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1. Abstract	1	

 Background	1.012	
The	consolidation	of	pathway	databases,	such	as	KEGG[1],	Reactome[2]and	3	
ConsensusPathDB[3],	has	generated	widespread	biological	interest,	however	the	4	
issue	of	pathway	redundancy	impedes	the	use	of	these	consolidated	datasets.	5	
Attempts	to	reduce	this	redundancy	have	focused	on	visualizing	pathway	overlap	6	
or	merging	pathways,	but	the	resulting	pathways	may	be	of	heterogeneous	sizes	7	
and	cover	multiple	biological	functions.	Efforts	have	also	been	made	to	deal	with	8	
redundancy	in	pathway	data	by	consolidating	enriched	pathways	into	a	number	of	9	
clusters	or	concepts.	We	present	an	alternative	approach,	which	generates	10	
pathway	subsets	capable	of	covering	all	of	genes	presented	within	either	pathway	11	
databases	or	enrichment	results,	generating	substantial	reductions	in	redundancy.	12	
	13	
	14	

 Results	1.0215	
We	propose	a	method	that	uses	set	cover	to	reduce	pathway	redundancy,	without	16	
merging	pathways.	The	proposed	approach	considers	three	objectives:	removal	of	17	
pathway	redundancy,	controlling	pathway	size	and	coverage	of	the	gene	set.	By	18	
applying	set	cover	to	the	ConsensusPathDB	dataset	we	were	able	to	produce	a	19	
reduced	set	of	pathways,	representing	100%	of	the	genes	in	the	original	data	set	20	
with	74%	less	redundancy,	or	95%	of	the	genes	with	88%	less	redundancy.	We	21	
also	developed	an	algorithm	to	simplify	enrichment	data	and	applied	it	to	a	set	of	22	
enriched	osteoarthritis	pathways,	revealing	that	within	the	top	ten	pathways,	five	23	
were	redundant	subsets	of	more	enriched	pathways.	Applying	set	cover	to	the	24	
enrichment	results	removed	these	redundant	pathways	allowing	more	informative	25	
pathways	to	take	their	place.		26	
	27	

 Conclusion	1.0328	
Our	method	provides	an	alternative	approach	for	handling	pathway	redundancy,	29	
while	ensuring	that	the	pathways	are	of	homogeneous	size	and	gene	coverage	is	30	
maximised.	Pathways	are	not	altered	from	their	original	form,	allowing	biological	31	
knowledge	regarding	the	data	set	to	be	directly	applicable.		We	demonstrate	the	32	
ability	of	the	algorithms	to	prioritise	redundancy	reduction,	pathway	size	control	33	
or	gene	set	coverage.	The	application	of	set	cover	to	pathway	enrichment	results	34	
produces	an	optimised	summary	of	the	pathways	that	best	represent	the	35	
differentially	regulated	gene	set.	36	
	37	
Keywords	38	
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2. Background	41	
Pathways	are	sets	of	genes	corresponding	to	functionally	related	interacting	42	
proteins.	Pathway	data	is	available	from	many	databases	dependent	on	biological	43	
focus.	The	fragmented	nature	of	pathways	across	multiple	databases	makes	it	44	
difficult	to	perform	inclusive	analysis	of	all	known	data.	To	address	this	issue,	45	
many	attempts	have	been	made	to	consolidate	pathway	databases	such	as	46	
ConsensusPathDB	(CPDB)	[4],	PathwayCommons	[5],	The	Human	Pathway	47	
Database	(HPD)	[6],	Pathway	Interaction	Database	(PID)	[7],	and	NCBI	Biosystems	48	
[8].	Amalgamating	multiple	databases	into	a	consistent	searchable	format	49	
facilitates	the	use	of	these	resources,	however	the	arbitrary	nature	of	pathway	50	
boundaries	results	in	overlap	and	redundancy.	This	redundancy	greatly	increases	51	
the	quantity	and	complexity	of	pathway	data,	which	has	lead	to	the	development	of	52	
a	range	of	tools	to	assist	in	data	simplification	and	interpretation	[6,	7,	9–11].	53	
Previous	solutions	presented	to	deal	with	redundancy	include	visualizing	54	
redundancy	between	pathways	to	the	user	[6],	merging	pathways	based	on	55	
similarity	[10,	11]	and	even	integrating	full	pathway	sets	into	a	non-redundant,	56	
single	unified	pathway	[12].	Reducing	redundancy	simplifies	the	pathway-related	57	
descriptive	space,	allowing	multiple	resources	to	be	combined	while	limiting	the	58	
number	of	pathway	attributes	assigned	to	each	gene.	The	advantages	are	apparent,	59	
with	resources	such	as	PathCards	being	integrated	into	the	widely	used	60	
GeneCards[11].	61	
	62	
Redundancy	Control	in	Pathway	Databases	(ReCiPa)	[10]	uses	a	pathway	merging	63	
algorithm	to	combine	pathways	with	high	levels	of	overlap.	Users	select	a	64	
maximum	overlap	threshold	and	pathway	pairs	displaying	greater	levels	of	65	
overlap	are	merged.	Within	that	study	redundancy	was	observed	within	five	large	66	
databases	(KEGG,	Biocarta,	CGP,	NCI-PID,	and	Reactome).	They	proceeded	to	67	
merge	pathways	from	the	Molecular	Signatures	Database	(MSigDB),	whose	overlap	68	
exceeded	75%,	reducing	pathway	redundancy.	69	
	70	
Pathcards	described	a	multistep	procedure	to	reduce	pathway	redundancy,	also	71	
through	pathway	merging	[11].	Two	thresholds	were	calculated	and	sequential	72	
merging	steps	were	used	to	minimize	overlap,	while	preventing	the	generated	73	
super-pathways	from	becoming	too	large	to	be	informative.	By	merging	pathways	74	
into	super-pathways,	Pathcards	suggested	many	new	molecular	interactions.	They	75	
demonstrated	that	many	of	these	newly	generated	interactions	are	supported	by	76	
high	numbers	of	literature	co-mentions	and	high	experimental	interactions	scores	77	
according	to	STRING.	However,	while	the	generation	of	potential	interactions	can	78	
be	highly	beneficial,	if	the	aim	is	to	utilize	previously	validated	data,	merging	79	
pathways	introduces	a	source	of	uncertainly	into	the	dataset.		80	
	81	
	A	major	application	of	pathway	data	sets	is	pathway	enrichment	analysis.	Both	82	
Pathcards	and	ReCiPa	explored	the	capability	of	their	reduced	pathway	dataset	to	83	
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improve	enrichment	results.	Enrichment	analysis	of	830	differential	expression	84	
sets	was	performed	using	the	super-pathways	generated	within	Pathcards.	The	85	
enrichment	results	from	super-pathways	tended	to	be	more	significant	than	the	86	
enrichment	scores	of	their	constituent	pathways.	Similarly	within	the	ReCiPa	study	87	
enrichment	analysis	was	performed	using	genes	differentially	expressed	in	88	
obesity.	After	merging,	the	top	20	most	significantly	enriched	pathways	showed	89	
less	overlap	and	greater	significance	towards	the	disease,	compared	to	the	original	90	
dataset.		91	
	92	
Pathway	Distiller	implemented	an	alternative	approach	by	removing	redundancy	93	
from	enriched	pathway	sets	following	enrichment	analysis	[9].	Pathways	may	be	94	
consolidated	into	pathway	concepts	based	on	gene	expression	profiles,	gene	95	
membership,	protein-protein	interaction	data	or	shared	Gene	Ontology	(GO)	96	
terms.	Each	method	provides	varying,	complementary	views	of	the	data,	with	97	
different	pathway	concepts	generated.	Consolidating	enrichment	output	into	a	98	
reduced	number	of	pathway	concepts	increases	data	manageability	and	99	
readability,	by	organizing	redundant	pathways	into	their	major	groups.		100	

