

Methionine antagonizes para-aminosalicylic acid activity via affecting 1

- folate precursor biosynthesis pathway in *Mycobacterium tuberculosis* 2
- Michael D. Howe 1 , Shannon L. Kordus 1 , Malcolm S. Cole 2 , Allison A. Bauman 1 , Courtney C. Aldrich 2 , Anthony D. Baughn 1* , Yusuke Minato 1* 3
- 4
- ¹Department of Microbiology and Immunology, University of Minnesota Medical School, 5
- Minneapolis, MN, USA. 6
- 7 ²Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
- 8 * Correspondence: Correspondence and requests for materials should be addressed to YM (email:
- 9 yminato@umn.edu) or ADB (email: abaughn@umn.edu)
- 11 Keywords: Mycobacterium tuberculosis, anti-folate drug, para-aminosalicylic acid, methionine,
- 12 para-aminobenzoic acid, biotin, antagonism, metabolism, methionine transport
- 13 **Abstract**

10

26

27

- 14 para-Aminosalicylic acid (PAS) is a second-line anti-tubercular drug that is used for the treatment of
- drug-resistant tuberculosis (TB). PAS efficacy in the treatment of TB is limited by its lower potency 15
- against Mycobacterium tuberculosis relative to many other drugs in the TB treatment arsenal. It is 16
- 17 known that intrinsic metabolites, such as para-aminobenzoic acid (PABA) and methionine,
- 18 antagonize PAS and structurally related anti-folate drugs. While the basis for PABA-mediated
- 19 antagonism of anti-folates is understood, the mechanism for methionine-based antagonism remains
- 20 undefined. In the present study, we used both targeted and untargeted approaches to identify factors
- 21 associated with methionine-mediated antagonism of PAS activity. We found that synthesis of folate
- precursors as well as a putative amino acid transporter play crucial roles in this process. We also 22
- 23 discovered that intracellular biotin confers intrinsic PAS resistance in a methionine-independent
- 24 manner. Collectively, our results demonstrate that methionine-mediated antagonism of anti-folate
- 25 drugs occurs through sustained production of folate precursors.

Introduction

- 28 Mycobacterium tuberculosis is responsible for approximately 10.4 million new cases of active
- 29 tuberculosis (TB) and 1.3 million deaths annually (WHO, 2017). While TB chemotherapeutic
- 30 intervention is highly successful in curing drug-susceptible TB infections, therapy is challenging, in
- 31 part, because it requires a minimum of 6 months of treatment with drugs associated with adverse
- reactions. In addition, the emergence of drug-resistant strains of *M. tuberculosis* has dramatically 32
- increased the complexity and cost of TB treatment (Gandhi et al. 2006, Gehre et al. 2016). Therefore, 33
- the development of more efficacious TB chemotherapy regimens is imperative to improve treatment 34
- 35 outcomes.
- 36 para-Aminosalicylic acid (PAS) was the second drug to be developed exclusively for TB
- 37 chemotherapy (Lehmann 1946). Although PAS was a cornerstone agent of early multidrug TB

