because of limited power. 
Thus, our estimates of method-specificity are likely to be inflated. 
 
Finally, to quantify the relative contribution of promoter usage, splicing and 3ʹ end usage to 
complex traits, we stratified the txrevise colocalisations by transcriptional event type. We found 
that 44 of 77 colocalised QTLs influenced internal exons and the rest regulated promoters and 
3ʹ ends (Fig. 3b). We were able to replicate known associations between splicing of exon 2 in 
CD33 and Alzheimer’s disease (Figure S11) [34] and splicing of exon 13 in HMGCR and LDL 
cholesterol (Figure S12) [35]. Importantly, while half of the promoter and internal exon 
colocalisations were also detected by Leafcutter, only 1/11 3ʹ end events were captured by 
Leafcutter, probably because these are less likely to manifest at the level of junction reads (Fig. 
3b). 
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Fig. 3. Colocalisation between GWAS hits for 33 complex traits and QTLs. The UpSetR plot 
shows the total number of colocalised trait-gene pairs detected by different quantification 
methods (horizontal bars) and overlap between different methods (vertical bars). (a) Sharing of 
colocalisations between four quantification methods. (b) Sharing of colocalisations between 
Leafcutter and three independent txrevise event types (promoters, internal exons, 3ʹ ends). 

Condition-specificity of expression and transcript usage QTLs 
Next, we explored how the genetic effects of eQTLs and tuQTLs varied in response to stimuli. 
To define response QTLs, we started with QTLs detected (FDR < 10%) in each of the four 
simulated conditions (I, S, I+S and acLDL) and used an interaction test to identify cases where 
the QTL effect size was significantly different between the simulated and corresponding naive 
condition (FDR < 10%). To exclude small but significant differences in effect size, we used a 
linear mixed model to identify QTLs where the interaction term explained more than 50% of the 
total genetic variance in the data (see Methods). Although the fraction of QTLs that were 
response QTLs varied greatly between conditions (Fig. 4a) and correlated with the number of 
differentially expressed genes (Figure S13) as previously reported [1], we found that the fraction 
of response tuQTLs was relatively consistent between the four quantification methods (Fig. 4a). 
While previous reports have highlighted that eQTLs are more condition-specific than tuQTLs 
[18], we found no clear pattern in our data with stronger stimuli (S and I+S) showing larger 
fraction of condition-specific eQTLs, and weaker stimuli (I, acLDL) showing smaller fraction of 
response eQTLs (Fig. 4a) compared to tuQTLs. However, when we focussed on the 
transcriptional events detected by txrevise, we found that promoter usage QTLs were 50% more 
likely to be response QTLs than tuQTLs regulating either internal exons or 3ʹ ends (Fig. 4b) 
(Fisher’s exact test combined p-value = 2.79x10-6).  
 
Finally, we assessed the condition-specificity of QTLs that colocalised with complex trait loci. 
We found that, on average, 12% of the GWAS colocalisations corresponded to response QTLs 
(Fig. 4c). One example is an IFNɣ-specific promoter usage QTL for the CD40 gene that 
colocalises with a GWAS signal for rheumatoid arthritis [36]. The alternative C allele of the 
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rs4239702 variant is associated with increased usage of the transcript with the short 5ʹ UTR 
(Fig. 4e, f). This tuQTL was also visible at the absolute expression level of the two alternative 
promoters (Figure S14), but was missed by Leafcutter, because there is no change in junction 
reads. Although the variant was not significantly associated with total gene expression level 
(Figure S14), the two promoters contain the same start codon. As a result, the likely functional 
consequence of the CD40 tuQTL is modulation of protein abundance. Although the same tuQTL 
was also detected at the full-length transcript usage level, the affected transcripts also differ 
from each other by alternatively spliced exon 6, making it challenging to interpret the result (Fig. 
4e). The preferential upregulation of the transcript with the short 5ʹ UTR after exposure to an 
inflammatory stimulus is also supported by FANTOM5 capped analysis of gene expression 
(CAGE) data from primary macrophages (Figure S15) [37]. 
 