	101	
All	of	the	approaches	discussed	to	this	point	have	used	merging	and	consolidation	102	
to	address	redundancy.	Alexa	et	al.	(2006)	demonstrated	that	redundancy	in	GO	103	
enrichment	results	could	be	reduced	by	selecting	a	subset	of	representative	terms	104	
[13].	Pathway	enrichment	analysis	and	GO	enrichment	analysis	are	similar	105	
techniques	in	which	sets	of	differentially	expressed	genes	are	compared	to	gene	106	
sets	associated	with	pathways	or	GO	terms.	Alexa	et	al.	(2006)	introduced	two	107	
algorithms,	elim	and	weight,	which	use	the	Gene	Ontology	topology	to	select	a	108	
representative	subset	of	highly	enriched	GO	terms	[13].	The	enrichment	set	cover	109	
algorithm	presented	in	this	paper	shares	some	conceptual	similarity	with	this	110	
approach	however,	the	implementation	is	different	since	there	is	no	organized	111	
topological	hierarchy	for	combined	pathway	datasets	and	the	rules	governing	the	112	
Gene	Ontology,	such	as	the	true	path	rule	[14],	do	not	apply.	113	

	114	
Within	this	paper	we	show	that	set	cover	can	be	used	to	reducing	redundancy	by	115	
selecting	subsets	of	representative	pathways.	We	describe	a	set	of	algorithms	for	116	
reducing	redundancy	in	pathway	datasets,	as	well	as	a	separate	algorithm	for	117	
reducing	redundancy	from	pathway	enrichment	results.	The	proportional	set	118	
cover	algorithm	and	hitting	set	cover	algorithm	aim	to	identify	a	minimum	subset	119	
of	pathways	required	to	cover	the	genes	in	highly	redundant,	consolidated	120	
pathway	databases.	The	generated	set	covers	are	not	designed	to	depict	the	full	121	
range	of	possible	pathway	boundaries	and	their	accompanying	cellular	functions,	122	
but	rather	they	provide	a	simplified	set	of	pathways	to	represent	the	actions	of	123	
genes	within	the	dataset.	Since	the	pathways	are	not	merged	database	and	124	
biological	information	remains	directly	applicable	and	functional	specificity	is	not	125	
lost	through	pathway	size	expansion.	The	proposed	method	also	removes	the	risk	126	
of	biologically	distinct	pathways	being	merged.	The	algorithm’s	ability	to	remove	127	
overlap	is	not	limited	by	thresholds,	conferring	an	advantage	compared	to	128	
approaches	such	as	Pathcards	and	ReCiPa	in	which	redundancy	between	pathway	129	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 11, 2018. ; https://doi.org/10.1101/319731doi: bioRxiv preprint 

https://doi.org/10.1101/319731
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

pairs	can	only	be	removed	if	the	overlap	exceeds	the	threshold.	Set	cover	130	
algorithms	also	consider	redundancy	between	multiple	pathways,	rather	than	just	131	
comparing	pathway	pairs.	132	
	133	
We	also	developed	the	enrichment	set	cover	algorithm	for	handling	pathway	134	
enrichment	data	and	applied	it	to	a	set	of	enriched	osteoarthritis	pathways	[15].		In	135	
contrast	to	the	approaches	used	by	ReCiPa	and	Pathcards,	the	enrichment	set	136	
cover	algorithm	is	designed	to	be	used	following	enrichment	analysis,	which	137	
should	be	performed	using	the	full	pathway	dataset.	Redundancy	is	then	removed	138	
from	the	enriched	pathway	set	by	selecting	the	pathway	with	the	lowest	p-value	to	139	
cover	each	differentially	regulated	gene.	Enriched	pathways	are	not	merged	or	140	
altered	and	the	number	of	enriched	pathways	required	to	cover	the	dataset	is	141	
reduced.	The	resulting	pathways	set	can	therefore	be	used	as	an	optimized	142	
summary	output,	conveniently	showing	the	most	important	pathways	for	143	
describing	the	differentially	regulated	gene	set.	By	increasing	the	number	of	144	
differentially	regulated	genes	covered	by	the	most	highly	enriched	pathways,	145	
researchers	examining	the	top	10	or	20	pathways	are	provided	with	a	more	146	
inclusive	portrayal	of	the	gene	set.		147	
	148	