- 38 therapies, the introduction of more potent anti-tubercular agents into TB treatment regimens greatly
- 39 diminished its usage (Minato et al. 2015). Emergence of M. tuberculosis strains with resistance to
- 40 first-line anti-tubercular agents led to the resurgence of PAS as an second-line drug to treat infections
- 41 that failed to respond to standard short-course therapy (Donald and Diacon 2015). However,
- 42 compared to many other anti-tubercular drugs, PAS is less potent and is associated with a high rate of
- 43 gastrointestinal distress which limits its use to the treatment of multi-drug resistant TB for which
- 44 there are few other treatment options (Zumla et al. 2013). Thus, it is important to develop novel
- strategies to enhance PAS potency, limit adverse reactions and improve treatment success rates.
- 46 Until recently, little was known regarding the mode of action of PAS. PAS is a selective
- antimetabolite of the *M. tuberculosis* folate metabolic pathway acting as a structural analog of the
- folate precursor *para*-aminobenzoic acid (PABA) (**Figure 1**) (Chakraborty et al. 2013, Minato,
- Thiede, Kordus, McKlveen, Turman and Baughn 2015). PAS is sequentially converted to 2'-
- 50 hydroxy-7,8-dihydropteroate and 2'-hydroxy-7,8-dihydrofolate by enzymes in the *M. tuberculosis*
- folate metabolic pathway (**Figure 1**). 2'-hydroxy-7,8-dihydrofolate has been shown to potently
- 52 inhibit *M. tuberculosis* dihydrofolate reductase (DHFR), the final step in synthesis of tetrahydrofolate
- 53 (Dawadi et al. 2017, Minato, Thiede, Kordus, McKlveen, Turman and Baughn 2015, Zhao et al.
- 54 2014, Zheng et al. 2013). Since PAS and PABA are comparable substrates for the folate biosynthetic
- 55 pathway, supplementation of *M. tuberculosis* cultures with PABA antagonizes the inhibitory activity
- of PAS by outcompeting for ligation to 6-pyrophosphomethyl-7,8-dihydropterin (DHPPP) by
- 57 dihydropteroate synthase (DHPS) (Youmans et al. 1947). We previously reported that intracellular
- 58 PABA mediates intrinsic resistance to PAS in *M. tuberculosis*, and disruption of this critical node in
- 59 folate biosynthesis can potentiate antifolate action, including that of sulfa drugs (Thiede et al. 2016).
- Methionine is a potent antagonist of PAS in M. tuberculosis (Hedgecock 1956), yet, the basis for this
- antagonism remains poorly understood. Because disruption of the folate pathway in *M. tuberculosis*
- results in depletion of metabolites within multiple essential folate-dependent pathways (Chakraborty,
- 63 Gruber, Barry, Boshoff and Rhee 2013, Nixon et al. 2014), supplementation with methionine alone is
- not expected to recover loss of folate pathway integrity. A recent study showed that PAS can be
- 65 converted to *N*-methyl and *N*,*N*-dimethyl PAS species within *M. tuberculosis* cells (**Figure 1**)
- 66 (Chakraborty, Gruber, Barry, Boshoff and Rhee 2013). N-methyl-PAS retains activity against M.
- 67 *tuberculosis*, while *N*,*N*-dimethyl-PAS shows no anti-tubercular activity since the resulting tertiary
- amine is incapable of nucleophilically reacting with DHPPP during the first step of PAS
- 69 bioactivation (**Figure 1**). Since addition of methionine can potentially enhance the ability of M.
- 70 tuberculosis to methylate PAS by increasing S-adenosylmethionine (SAM) abundance, it is possible
- 71 that methionine promotes inactivation of PAS through N,N-dimethylation by an unidentified
- 72 methyltransferase.
- 73 In the present study we screened approximately 10,000 independent *Mycobacterium bovis* BCG
- 74 transposon insertion mutants (BCG::himar1) to identify genetic determinants associated with
- 75 methionine-mediated PAS antagonism. In parallel to analysis of BCG::himar1 mutants, we
- 76 characterized factors that affect PAS susceptibility in *M. tuberculosis* for their involvement in
- 77 methionine-mediated PAS antagonism. Our findings reveal the importance of folate precursor
- biosynthesis and methionine transport in methionine-mediated PAS antagonism.
- 79 Materials and Methods
 - **Chemical Reagents**

- 81 All chemical reagents except for 2'-hydroxy-pteroate (pterin-PAS) were purchased from Sigma-
- Aldrich. Pterin-PAS was synthesized by Drs. Richard Lee and Ying Zhao at St Jude Children's 82
- 83 Research Hospital by using a similar synthesis method reported elsewhere (Zhao et al. 2016).

Bacterial Strains and Growth Conditions

- 85 Bacterial strains utilized in this study are described in **Table 1**. Unless otherwise indicated,
- Mycobacterial strains were grown in Middlebrook 7H9 liquid medium supplemented with tyloxapol 86
- 87 (0.05% vol/vol) or on Middlebrook 7H10 agar plates. For M. bovis BCG and M. tuberculosis H37Ra,
- 88 oleate-albumin-dextrose-catalase (OADC; Becton Dickinson 10% vol/vol) and glycerol (0.2%
- 89 vol/vol) were supplemented to Middlebrook 7H9 and Middlebrook 7H10. For Mycobacterium
- 90 smegmatis mc²155, Middlebrook 7H9 and Middlebrook 7H10 was amended with dextrose (0.2%)
- 91 vol/vol). Escherichia coli DH5α λpir was grown in LB broth or on LB agar plate. When necessary,
- 92 kanamycin or hygromycin were added to media at 50 µg/ml and 150 µg/ml respectively for selection
- 93 of mycobacterial and E. coli strains.
- 94 For sulfur utilization studies, a modified sulfate-free Sautons medium (Allen 1998) was prepared
- with all inorganic sulfate salts (MgSO₄ and ZnSO₄) replaced with inorganic chloride salts (MgCl and 95
- ZnCl) keeping the concentrations of Mg²⁺ and Zn²⁺ ions the same. For the characterizations of the 96
- biotin auxotroph mutant, biotin-free 7H9 medium was prepared. The biotin-auxotrophic strain, M. 97
- 98 bovis BCG bioB::himar1, was maintained in the biotin-free 7H9 medium supplemented with 0.5
- 99 ug/ml biotin. For the characterizations of the PABA auxotroph mutant, 7H9 medium was prepared
- in glassware that was baked at 300°C for one hour to remove residual PABA before use. The 100
- 101 PABA-auxotrophic strain H37Ra ΔpabB was maintained in PABA-free 7H9 medium supplemented
- 102 with PABA (10 ng/ml).