Fig. 4 Condition-specificity of eQTLs and tuQTLs. (a) Fraction of all QTLs detected in each 
simulated condition that are response QTLs (FDR < 10% and more than 50% of the genetic 
variance explained by the interaction term). (b) Fraction of txrevise tuQTLs classified as 
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response QTLs, stratified by the part of the gene that they influence (promoters, internal exons 
or 3ʹ ends). (c) Fraction of GWAS colocalisations that are response QTLs. (d) Colocalisation 
between a GWAS hit for rheumatoid arthritis (RA) and IFNɣ-specific tuQTL at the CD40 locus. 
PP4 represents the posterior probability from coloc [38] that the GWAS and QTL signals share a 
single causal variant. (e) Top panel: The lead GWAS variant (rs4239702) is associated with 
increased expression of the short 5ʹ UTR of the CD40 gene. Bottom panel: Ensembl 
annotations couple the short 5ʹ UTR to skipped exon 6, but this is not supported by RNA-seq 
data (Figure S14). FPM, fragments per million. (f) Relative expression of the short 5ʹ UTR 
stratified by the genotype of the lead GWAS variant.  

Discussion 
We have performed a comprehensive analysis of the genetic determinants of transcript usage in 
human iPSC-derived macrophages exposed to four different stimuli. Our approach to stratify 
transcripts into individual events greatly improved the interpretability of molecular mechanisms 
underlying tuQTLs. Consequently, we were able to discover that 55% of the transcript-level 
associations affected promoter or 3ʹ end usage and these variants were enriched in markedly 
different genomic features relative to canonical splicing QTLs. We also found that promoter 
usage QTLs were 50% more likely to be condition-specific than other transcriptional events and 
often colocalised with GWAS hits for complex traits. Event-level quantification also enabled us 
to assess the prevalence of transcriptional coupling between promoter usage, splicing and 3ʹ 
end usage. While a number of studies relying on full-length transcript quantification have 
suggested widespread coupling affecting majority of the genes [11,39], many of these could be 
false positives caused by missing transcripts (Fig. 1b). In contrast, both our event-level analysis 
as well as a recent full-length mRNA sequencing study [30] suggest that such coupling is 
relatively rare, affecting only ~10% of the transcriptional events. This is further supported by a 
recent RNA-seq study of neural differentiation, which found that genes undergoing changes in 
promoter usage, alternative splicing or 3ʹ end usage are independent from each other [40]. 
Thus, event-level analysis might be preferable over transcript-level analysis when the aim is to 
identify specific transcriptional changes underlying genetic associations.  
 
Choosing the optimal quantification method for RNA-seq data is a challenging problem. The 
field of detecting and quantifying individual transcriptional changes from RNA-seq data has 
been developing rapidly. One of the most successful approach has been the use of reads 
spanning exon-exon junctions to detect differential usage of individual exons within genes. In 
our study we used Leafcutter to perform junction-level analysis, but other options are available 
such as JUM [41] or MAJIQ [42]. A key advantage of junction-level analysis is that it can 
discover novel exon-exon junctions and is thus well-suited for characterising rare or 
unannotated splicing events. On the other hand, changes in 5ʹ and 3ʹ UTR length are not 
captured by junction-level methods, because these events do not overlap exon-exon junctions. 
Changes in UTR length can only be detected by methods that consider all reads originating 
from alternative transcript ends such as MISO [26] or txrevise proposed here. MISO provides 
more fine-grained events that can differentiate between various types of splicing events. 
Txrevise, on the other hand, provides a more comprehensive catalog of promoter and 3’ end 
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events that can be continuously updated as reference annotations improve. A promising 
alternative to both of these methods is Whippet, which quantifies transcriptional events by 
aligning reads directly to the splice graph of the gene [43]. Thus, no single approach is 
consistently superior to others and characterizing the full spectrum of transcriptional 
consequences of genetic variation requires a combination of analytical strategies [16,25]. 
 
An important limitation of txrevise is that it is only able to quantify splicing events present in 
reference transcript databases. However, our approach can easily be extended by incorporating 
additional annotations such experimentally determined promoters from the FANTOM5 [44] 
projects or alternative polyadenylation sites from the PolyAsite database [31], as is done by 
QAPA [40]. Another option might be to incorporate novel transcripts identified by transcript 
assembly methods such as StringTie [45] into existing annotation databases. Nevertheless, 
since txrevise relies on Salmon for event-level quantification, it is still susceptible to some of the 
same limitations as full-length transcript quantification. Even though event-level analysis 
reduces the problem a bit, a positive transcript expression estimate does not guarantee that any 
specific exon is actually present in the transcript, especially if the transcript annotations are 
incomplete (Fig. 1b) [22]. Secondly, large eQTL effects and positional biases in the RNA-seq 
data can occasionally lead to spurious changes in transcript usage (Figures S9 and S10). 
Therefore, it is important to visually confirm candidate transcriptional events using either a 
genome browser or tools such as wiggleplotr [46] before embarking on follow-up experiments.  
 