3. Approach	149	

We	downloaded	pathway	data	from	ConsensusPathDB	(CPDB),	an	opensource	150	
online	collection	of	pathways,	that	incorporates	32	sources	including	KEGG,	151	
Wikipathways,	PDB,	Reactome.	CPDB	makes	these	resources	available	as	a	single	152	
download,	which	we	acquired	on	24/09/2015	containing	4,011	pathways.	We	153	
applied	the	set	cover	algorithm	to	the	CPDB	data	set,	analyzing	it’s	effectiveness	at:	154	
reducing	pathway	overlap;	reducing	pathway	size	variability;	and	preserving	the	155	
maximum	number	of	genes	in	the	data	set.	We	found	that	standard	set	cover	156	
caused	unacceptable	increases	in	pathway	size,	therefore	we	modified	the	157	
algorithm	and	assessed	the	modified	algorithms	capability	to	meet	the	previous	158	
three	objectives.	159	
	160	
Set	cover	is	a	well-defined	algorithm	in	computer	science	for	handling	overlapping	161	
sets	of	sets.	For	example,	set	cover	is	used	by	CLASS,	a	bioinformatics	program	that	162	
maps	RNA	sequence	data	to	transcripts	[16].	Set	cover	has	also	been	used	to	163	
predict	protein-protein	interactions	based	on	binding	domains	[17],	to	reduce	the	164	
complexity	of	SNP	sets	[18]	and	to	minimize	the	number	of	probes	needed	to	165	
analyze	DNA	[19].		166	
	167	
Set	cover	algorithms	deal	with	elements	and	sets,	which	relate	to	genes	and	168	
pathways	respectively.	All	the	unique	genes	in	the	data	set	are	collectively	referred	169	
to	as	the	universe.	The	aim	is	to	produce	a	reduced	selection	of	sets	(pathways),	170	
which	collectively	cover	all	the	elements	(genes)	in	the	universe	(dataset).	This	171	
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subset	of	the	original	data	is	called	the	cover	set	[20].	Each	time	a	pathway	is	172	
added	to	the	cover	set	the	genes	in	the	pathway	become	covered	(Figure	1).	Direct	173	
application	of	set	cover	lead	to	extremely	large,	functionally	non-specific	pathways	174	
dominating	the	cover	set,	therefore	we	implemented	the	proportional	set	cover	175	
and	hitting	set	cover	algorithms	to	better	control	pathway	size,	while	reducing	176	
redundancy	and	covering	the	dataset.		177	
	178	
When	dealing	with	enrichment	analysis	data	the	aim	is	to	reduce	redundancy	179	
between	pathways,	while	preserving	the	order	of	enrichment	significance	denoted	180	
by	the	p-values.	We	designed	an	algorithm	that	would	select	the	set	of	pathways	181	
with	the	lowest	p-values	capable	of	covering	all	the	genes	in	the	dataset.	This	182	
ensures	that	the	filtered	results	return	the	most	enriched	pathways	available	for	183	
each	gene.		184	
	185	

4. Methods	186	

 Overlap	score	4.01187	
To	measure	overlap	across	different	algorithms	we	measured	the	mean	number	of	188	
pathways	that	each	gene	appears	in.	Within	the	raw	data	genes	appeared	in	a	189	
mean	of	12.4	pathways.	We	refer	to	this	metric	as	the	overlap	score.	190	

 Set	cover	4.02191	
We	applied	the	set	cover	algorithm	to	the	data	set,	which	generates	a	subset	of	192	
pathways	called	a	cover	set,	in	which	all	the	genes	in	the	data	set	are	represented	193	
or	"covered".	Set	cover	begins	by	first	assigning	values	to	each	pathway	(vi).	The	194	
set	cover	values	correspond	to	the	number	of	uncovered	genes	each	pathway	195	
contains	(Equation	1).		196	
	197	

	 𝑣! = | 𝒔𝒊  ∩ 𝑹 |	 	
	198	
where	(si)	is	the	pathway’s	gene	set	and	R	is	the	set	of	all	uncovered	genes.	199	
	200	
At	the	beginning	of	the	algorithm	all	the	genes	in	the	dataset	are	uncovered	so	the	201	
algorithm	selects	the	largest	pathway.	The	genes	from	the	selected	pathway	are	202	
then	covered,	so	it	is	unnecessary	to	cover	them	again	using	additional	pathways.	203	
The	algorithm	then	recalculates	how	many	uncovered	genes	each	pathway	204	
contains	and	continues	to	add	the	pathway	with	the	maximum	value	to	the	set	205	
cover	until	all	genes	in	the	data	set	are	covered.		206	
	207	
	208	