84

103

121

Construction and Screening M. bovis BCG::himar1 Mutant Library

- 104 The phAE180 mycobacteriophage containing a mariner transposable element, himar1, with a
- 105 kanamycin resistance cassette was used to transduce M. bovis BCG creating a library of
- 106 BCG::himar1 mutants as described previously (Kriakov et al. 2003, Rubin et al. 1999). Transduced
- 107 cells were plated onto 7H10 agar containing kanamycin and 10 µg/ml methionine. Approximately
- 108 10,000 mutant strains were screened by picking and patching onto 7H10 agar supplemented with
- 109 methionine (Met plates) and onto 7H10 agar plates additionally amended with 5 µg/ml PAS (Met-
- 110 PAS plates). Mutant strains that grew on the Met plates, but were inhibited for growth the Met-PAS
- 111 plates, were selected for secondary screening following the same protocol. PAS susceptibility was
- assessed for strains that passed the secondary screen. himar1 insertion sites were determined as 112
- 113 previously described (Rubin, Akerley, Novik, Lampe, Husson and Mekalanos 1999). Briefly,
- 114 extracted genomic DNA was digested with BssHII and self-ligated to produce circular DNAs. The
- 115 circularized DNAs that contained *ori6K* from a part of *himar1* transposon were used to transform E.
- coli DH5αλpir. Plasmids were purified from the transformants. Sequences of genomic DNA adjacent 116
- 117 to the 3' end of the *himar1* transposon insertion site were determined by Sanger sequencing
- 118 (performed by Eurofins) using the KanSeq_Rev (5'-GCATCGCCTTCTATCGCCTTC-3') primer
- 119 (Baughn et al. 2010). Insertion site locations were determined by aligning the resulting sequence files
- 120 with the *M. bovis* BCG Pasteur genome sequence (GenBank accession number NC 008796).

Determination of Minimum Inhibitory Concentrations

- The minimum inhibitory concentrations (MIC) of anti-tubercular compounds were determined as 122
- 123 previously described (Dillon et al. 2014). Briefly, for determination of the MIC in liquid culture, 2-

- fold dilution series of drugs in 7H9 medium were prepared. Logarithmically growing Mycobacterium
- strains were inoculated into the drug-containing 7H9 medium in 30-ml square bottles (Nalgene) to an
- optical density (OD_{600}) of 0.01. OD_{600} were measured after shaking (100 rpm) at 37°C for 14 days.
- The liquid MIC₉₀ was defined as the minimum concentration of drug required to inhibit at least 90%
- of growth relative to growth in the no-drug control cultures. For determination of the agar plate MIC,
- logarithmically growing M. bovis BCG strains were serially-diluted and inoculated onto 7H10 agar
- plates containing drug in 2-fold dilution series. The agar plate MIC was determined by visually
- inspecting growth relative to growth on the no-drug control plates after grown at 37°C for 21 days.
- All anti-tubercular compounds employed in this study were dissolved in DMSO. The highest
- concentration of DMSO in the growth media was 2.5%.

Analysis of Growth Kinetics

- Logarithmically growing Mycobacterium strains were washed twice in an equal volume of fresh
- medium. Cells were diluted to an OD_{600} of 0.01 in 30-ml square bottles (Nalgene) and supplements
- with or without drug were added at the described concentrations. Cultures were shaken (100 rpm)
- and OD_{600} were measured at various time points over a 14-day time-course.

Methionine Utilization Experiments

- 140 M. bovis BCG strains were grown to mid-log phase in 7H9 broth and washed twice with sulfate-free
- Sautons medium. Resuspended cells were diluted to an OD₆₀₀ of 0.01 in sulfate-free Sautons
- medium. Cultures were then incubated for 5 days to exhaust remaining sulfur. Exhausted cells were
- aliquoted into 30-ml square bottles (Nalgene) and sulfur-containing metabolites were added at the
- given concentrations. Cultures were incubated at 37°C and shaken (100 rpm). The fold-change in
- OD₆₀₀ (as a ratio of the final OD₆₀₀/initial OD₆₀₀) was assessed following 1 week of incubation after
- the addition of metabolites.