A key aim of QTL mapping studies is to elucidate the molecular mechanisms underlying 
complex trait associations. In our analysis, we found that over 50% of the genetic effects that 
colocalise with complex traits regulated transcript usage and did not manifest at the total gene 
expression level. Moreover, 42% of the transcript-level colocalisations affected promoter or 3ʹ 
end usage instead of splicing of internal exons. Importantly, no single quantification method was 
able to capture the full range of genetic effects, confirming that different quantification 
approaches often identify complementary sets of QTLs [16,25]. Consequently, there is great 
potential to discover additional disease associations by re-analysing large published RNA-seq 
datasets such as GTEx [47] with state-of-the-art quantification methods. 

Methods 

Cell culture and reagents 

Donors and cell lines 
Human induced pluripotent stem cells (iPSCs) from 123 healthy donors (72 female and 51 
male) (Table S1) were obtained from the HipSci project [48]. Of these lines, 57 were initially 
grown in feeder-dependent medium and 66 were grown in feeder-free E8 medium. The cell lines 
were screened for mycoplasma by the HipSci project [48]. All samples for the HipSci resource 
were collected from consented research volunteers recruited from the NIHR Cambridge 
BioResource (http://www.cambridgebioresource.org.uk). Samples were collected initially under 
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ethics for iPSC derivation (REC Ref: 09/H0304/77, V2 04/01/2013), with later samples collected 
under a revised consent (REC Ref: 09/H0304/77, V3 15/03/2013). 
 
The details of the iPSC culture, macrophage differentiation and stimulation for the IFNɣ + 
Salmonella study have been described previously [3] (Table S2). Macrophages for the acLDL 
study were obtained from the same differentiation experiments described above. 

AcLDL stimulation 
Macrophages differentiated from a total of 71 iPSC lines were used for the acLDL stimulation. 
Macrophages were grown in RPMI 1640 (Gibco) supplemented with 10% FBS (labtech), 2 mM 
L-glutamine (Sigma) and 100 ng/ml hM-CSF (R&D) at a cell density of 150,000 cells per well on 
a 6-well plate. On day 6 of the macrophage differentiation, two wells of the 6-well plate were 
exposed to 100 µg/ml human acLDL (Life Technologies) for 24 hours, whereas the other two 
wells were incubated in fresh RPMI 1640 medium without stimulation throughout this period. 
 
For RNA extraction, cells were washed once with PBS and lysed in 300 µl of RLT buffer 
(Qiagen) per well of a 6-well plate. Lysates from two wells were immediately pooled and stored 
at -80°C. RNA was extracted using a RNA Mini Kit (Qiagen) following the manufacturer’s 
instructions and eluted in 35 µl nuclease-free water. RNA concentration was measured using 
NanoDrop, and RNA integrity was measured on Agilent 2100 Bioanalyzer using a RNA 6000 
Nano Total RNA Kit. 

RNA sequencing and quality control 
All RNA-seq libraries from the acLDL study were constructed manually using poly-A selection 
and the Illumina TruSeq stranded library preparation kit. The TruSeq libraries were quantified 
using Bioanalyzer and manually pooled for sequencing. The samples were sequenced on 
Illumina HiSeq 2000 using V4 chemistry and multiplexed at 6 samples/lane. The control and 
acLDL stimulated RNA samples from a single donor were always sequenced in the same 
experimental batch. Sample metadata is presented in Table S3. RNA-seq reads were aligned to 
the GRCh38 reference genome and Ensembl 87 transcript annotations using STAR v2.4.0j [49]. 
Subsequently, VerifyBamID v1.1.2 [50] was used to detect and correct any sample swaps 
between donors. Two samples from one donor (HPSI0513i-xegx_2) were excluded from 
downstream analysis, because they appeared to be outliers on the principal component analysis 
(PCA) plot of the samples. 