Algorithm	1	Set	cover	(in	separate	file)	209	
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where	R	is	the	set	of	uncovered	genes,	U	is	all	the	genes	in	the	dataset,	C	is	the	210	
covered	genes,	SC	is	the	set	cover	result,	GC	is	the	gene	coverage	(see	Section	4.03)	211	
and	si	is	a	pathway.		212	
	213	
Application	of	the	set	cover	algorithm	was	effective	in	reducing	overlap	between	214	
the	pathways;	however,	it	selected	very	large	pathways	with	reduced	215	
informativeness	(maximum	size	2320,	standard	deviation	160,	almost	double	the	216	
standard	deviation	on	the	original	dataset	86.9).	We	therefore	explored	methods	217	
that	avoid	preferential	selection	of	large	pathways.		218	
	219	

 Gene	Set	Coverage	4.03220	
As	the	set	cover	algorithm	approaches	completion	and	the	final	sets	are	added	to	221	
the	cover	set,	increases	in	data	coverage	are	gained	at	the	expense	of	redundancy	222	
reduction.	This	is	because	the	final	sets	required	to	cover	the	few	remaining	genes	223	
tend	to	have	the	most	overlap	with	other	pathways	already	in	the	set	cover.	In	224	
addition,	fewer	pathways	are	available	to	cover	the	final	few	genes,	restricting	225	
options	to	control	pathway	size.	To	allow	a	user-defined	compromise	between	the	226	
gene	coverage,	pathway	redundancy	and	pathway	size	we	introduce	the	Gene	227	
Coverage	(GC)	parameter.	Setting	GC	below	100%	allows	the	algorithm	to	finish	228	
before	the	final	elements	have	been	covered.	We	experimented	setting	GC	to	90,	229	
95,	99	and	100%	of	the	number	of	genes	in	the	data	set.		230	
	231	

 Proportional	set	cover	4.04232	
When	reducing	pathway	redundancy	there	are	three	competing	aims:	reducing	233	
redundancy;	controlling	pathway	size;	and	covering	the	entire	gene	set.	The	234	
proportional	set	cover	algorithm	was	generated	to	focus	on	controlling	pathway	235	
size.	236	
	237	
To	control	the	size	of	the	pathways	we	altered	the	scoring	mechanism	to	rank	238	
pathways	based	on	the	proportion	of	uncovered	genes	they	contained,	rather	than	239	
the	absolute	number	(Equation	2).	This	works	because	larger	pathways	are	more	240	
likely	to	have	a	proportion	of	their	genes	covered	when	other	pathways	are	241	
selected.	Additionally	this	mechanism	directly	penalizes	overlap,	which	the	242	
standard	algorithm	does	not.	At	the	beginning	of	the	proportional	set	cover	243	
algorithm	none	of	the	genes	are	covered	so	the	proportion	of	uncovered	genes	in	244	
every	pathway	is	1.	This	would	result	in	the	starting	pathway	being	selected	at	245	
random.	To	ensure	that	pathway	size	variability	is	controlled	as	strictly	as	246	
possible,	we	implemented	the	second	part	of	Equation	2,	which	ensures	that	247	
pathways	of	mean	pathway	size	are	preferentially	selected	when	multiple	248	
pathways	with	the	same	proportion	of	uncovered	genes	are	available.		249	
	250	
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	 𝑣! =
| 𝒔𝒊  ∩ 𝑹 |
|𝒔𝒊|

+  
1

𝑎𝑏𝑠  𝒔𝒊 −  𝒔!    ∗ 𝑘
	 	

	251	
where	si	is	the	pathway’s	gene	set,	 𝒔! is	the	mean	pathway	length,	R	is	the	252	
uncovered	genes	set	and	k	is	a	large	constant	to	limit	the	influence	of	the	second	253	
term	(taken	equal	to	10,000).		254	
	255	

 Hitting	set	cover	4.05256	
The	set-covering	problem	can	be	reformulated	into	the	equivalent	set-hitting	257	
problem.	In	this	formulation	genes	and	pathways	are	visualized	as	bi-partite	graph	258	
in	which	the	pathways	are	connected	to	the	genes	that	they	contain.	In	this	259	
depiction	it	is	clear	that	some	genes	are	only	linked	to	a	single	pathway,	which	260	
must	be	selected	if	the	gene	is	to	be	covered.	The	importance	of	pathways	can	261	
therefore	be	considered	as	a	factor	of	how	infrequent	their	genes	are.	The	hitting	262	
set	cover	is	therefore	designed	to	reduce	redundancy	as	much	as	possible	without	263	
directly	selecting	for	pathway	size.		264	
	265	
We	calculated	the	frequency	of	each	gene	in	the	data	set	(F),	then	assigned	the	266	
gene’s	value	gv(j)	as	1/F.	We	then	assigned	a	value	vi	to	each	pathway	defined	as	267	
the	sum	of	each	uncovered	gene’s	scores	divided	by	the	number	of	genes	in	the	268	
pathway	(Equation	3).	269	
	270	

	 𝑔𝑣 𝑗 =  1 /𝐹(𝑗)	

𝑣! =  
 𝑔𝑣(𝑗) !"𝒔𝒊  ∩ 𝑹

| 𝒔𝒊 |
	

	

	271	
where	gv(j)	is	the	value	of	a	gene,	F(j)	is	the	number	of	pathways	a	gene	is	in,	272	

𝑗𝜖𝒔𝒊  ∩ 𝑹 means	for	each	uncovered	gene	in	the	pathway	and	|si|	is	the	length	of	273	
the	pathway.		274	