Quantifying gene and transcript expression 
We used four alternative strategies to quantify transcription from RNA-seq data: (i) gene-level 
read count quantified with featureCounts [27], (ii) full-length transcript usage quantified with 
Salmon [28] (Fig. 1c), (iii) promoter, internal exon and 3ʹ end usage quantified with txrevise, and 
(iv) exon-exon junction usage quantified with Leafcutter [6]. 
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Gene-level read count 
We used featureCounts v1.5.0 [27] to count the number of uniquely mapping fragments 
overlapping transcript annotations from Ensembl 87. We excluded short RNAs and 
pseudogenes from the analysis leaving 35,033 unique genes of which 19,796 were protein 
coding. Furthermore, in both IFNɣ + Salmonella and acLDL dataset we used only genes with 
mean expression in at least one of the conditions greater than 1 transcripts per million (TPM) 
[51] in all downstream analyses. This resulted in 12,660 and 12,103 genes included for analysis 
in the IFNɣ + Salmonella and acLDL datasets, respectively. We quantile-normalised the data 
and corrected for sample-specific GC content bias using the conditional quantile normalisation 
(cqn) [52] R package as recommended previously [53]. 

Full-length transcript usage 
We downloaded the FASTA files with messenger RNA (mRNA) and non-coding RNA 
sequences from the Ensembl website (version 87). We concatenated the two files and used 
salmon v0.8.2 [28] with ‘--seqBias --gcBias --libType’ options to quantify the expression level of 
each transcript. We used tximport [54] package to import the expression estimates into R and 
calculated the relative expression of each transcript by dividing the TPM expression estimate of 
each transcript with the sum of the expression estimates of all transcripts of the gene. 

Quantifying transcriptional events with txrevise 
We downloaded exon coordinates for all Ensembl 87 transcripts using the 
makeTxDbFromBiomart function from the GenomicFeatures [55] R package. We also 
downloaded metadata for these transcripts using the biomart [56] R package. Finally, we 
extracted transcript tags from the GTF file downloaded from the Ensembl website. This step 
was necessary, because Ensembl contains a large number of truncated transcripts (marked 
with cds_start_NF or cds_end_NF tags) (Figure S1), but this information is not present in 
biomart. 
 
We developed the txrevise R package to pre-process transcript annotations prior to 
quantification. First, we extended all truncated protein coding transcripts using exons from the 
longest annotated transcript of the gene that was part of the GENCODE Basic gene set (Figure 
S2). We also performed the same step on transcripts annotated in Ensembl as 
retained_intron, processed_transcript or nonsense_mediated_decay, because they 
often ended abruptly in the middle of the exons and were unlikely to correspond to true 
transcription start and end sites.  
 
Next, we focused on splitting full-length transcripts into alternative promoters, internal exons and 
3ʹ ends. However, some genes contained either non-overlapping transcripts or very short 
transcripts that complicated this process. Thus, for each gene we first identified a subset of 
transcripts that shared the largest number of exons with each other. We then used the shared 
exons as a scaffold and constructed sets of independent promoters, internal exons and 3ʹ ends 
(group 1) (Figure S3). We repeated this process for a second subset of transcripts that shared 
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the most exons with each other (group 2) (Figure S3). Thus, the original transcripts from each 
gene were split into up to six sets of transcriptional events (two groups of alternative promoters, 
internal exons and 3ʹ ends). Next, to ensure that the new alternative promoter and 3ʹ end events 
did not capture splicing changes, we masked all alternative exons that were not the first or last 
exons (Figure S4). This final step can optionally be skipped to discover more association at the 
expense of losing some interpretability, because a subset of the promoter and 3ʹ end events 
might be tagging splicing changes. We used Salmon [28] to independently quantify the 
expression of each set of transcriptional events. Finally, we used tximport [54] to import the 
expression estimates into R and calculated the relative expression of each transcriptional event 
by dividing the TPM expression estimate of each event with the sum of the expression 
estimates of all events in one group. 

Quantifying intron excision ratios with Leafcutter 
Finally, we used Leafcutter [6] to quantify the relative excision frequencies of alternative introns. 
We used the spliced alignments from STAR as input to Leafcutter. We did not correct for 
reference mapping bias, because we wanted to be able to directly compare Leafcutter results 
with those from Salmon and there is no obvious way to correct for reference mapping bias in 
Salmon quantification. We used the default parameters of requiring at least 50 reads supporting 
each intron cluster and allowing introns of up to 500 kb in length. 

Mapping expression and transcript usage QTLs 
Preparing genotype data 
We obtained imputed genotypes for all of the samples from the HipSci [48] project. We used 
CrossMap v0.1.8 [57] to convert variant coordinates from GRCh37 reference genome to 
GRCh38. Subsequently, we filtered the VCF file with bcftools v.1.2 to retain only bi-allelic 
variants (both SNPs and indels) with IMP2 score > 0.4 and minor allele frequency (MAF) > 0.05. 
We created a separate VCF files for the IFNɣ + Salmonella study (84 individuals) and the acLDL 
study (70 individuals). The same VCF files were used for all downstream analyses and were 
imported into R using the SNPRelate [58] R package. 

Association testing 
We used QTLTools [59] to map QTLs in two stages. First, we used the permutation pass with ‘‘-
-permute 10000 --grp-best’ options to calculate the minimal lead variant p-value for each feature 
(gene, transcript or splicing event) in a +/- 100 kb window around each feature. The ‘--grp-best’ 
option ensured that in case of transcript usage QTLs, the permutation p-values were corrected 
for the number of alternative transcripts, exon-exon junction or transcriptional events tested. 
Secondly, we used the nominal pass to calculate nominal association p-values in a +/- 500 kb 
cis window around each feature. We used a larger cis window for the nominal pass to ensure 
that we did not have missing data in the colocalisation analysis (see below), where we used the 
+/- 200 kb cis window around each lead QTL variant. We included the first six principal 
components of the phenotype matrix as covariates in the QTL analysis. 
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QTL replication between quantification methods 
To compare the QTLs detected by different quantification methods, we estimated the fraction of 
QTL lead variants detected by each method that were replicated by the other methods. Since 
read count and full-length transcript usage analysis were performed at the gene level, we 
decided to perform the replication analysis at the gene level as well. Because txrevise and 
leafcutter quantified multiple events per gene and sometimes detected multiple independent 
QTLs (Figure S6), we picked the lead variant with the smallest p-value across all of the events 
quantified for a given gene as the gene-level lead variant. For each pairwise comparison of 
quantification methods, we first identified all lead variant-gene pairs with FDR < 0.01 detected 
by the query method. Subsequently, we extracted the lead variants for the same genes detected 
by the replication method and estimated the fraction of those that were in high LD (R2 < 0.8) 
with each other. We then repeated this analysis for all pairs of quantification methods. Note that 
this measure is not necessarily symmetric between the quantification methods and also 
depends on the statistical power of each method. Since Leafcutter was less powered than other 
methods, it also replicated smaller fraction of QTLs detected by the other methods. In contrast, 
50% of the Leafcutter QTLs were replicated by txrevise and full-length transcript usage (Fig. 
2b). 

QTL enrichment in genomics annotations 

Constructing genomic annotations 
Gene features. We downloaded transcript annotations from Ensembl version 87 [23] using the 
GenomicFeatures [55] R package. We retained only protein coding transcripts and used 
fiveUTRsByTranscript, threeUTRsByTranscript, cdsBy, intronsByTranscript and 
promoters functions to extract 5ʹ UTRs, 3ʹ UTRs, coding sequences, introns and promoters, 
respectively. We defined promoters as sequences 2000 bp upstream and 200 bp downstream 
of the annotated transcription start sites.  
 
Polyadenylation sites. We downloaded the coordinates of experimentally determined human 
polyadenylation sites from the PolyASite database (version r1.0) [31]. After converting the 
coordinates to the GRCh38 reference genome with CrossMap [57], we extended each 
polyadenylation site to +/- 25 bp from the center of the site.  
 
Chromatin accessibility. We downloaded the coordinates of accessible chromatin regions in 
macrophages across four conditions (N, I, S, I + S) from our previous study [3]. Specifically, we 
downloaded the ATAC_peak_metadata.txt.gz file from Zenodo 
(https://doi.org/10.5281/zenodo.1170560).  
 
RNA binding proteins. We downloaded processed eCLIP [60] peak calls for 93 RNA binding 
proteins (RBPs) [32] from the ENCODE web site (https://www.encodeproject.org). Each protein 
was measured in two biological replicates, resulting in 186 sets of peaks. We only used data 
from the K562 myelogenous leukemia cell line. We further used Supplementary Table 1 from 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2018. ; https://doi.org/10.1101/319806doi: bioRxiv preprint 

https://doi.org/10.1101/319806
http://creativecommons.org/licenses/by/4.0/


 

18 

[32] to identify a subset of 29 RBPs that have previously been implicated in splicing regulation, 
five factors that have been implicated in 3ʹ end processing and two factors (SRSF7 and 
HNRNPK) that have been implicated in both. Within each group (splicing, 3ʹ end processing and 
both), we first removed all peaks that were detected only once and then merged all peaks into a 
single genomic annotation.  