	275	

 Set	cover	for	pathway	enrichment	analysis	4.06276	
Pathway	analysis	is	a	frequently	used	method;	therefore	a	modified	set	cover	277	
algorithm	to	address	this	situation	could	be	highly	useful.	The	universe	represents	278	
differentially	expressed	genes	and	the	sets	are	enriched	pathways	generated	279	
through	enrichment	analysis.	Enrichment	analysis	results	represent	entirely	280	
different	input	data	compared	to	the	pathway	datasets	used	in	the	previous	281	
algorithms,	as	the	enriched	pathways	already	have	scores	(p-values).	We	wish	to	282	
reduce	redundancy	(gene	overlap)	between	enriched	pathways	and	it	is	essential	283	
that	the	pathways	with	the	lowest	possible	p-values	are	selected.	Equation	4	284	
allows	the	pathways	with	the	lowest	p-values	to	be	selected,	unless	all	of	their	285	
genes	are	covered	by	other	enriched	pathways	with	even	lower	p-values.		286	
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	288	

where	si	is	the	enriched	pathway’s	gene	set,	R	is	the	uncovered	gene	set,	b	is	a	289	
binomial	operator,	pvaluei	is	the	pathway’s	p-value	and	vi	is	the	pathway’s	set	290	
cover	value.		291	

We	generated	the	enriched	data	set	by	applying	GOseq	[21]	to	expression	data	292	
from	the	damaged	cartilage	in	osteoarthritis	patients	and	controls	[15].		293	

	294	

5. Results	295	
We	started	with	the	large,	extensively	redundant	CPDB	data	set	and	used	set	cover	296	
to	reduce	pathway	overlap,	while	controlling	pathway	size	and	seeking	to	cover	as	297	
much	of	the	data	set	as	possible.	We	describe	the	ability	of	the	standard	set	cover	298	
algorithm	and	two	modified	algorithms,	in	conjunction	with	the	GC	parameter,	to	299	
meet	these	objectives.	300	
	301	

 Pathway	redundancy	varies	between	different	algorithms	5.01302	
The	original	pathway	data	set	contained	11,196	genes	and	3,305	pathways;	the	303	
starting	overlap	score	(see	methods)	was	12.4.	The	standard	set	cover	algorithm	304	
reduced	overall	redundancy	from	12.4	to	4.1,	a	73%	reduction	(since	a	completely	305	
discrete	pathway	set	would	have	a	score	of	1).	The	overlap	score	for	proportional	306	
set	cover	was	4.36,	slightly	higher	than	the	standard	set	cover	algorithm,	but	still	307	
representing	a	70%	reduction	in	overlap	from	the	original	data.	The	hitting	set	308	
cover	algorithm	was	designed	to	select	pathways	that	contained	rare	genes	within	309	
the	data	set,	resulting	in	the	greatest	reduction	in	overlap	(overlap	score	of	3.95	310	
equivalent	to	a	74%	reduction).	311	
	312	
After	application	of	the	set	cover	algorithms	the	distribution	of	the	remaining	313	
overlap	between	pathways	varied	greatly.	Figure	2	shows	the	Jaccard	similarity	314	
between	pairs	of	pathways,	in	the	outputs	produced	by	each	of	the	three	315	
algorithms.	The	standard	set	cover	algorithm	produced	the	lowest	maximum	316	
overlap	(Jaccard	similarity	=	0.68)	between	the	pathway	pairs.	However,	compared	317	
to	the	original	data,	a	higher	proportion	of	pathway	pairs	in	the	set	cover	output	318	
showed	Jaccard	similarities	between	10-30%.	Proportional	set	cover	had	the	319	
greatest	maximum	Jaccard	similarity	at	0.93,	out	of	the	set	cover	algorithms.	The	320	
hitting	set	cover	algorithm	produced	a	maximum	Jaccard	similarity	between	two	321	
pathways	of	0.82,	despite	having	the	lowest	overlap	score.		322	
	323	
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Gene	Coverage	can	be	lowered	to	reduce	redundancy	324	
For	each	of	the	algorithms	it	is	possible	to	use	the	GC	parameter	to	prioritize	325	
reductions	in	redundancy	over	gene	coverage	by	stopping	any	algorithm	before	all	326	
of	the	genes	in	the	dataset	have	been	covered.	Figure	3	shows	improved	ability	of	327	
the	set	cover	algorithms	to	reduce	pathway	overlap	for	different	values	of	GC.	If	328	
99%	of	the	genes	are	required	then	the	hitting	set	algorithm	achieves	the	lowest	329	
overlap	score	of	3.24,	equivalent	to	an	80%	reduction	in	overlap.	Redundancy	can	330	
be	further	reduced	if	only	95%	of	the	genes	are	covered,	with	the	proportional	and	331	
hitting	set	algorithms	producing	an	overlap	score	of	2.41,	equivalent	to	a	88%	332	
reduction	in	redundancy.	Both	the	proportional	set	cover	and	the	hitting	set	cover	333	
are	more	effective	at	reducing	redundancy	than	the	standard	set	cover	if	GC	is	set	334	
to	less	than	100%.	335	
	336	

Pathway	size	is	affected	by	the	set	cover	algorithm	and	Gene	Coverage	337	
setting	338	