Enrichment analysis 
We used fgwas v0.3.6 [33] with the ‘-fine’ option to identify the genomic annotations in which 
different types of QTLs were enriched. We converted QTLtools p-values to z-scores using the 
stats.norm.ppf(p/2, loc=0, scale=1) function from SciPy [61], where p is the p-value 
from QTLtools. The sign of the z-score was determined based on the sign of the QTL effect 
size. We included all genomic annotations into a joint fgwas model using the ‘-w’ option. For the 
enrichment analysis we used QTLs from the naive condition only, but we found that the 
enrichments patterns were very similar in all stimulated conditions. 

Overlap with genome-wide association studies 

Summary statistics 
We obtained full summary statistics for ten immune-mediated disorders: inflammatory bowel 
disease (IBD) including ulcerative colitis (UC) and Crohn’s disease (CD) [62], Alzheimer’s 
disease (AD) [63], rheumatoid arthritis (RA) [36], systemic lupus erythematosus (SLE) [64], type 
1 diabetes (T1D) [65], schizophrenia (SCZ) [66], multiple sclerosis (MS) [67], celiac disease 
(CEL) [68] and narcolepsy (NAR) [69]. We also obtained summary statistics for type 2 diabetes 
(T2D) [70], cardiovascular disease (CAD) [71,72] and myocardial infarction (MI) [71]. Finally, we 
obtained summary statistics for 20 cardiometabolic traits from a recent meta-analysis [73]. 
Summary statistics for T1D, CEL, IBD, RA, AD, MS and SLE were downloaded in 2015. SCZ, 
T2D and NAR were downloaded in 2016. T2D summary statistics were converted from GRCh36 
to GRCh37 coordinates using the LiftOver tool, all of the other summary statistics already used 
GRCh37 coordinates. 

Colocalisation analysis 
We used coloc v2.3-1 [38] to test for colocalisation between gene expression and transcript 
usage QTLs and GWAS hits. We ran coloc on a 400 kb region centered on each lead eQTL and 
tuQTL variant that was less than 100 kb away from at least one GWAS variant with a nominal p-
value < 10-5. We used the following prior probabilities: p1 = 10-4, p2 = 10-4 and p12 = 10-5. We 
then applied a set of filtering steps to identify a stringent set of eQTLs and tuQTLs that 
colocalised with GWAS hits. Similarly to a previous study [74], we first removed all cases where 
PP3 + PP4 < 0.8, to exclude loci where we were underpowered to detect colocalisation. We 
then required PP4/(PP3+PP4) > 0.9 to only keep loci where coloc strongly preferred the model 
of a single shared causal variant driving both association signals over a model of two distinct 
causal variants. We excluded all colocalisation results from the MHC region (GRCh38: 
6:28,510,120-33,480,577) because they were likely to be false positives due to complicated LD 
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patterns in this region. We only kept results where the minimal GWAS p-value was < 10-6. Plots 
illustrating the sharing of colocalised GWAS signals by different quantification methods were 
made using UpSetR [75]. 

Code availability 
The Snakemake [76] files used for gene and transcript expression quantification, QTL mapping 
and colocalisaton are available from the project’s GitHub repository 
(https://github.com/kauralasoo/macrophage-tuQTLs). The same repository also contains R 
scripts that were used for all data analysis and figures. The txrevise R package is available from 
GitHub (https://github.com/kauralasoo/txrevise) and wiggleplotr R package that was used to 
make transcript read coverage plots is available from Bioconductor 
(http://bioconductor.org/packages/wiggleplotr/). 

Data availability 
RNA-seq data from the acLDL stimulation study is available from ENA (ERP022909) and EGA 
(EGAS00001000876). RNA-seq data from the IFNɣ + Salmonella study is available from ENA 
(ERP020977) and EGA (EGAS00001002236). The imputed genotype data for HipSci cell lines 
is available from ENA (ERP013161) and EGA (EGAD00010000773). Processed data and QTL 
summary statistics are available from Zenodo: https://zenodo.org/communities/macrophage-
tuqtls/. 
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Supplementary Figures 