When	GC	was	set	to	100%	the	standard	set	cover	algorithm	represented	all	of	the	339	
genes	in	the	dataset	using	only	524	pathways	(16%	of	the	original	pathway	set).	340	
However,	many	of	these	were	very	large	increasing	the	mean	size	to	87.2	341	
(standard	deviation	160.1).	These	pathways	have	reduced	informativeness	since	342	
functional	specificity	is	lost.	Figure	4A	illustrates	the	tendency	of	this	algorithm	to	343	
select	extremely	large	pathways.		344	
	345	
The	proportional	set	cover	algorithm	was	designed	to	preferentially	select	346	
moderately	sized	pathways.	This	returned	a	cover	set	of	1,336	pathways	with	347	
controlled	size	variation	(mean	of	36.5,	standard	deviation	55.1)	shown	in	Figure	348	
4A.	The	hitting	set	cover	algorithm	was	less	able	to	control	pathway	size	than	the	349	
proportional	set	cover	algorithm,	returning	957	pathways	with	a	mean	size	of	46.2	350	
(standard	deviation	61.7).		351	
	352	
Figures	4B	–	D	show	that	as	GC	is	reduced	the	tendency	of	the	standard	set	cover	to	353	
select	very	large	pathways	becomes	more	exaggerated.	Decreasing	GC	also	354	
improves	the	ability	of	the	proportional	set	cover	algorithm	to	select	moderately	355	
sized	pathways.	The	hitting	set	algorithm	also	tends	to	select	smaller	pathways	356	
when	GC	is	reduced,	since	larger	pathways	often	contain	more	frequent	genes.	357	
Reducing	GC	affects	pathway	size	since	in	the	later	stages	of	the	algorithm,	fewer	358	
pathways	are	available	to	cover	the	remaining	genes,	reducing	the	available	359	
options.	Therefore,	lowering	GC	has	the	ability	to	help	control	pathway	size	when	360	
the	proportional	set	cover	and	hitting	set	cover	algorithms	are	used.	361	
	362	
Since	the	databases	that	contribute	to	CPDB	contain	pathways	of	different	sizes,	the	set	cover	generated	may	363	
preferentially	select	pathways	from	some	databases	more	than	others.		364	
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Table	1	shows	the	proportion	of	pathways	that	come	from	each	database	in	the	365	
cover	set	generated	by	each	algorithm.	All	algorithms	generate	set	covers	with	366	
reduced	INOH	and	SMPDB	pathways,	showing	that	SMPBD’s	focus	on	small	367	
molecules	and	INOH’s	ontology-based	approach	tend	to	be	ill-suited	to	the	368	
generation	of	discrete	pathway	protein	sets.	The	standard	set	cover	algorithm	369	
generates	sets	containing	large	pathways,	preferentially	selecting	pathways	from	370	
KEGG	(median	size	65,	see	Table	1)	and	Netpath	(median	size	51);	while	371	
proportional	set	cover	tends	to	select	smaller	pathways	from	Reactome	(median	372	
size	17),	HumanCyc	(median	size	5)	and	Signalink	(median	size	32),	whilst	373	
avoiding	NetPath.	374	
	375	

Table	1.	Proportion	of	pathways	from	CPDB	databases.	Median	size	represents	the	376	
median	sizes	of	the	pathways	in	the	CPDB	dataset.	CPDB	%	represents	the	proportion	377	
of	the	pathways	in	the	unaltered	dataset	that	came	from	each	database.	The	378	
following	columns	represent	the	proportion	of	pathways	in	the	set	cover	generated	379	
by	the	standard	set	cover	algorithm,	the	hitting	set	cover	algorithm	and	the	380	
proportional	set	cover	algorithm.	Different	results	are	obtained	by	altering	the	381	
proportion	of	the	gene	set	covered,	shown	in	subcolumns	below	the	algorithm	header.	382	

	383	

	384	

Reducing	redundancy	in	pathway	enrichment	analysis		385	
To	demonstrate	the	ability	of	the	set	cover	algorithm	to	handle	enrichment	data,	386	
we	applied	the	enrichment	set	cover	algorithm	to	an	osteoarthritis	data	set,	387	
retrieved	from	Dunn	et	al.	(2016)	[15].	From	the	osteoarthritis	data	set,	58.3%	of	388	
the	differentially	expressed	genes	could	be	mapped	to	a	CPDB	pathway,	which	was	389	

	
	

Median	
size	

CPDB	
%	

Standard	set	cover	 Hitting	set	cover	 Proportional	set	cover	

100%	 99%	 95%	 90%	 100%	 99%	 95%	 90%	 100%	 99%	 95%	 90%	

BioCarta	 15.0	 6.3	 6.3	 4.6	 0.5	 0.0	 4.7	 4.8	 5.4	 5.4	 5.8	 6.1	 6.1	 5.0	

EHMN	 32.5	 1.6	 3.2	 3.4	 2.6	 1.0	 2.1	 2.3	 1.8	 1.6	 1.6	 1.4	 0.9	 0.9	

HumanCyc	 5.0	 8.2	 6.5	 7.7	 2.6	 0.0	 10.1	 10.9	 12.9	 14.3	 10.9	 11.7	 13.7	 15.4	

INOH	 34.5	 2.3	 1.7	 1.9	 1.0	 1.0	 0.8	 0.6	 0.3	 0.2	 1.1	 1.1	 0.9	 0.7	

KEGG	 65.0	 7.2	 29.0	 30.5	 37.6	 40.4	 15.8	 15.0	 13.5	 13.4	 12.2	 9.9	 8.3	 7.1	

NetPath	 51.0	 0.9	 2.1	 2.4	 3.6	 5.1	 1.1	 1.2	 1.1	 1.0	 1.0	 0.9	 0.6	 0.2	

PharmGKB	 13.0	 2.8	 3.1	 2.9	 0.5	 0.0	 2.0	 2.1	 2.4	 2.3	 2.1	 2.2	 2.1	 1.7	

PID	 35.0	 5.2	 15.6	 13.9	 10.3	 6.1	 9.5	 9.8	 9.4	 8.5	 8.2	 8.3	 6.4	 4.6	

Reactome	 17.0	 39.6	 4.2	 5.3	 10.8	 21.2	 36.1	 35.1	 34.7	 35.3	 39.4	 40.9	 45.1	 48.8	

Signalink	 32.0	 0.4	 1.0	 1.2	 1.0	 0.0	 0.6	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.8	