 
Figure S1 Truncated transcripts in the Ensembl database. For protein coding transcripts, we 
extracted the cds_start_NF and cds_end_NF fields from the Ensembl v87 GTF file to identify 
transcripts that were truncated at either 5ʹ or 3ʹ ends. For non-protein coding transcripts, we 
considered all transcripts annotated as nonsense_mediated_decay, processed_transcript 
or retained_intron to be truncated at both 5ʹ or 3ʹ ends, because we observed that many of 
those started and ended abruptly in the middle of exons. We included only protein coding genes 
in the analysis. 
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Figure S2 Extending truncated transcript annotations. (A) Original transcript annotations for 
IRF5 in the Ensembl database. (B) Txrevise extends truncated IRF5 transcripts by copying over 
exons from the longest transcript of the gene (ENST00000402030). 
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Figure S3 Before we can use 
txrevise to stratify transcripts 
into events, we need to identify 
a subset of transcripts that all 
share at least one exon. IRF5 
has three exons that are 
shared between all of the 
transcripts and so we could use 
those as a scaffold for txrevise 
to construct independent 
transcriptional events (group 2). 
However, some genes do not 
have any exons that are shared 
across all transcripts. In that 
case, it might be preferential to 
choose the largest subset of 
transcripts that share the most 
exons (group 1). Furthermore, 
even in the case of IRF5, one 
transcript (ENST00000613821) 
is much shorter than others and 
excluding it might lead to better 
stratification of transcripts into 
alternative promoter, internal 
exon and 3ʹ end events (group 
1). 
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Figure S4 Filling in alternative internal exons for promoter and 3ʹ end events. (A) Original 
transcript start events constructed by txrevise contains an alternative second exon. (B) To 
construct promoter events, the alternative second exon is added into all transcripts and 
redundant transcripts are removed.  
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Figure S5 Diversity of transcript usage QTLs. (A) Number of detected transcript usage QTLs 
affecting exon-exon junction usage (Leafcutter) or different parts of the transcript (promoters, 
internal exons, 3ʹ ends) in each experimental condition. (B) Fraction of txrevise promoter, 
internal exon and 3ʹ end usage QTLs that were replicated by Leafcutter (lead variant within R2 > 
0.8 for the same gene; see Methods). 
  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2018. ; https://doi.org/10.1101/319806doi: bioRxiv preprint 

https://doi.org/10.1101/319806
http://creativecommons.org/licenses/by/4.0/


 

26 

 
Figure S6 Fraction of genes with multiple independent tuQTLs detected by Leafcutter and 
txrevise. We first identified all tuQTLs for the same gene at the same 10% FDR threshold and 
then ascertained their independence by thresholding on LD at two levels of stringency (R2 < 0.2 
or R2 < 0.8). 
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Figure S7 Genetics of transcript usage of the IRF5 gene. (A) Three independent tuQTLs for 
IRF5 regulating splicing in the first exon, intron retention in coding exon 5, and 3ʹ UTR length. 
PP4 represents the posterior probability from coloc [38] that the GWAS and QTL signals share a 
single causal variant. Only the promoter splicing QTL colocalises with a GWAS hit for 
rheumatoid arthritis (RA) [36] (PP4 = 0.92). (B) RNA-seq read coverage plots of the three 
tuQTLs stratified by the genotypes of the lead variants. Only txrevise detected all three tuQTLs. 
Leafcutter only detected the first splicing event, because the other two did not manifest at level 
of junction reads. Similarly, full-length transcript usage analysis only detected the 
polyadenylation event, because it had the largest effect size. FPM, fragments per million.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2018. ; https://doi.org/10.1101/319806doi: bioRxiv preprint 

https://doi.org/10.1101/319806
http://creativecommons.org/licenses/by/4.0/


 