SMPDB	 11.0	 16.7	 1.7	 1.4	 0.5	 0.0	 1.6	 1.5	 1.4	 1.2	 2.8	 3.0	 2.9	 3.2	

Wikipathways	 26.0	 8.8	 25.6	 24.9	 28.9	 25.3	 15.6	 16.0	 16.2	 16.2	 14.2	 13.7	 12.5	 11.7	
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a	17%	improvement	on	the	GOseq	[21]	implemented	data	set.	We	retrieved	42	390	
enriched	pathways	with	a	p-value	lower	than	0.05,	following	the	Benjamini-391	
Hochberg	correction	for	multiple	testing.	Set	cover	for	enrichment	analysis	392	
reduced	the	number	of	pathways	required	to	cover	the	differentially	expressed	393	
genes	to	23	(supplementary	table	1).		394	
	395	
The	heat	map	in	Figure	5A	shows	the	asymmetric	overlap	between	the	top	ten	396	
pathways	before	application	of	the	algorithm.	The	p-values	from	pathway	397	
enrichment	determine	the	order	in	which	pathways	were	considered	for	inclusion	398	
in	the	cover	set.	Pathways	were	omitted	if	all	of	the	differentially	expressed	genes	399	
that	they	covered	were	also	covered	by	more	enriched	pathways.	Note	that	overlap	400	
tends	to	be	higher	in	the	bottom	left	triangle	as	pathways	added	later	were	often	401	
smaller	subcomponents	of	larger	pathways.	We	can	see	that	’extracellular	matrix	402	
organization’,	the	most	enriched	pathway,	was	placed	in	the	cover	set	first.	Next	403	
was	’collagen	biosynthesis	and	modifying	enzymes’;	however,	all	of	the	404	
differentially	expressed	genes	in	this	pathway	are	also	covered	by	the	larger	405	
pathway	’extracellular	matrix	organization’,	as	indicated	by	the	red	cell	in	the	406	
’collagen	biosynthesis	and	modifying	enzymes’	row,	’extracellular	matrix	407	
organization’	column.	The	corresponding	cell	in	the	’extracellular	matrix	408	
organization’	row	reveals	that	24%	of	the	differentially	expressed	genes	in	409	
’extracellular	matrix	organization’	are	also	in	’collagen	biosynthesis	and	modifying	410	
enzymes’.		411	
	412	
Figure	5B	shows	overlap	between	the	top	ten	pathways	after	application	of	the	413	
enrichment	set	cover	algorithm.	Because	the	differentially	expressed	genes	414	
covered	by	the	’collagen	biosynthesis	and	modifying	enzymes’	pathway	are	a	415	
subset	of	those	covered	by	the	’extracellular	matrix	organization’	pathway,	the	416	
’collagen	biosynthesis	and	modifying	enzymes’	pathway	is	removed	from	the	cover	417	
set	(Figure	5B).	The	second	pathway	in	this	list	therefore	becomes	’GPCR	signaling	418	
g	alpha	q’.	The	’collagen	formation’	and	’class	b	2	secretin	family	receptors’	419	
pathways	are	also	removed	because	the	differentially	expressed	genes	they	cover	420	
are	additionally	covered	by	the	more	enriched	pathways	’extracellular	matrix	421	
organization’	and	’signal	transduction’	pathways	(respectively).	Additionally,	422	
’GPCR	signaling	pertussis	toxin’	and	’GPCR	signaling	cholera	toxin’	are	absent	from	423	
the	returned	list,	as	all	of	their	differentially	expressed	genes	are	found	in	’GPCR	424	
signaling	g	alpha	q’	or	’signal	transduction’.		425	
	426	
Some	pathways	in	the	enrichment	set	cover	do	still	show	high	levels	of	overlap,	for	427	
example	’wnt	signalling	network’	is	included	despite	89%	of	its	differentially	428	
expressed	genes	being	covered	by	’signal	transduction’.	This	is	acceptable	because	429	
’signal	transduction’	is	more	highly	enriched	than	’wnt	signalling	network’,	yet	the	430	
’wnt	signalling	network’	is	worth	including	as	it	contains	three	differentially	431	
expressed	genes	that	are	not	in	’signal	transduction’.	If	’wnt	signalling	network’	432	
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had	been	excluded	then	these	genes	would	not	have	been	described	by	the	most	433	
significant	pathway	available	to	represent	them.	The	unmodified	top	ten	enriched	434	
pathways	only	cover	78.0%	of	the	enriched	genes.	Using	the	set	cover	enrichment	435	
algorithm	increases	this	figure	to	85.2%	without	disrupting	the	pathway	order	436	
given	by	the	enrichment	p-values.		437	
	438	