28 

 
Figure S8: Naive estimates of transcriptional coupling between promoters, internal exons and 3ʹ 
ends based on full-length transcript quantification. Only 97/2332 (3.2%) tuQTLs appear to be 
associated with a single transcriptional event. 
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Figure S9: Example of an apparent tuQTL caused by an IFNɣ + Salmonella specific eQTL. (A) 
RNA-seq read coverage plot of the HAUS8 gene stratified by the genotype of the lead eQTL 
variant. FPM, fragments per million. (B) The rs146734736 variant is an IFNɣ + Salmonella-
specific eQTL for the HAUS8 gene, regulating its total gene expression level. (C) The lead 
eQTL variant is not associated with the absolute expression of the alternative promoter of the 
gene (ENST00000597917). Furthermore, the average expression of the transcript with the 
alternative promoter is below 1 TPM, suggesting that it is either not expressed or expressed at a 
very low level. (D) Since the rs146734736 variant is associated with total expression level of the 
gene, but not with the absolute expression level of the ENST00000597917 transcript, it appears 
to be associated with the relative expression of the ENST00000597917 transcript.  
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Figure S10 Simulated promoter usage QTL for the RNF220 gene leads to a false positive 
association at the 3ʹ end. Simulations were performed using polyester [77]. (A) Simulated read 
coverage of the RNF220 gene. Each additional copy of the alternative allele was simulated to 
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decrease the usage of the long 5ʹ end over the short 5ʹ end (Expressed transcripts). Note that 
due to positional bias [78,79] in the RNA-seq data, the read coverage gradually decreases at 
the 5ʹ and 3ʹ ends of the transcript. The extent of this bias is likely to depend on the fragment 
length distribution of the dataset. While the simulated data had fragment length distribution with 
mean = 250 and sd = 25, this can vary substantially for real-world datasets. Importantly, 
increased usage of the short 5ʹ end leads to lower read coverage at exons 3-5 due to this bias 
(highlighted by the dashed orange box). FPM, fragments per million. (B) Estimated usage of the 
long 5ʹ end event stratified by the genotype of the simulated causal variant. In this case, txrevise 
is able to correctly detect the decrease in long 5ʹ end usage. (C) Estimated usage of the 
transcript with the long 3ʹ end stratified by the causal promoter usage QTL variant. Although we 
simulated no change at the 3ʹ end of the gene, txrevise still detects a false positive association. 
This is due to the fact that individuals with higher expression of the transcript with a short 5ʹ end 
have relatively fewer reads mapping to exons 3-5 (dashed orange box) compared to the exons 
that are specific to the long 3ʹ end. Consequently, it seems that the genetic variant decreasing 
short 5ʹ end usage is also associated with increased expression of the long 3ʹ end even though 
there are no additional reads mapping to the long 3ʹ end.  
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Figure S11 Colocalisation between CD33 splicing QTL (sQTL) and GWAS hit for Alzheimer’s 
disease (AD). (A) Manhattan plots of the Alzheimer’s disease GWAS hit [63] and a sQTL for 
CD33. PP4 represents the posterior probability from coloc [38] that the GWAS and sQTL signals 
share a single causal variant. (B) Read coverage plot of the of the CD33 gene stratified by the 
genotype of the lead sQTL variant (rs3865444). The alternatively spliced exon 2 is highlighted 
by the red rectangle. Ensembl transcript annotations falsely link skipped exon 2 to alternative 5ʹ 
and 3ʹ UTRs although these do not appear to be regulated by the sQTL variant. FPM, fragments 
per million. (C) Usage of the CD33 transcript with skipped exon 2 stratified by the lead sQTL 
variant. (D) Usage of the CD33 transcript containing exon 2 stratified by the lead sQTL variant. 
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Figure S12 Colocalisation between HMGCR splicing QTL (sQTL) and GWAS hit for LDL. (A) 
Manhattan plots of the LDL GWAS hit [73] and an sQTL for HMGCR. PP4 represents the 
posterior probability from coloc [38] that the GWAS and sQTL signals share a single causal 
variant. (B) Read coverage plot of the of the HMGCR gene stratified by the genotype of the lead 
sQTL variant (rs3846662). The alternatively spliced exon 13 is highlighted by the red rectangle. 
Ensembl transcript annotations falsely link skipped exon 13 to alternative 5ʹ and 3ʹ UTRs 
although these do not appear to be differentially regulated by the sQTL variant. FPM, fragments 
per million. (C) Usage of the HMGCR transcript with skipped exon 13 stratified by the lead sQTL 
variant. (D) Usage of the HMGCR transcript containing exon 13 stratified by the lead sQTL 
variant. 
  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2018. ; https://doi.org/10.1101/319806doi: bioRxiv preprint 

https://doi.org/10.1101/319806
http://creativecommons.org/licenses/by/4.0/


 

34 

 
Figure S13 Relationship between the number of differential expressed genes in each condition 
and number of response QTLs detected in that condition. 
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Figure S14 Genetics of CD40 expression. (A) Absolute expression of the ENST00000372285 
promoter in TPM units stratified by the genotype of the rs4239702 variant. (B) Absolute 
expression of the ENST00000372276 promoter in TPM units stratified by the genotype of the 
rs4239702 variant. (C) Normalized CD40 read count stratified by the genotype of the rs4239702 
variant. (D) Rate of CD40 exon 6 skipping stratified by the genotype of the rs4239702 variant.   
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Figure S15 Regulation of CD40 promoter usage in response to 2h lipopolysaccharide (LPS) in 
primary macrophages. The genome browser screenshots show read coverage of the Cap 
Analysis of Gene Expression (CAGE) data from two replicates of monocyte-derived 
macrophages before and after stimulation with LPS. The data was generated by the FANTOM5 
consortium [37]. The CD40 promoter containing the short 5ʹ UTR is strongly upregulated after 
2h LPS stimulation.   
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