6. Discussion	and	conclusion		439	
We	described	algorithms	suitable	for	reducing	overlap	in	large	pathway	data	sets	440	
allowing	multiple	databases	to	be	amalgamated	without	excessive	redundancy	441	
impeding	the	usefulness	of	the	resource.	Standard	set	cover	is	the	best	algorithm	442	
to	reduce	the	number	of	pathways	required	to	cover	the	data	set,	but	significantly	443	
increases	pathway	size,	which	can	be	controlled	by	proportional	set	cover	or	444	
hitting	set	cover.	The	proportional	set	cover	is	the	best	algorithm	for	controlling	445	
pathway	size	and	the	hitting	set	cover	is	the	preferred	choice	for	covering	all	of	the	446	
genes	in	the	dataset	with	minimal	pathway	redundancy.	We	showed	that	reducing	447	
the	GC	parameter	allows	further	reductions	in	pathway	redundancy;	for	example,	if	448	
only	95%	of	the	genes	in	the	CPDB	dataset	were	covered	redundancy	can	be	449	
reduced	by	up	to	88%.	In	addition	reducing	GC	increases	pathway	size	control	450	
when	the	proportional	set	cover	and	hitting	set	cover	algorithms	are	used.	451	
	452	
For	pathway	enrichment	analysis	we	aimed	to	reduce	redundancy	while	selecting	453	
the	most	significantly	enriched	pathways	based	on	p-values.	As	an	application	we	454	
used	the	modified	set	cover	algorithm	to	reduce	the	results	of	enrichment	analysis	455	
from	a	large	osteoarthritis	data	set.	We	found	that	5	out	of	the	10	top	ranking	456	
pathways	could	be	omitted	as	they	were	subsets	of	more	highly	enriched	457	
pathways.	Overlap	between	pathways	returned	from	enrichment	data	is	not	458	
always	immediately	obvious	and	requires	further	consideration.	By	reducing	this	459	
redundancy,	data	interpretation	is	made	more	intuitive.	Reducing	redundancy	also	460	
allows	the	user	to	explore	substantially	more	of	the	data	set	using	the	same	461	
number	of	pathways.		462	
	463	
The	enrichment	set	cover	algorithm	presented	within	this	study	differs	from	464	
existing	methods	implemented	by	ReCiPa	and	Pathcards,	since	enrichment	465	
analysis	is	performed	prior	to	reduction	of	redundancy.	This	is	because	the	466	
different	sets	of	pathway	boundaries	available	in	the	full	dataset	may	optimally	fit	467	
the	differentially	expressed	genes.	For	example,	comparison	of	the	‘apoptosis’	468	
taken	from	KEGG,	Reactome	and	Wikipathways,	reveals	that	many	of	the	proteins	469	
are	specific	to	a	single	database	[22].	This	is	due	to	the	vague	definition	of	pathway	470	
boundaries,	as	well	as	differing	experimental	focus	on	cellular	contexts,	such	as	471	
tissues	or	disease	states.	Following	enrichment	analysis	the	pathways	that	are	472	
most	significantly	enriched	are	selected	to	represent	the	differentially	expressed	473	
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genes	and	superfluous	pathways	are	removed.	This	prevents	the	top	results	from	474	
being	dominated	by	large	numbers	of	highly	similar	pathways.	475	
	476	
Set	cover	uses	greedy	heuristic	methods,	which	provide	good	approximations	of	477	
the	optimal	solution	in	a	time	effective	manner.	These	methods	are	extremely	478	
efficient	and	can	be	run	in	a	matter	of	minutes,	however	it	should	be	noted	that	479	
they	do	not	guarantee	an	optimal	solution.	This	is	particularly	true	for	the	480	
proportional	set	cover	algorithm	where	the	randomness	of	early	selections	481	
influences	the	result.	However,	all	possible	outcomes	result	in	reduced	482	
redundancy.	The	enrichment	set	cover	algorithm	is	exempt	from	these	483	
considerations	unless	multiple	pathways	have	identical	p-values.		484	
	485	
We	have	provided	a	method	to	dramatically	reduce	redundancy	in	pathways	486	
facilitating	a	more	concise	portrayal	of	cellular	processes,	while	avoiding	the	issues	487	
introduced	by	pathway	merging.	Our	algorithms	are	publicly	available	and	have	488	
wide	applicability	to	analysis	of	pathway	datasets	from	any	organism.	489	
	490	
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10. Figure	legends	579	
	580	
Figure	1.	Set	cover	A)	A	simple	set	of	overlapping	sets.	B)	The	red	set	with	8	581	
uncovered	elements	is	selected	first.	C)	The	blue	set	with	3	elements	is	selected	582	
second.	D)	The	orange	set	then	covers	all	the	elements	in	the	universe.	583	

Figure	2.	Jaccard	coefficient	between	pathway	pairs	in	the	cover	set	results	produced	584	
by	each	algorithm.	585	

	586	
Figure	3.	Redundancy	in	set	cover	outputs	given	different	GC	values.	587	

	588	
Figure	4.	Pathway	sizes	in	cover	set	when	GC	is	set	to	A)	100%,	B)	99%,	C)	95%	and	589	
D)	90%.	The	boxes	indicate	the	25th	and	75th	percentiles	and	the	whiskers	indicate	590	
the	5th	and	95th	percentiles.	591	

	592	
Figure	5.	Pathway	redundancy	heat	maps.	(A)	Pathway	overlap	for	top	ten	enriched	593	
pathways.	(B)	Pathway	overlap	for	top	ten	enriched	pathways	after	application	of	set	594	
cover.	The	values	represent	asymmetric	overlap,	i.e.	for	each	pathway	shown	on	the	595	
left	axis,	values	represent	the	proportion	of	genes	that	are	also	included	in	the	596	
pathway	shown	on	the	bottom	axis.	597	

	598	

11. Additional	material	599	
Supplementary	table	1:	Enriched	pathways	from	the	osteoarthritis	dataset	(p-600	
value<0.05).	The	set	cover	column	indicated	the	23	pathways	that	were	included	601	
in	the	set	cover.	Found	in	additional	file	1.docx.	602	
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greedy set cover
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February 2017

Set Cover

Start with R = U, C = ; and SC = ;
while |C|/|U| ⇤ 100 < GC do

Select set si that maximizes vi

Add si to SC
Add the elements in si to C
Delete the elements in si from R

end

Return SC

Set Packing

Start with D = data set, C = ; and SP = ;
while D 6= ; do

Select set si from D that maximises vi

Add the elements in si to C
for sj in D do

if |si \ sj | / |si [ sj | > Max O then

delete sj from D
end

end

Delete set si from D
end

Return the SP

1
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