147 Results

134

139

148

Identification of M. bovis BCG genes involved in methionine-mediated antagonism of PAS

- 149 A library of *M. bovis* BCG transposon insertion mutant strains was constructed using the phAE180
- mycobacteriophage containing a *mariner*-family transposable element. To identify genes associated
- with methionine-mediated PAS antagonism, approximately 10,000 BCG::himar1 mutants were
- screened following the approach outlined in **Figure 2**. Determination of the PAS MIC on 7H10 agar
- plates confirmed that 0.25 µg/ml was sufficient to fully inhibit growth of the M. bovis BCG parental
- strain. Screening was then undertaken on 7H10 agar plates containing 10 µg/ml methionine and 5
- 155 µg/ml PAS (Met-PAS plate). Growth of M. bovis BCG on Met-PAS plates was identical to growth
- seen on control 7H10 plates, which confirmed methionine-mediated PAS antagonism.
- 157 BCG::himar1 insertion mutants which exhibited observable growth inhibition on the Met-PAS plates
- in comparison to the growth on 7H10 agar plates containing 10 µg/ml methionine (Met plate) were
- isolated. We then identified the *himar1* insertion sites within the 35 BCG::*himar1* mutants that had
- reproducible growth defects on Met-PAS plates compared to the growth on Met plates (**Figure 2 and**
- **Table 2).** Among these mutants, one strain with a *himar1* insertion located within *BCG 3282c*,
- encoding a putative amino acid/polyamine/organocation (APC) superfamily transporter (Elbourne et
- al. 2017, Jack et al. 2000), showed the most severe growth defect on Met-PAS plates suggesting
- BCG 3282c plays a major role in methionine-mediated antagonism of PAS. We also assessed the
- susceptibility of each mutant strain to PAS by measuring PAS MICs on 7H10 agar plates (**Table 2**).

- We observed the BCG_3282c mutant possessed wild-type PAS susceptibility suggesting this
- mutation is associated exclusively with methionine-mediated PAS antagonism.
- Although most mutant strains that were analyzed showed a similar level of PAS tolerance as the
- parent M. bovis BCG, four mutants (with transposon insertions in bioB, ftsH, metB, and BCG_1906c)
- were found to be more susceptible to PAS in the absence of methionine, indicating that the disrupted
- genes may be involved in intrinsic resistance to PAS (**Table 2**).

172 BCG 3282c is essential for methionine-mediated antagonism of PAS in M. bovis BCG.

- Based upon the observation that methionine failed to antagonize PAS activity in the BCG_3282c
- mutant, we further characterized the function of this gene. The *himar1* insertion was located near the
- 5' end of the coding region for *BCG_3282c* resulting in a 401 residue truncation of the 495 residue
- 176 coding sequence, suggesting functional gene disruption by *himar1* insertion. Similar to the majority
- of transporters within the APC superfamily, BCG_3282c is predicted to possess 12 transmembrane
- 178 α-helical spanners (Elbourne, Tetu, Hassan and Paulsen 2017). BCG_3282c is also highly conserved
- in the Mycobacterium genus, sharing 100% sequence identity with numerous *M. tuberculosis*
- complex organisms including Rv3253c, an ortholog from the standard virulent reference strain
- H37Rv. However, no close orthologs of BCG_3282c have been structurally or functionally
- characterized thus far.
- To confirm whether BCG_3282c disruption altered methionine antagonism, PAS susceptibility
- testing was conducted in liquid medium (**Figure. 3A**). Growth of both wild type *M. bovis* BCG and
- the *BCG_3282c::himar1* strain was severely inhibited by 5 μg/ml PAS. Addition of methionine
- restored growth during PAS treatment of wild-type M. bovis BCG in a dose-dependent manner. In
- 187 contrast, growth of the BCG_3282c::himar1 strain was inhibited by PAS even in the presence of 10
- 188 µg/ml methionine. PABA, another PAS antagonist, reversed PAS-mediated growth inhibition in both
- the wild type M. bovis BCG and the BCG_3282c::himar1 strain, validating that the
- 190 BCG 3282c::himar1 strain is specifically impaired for methionine-mediated PAS antagonism.
- Because methionine antagonism is selectively perturbed in the BCG_3282c::himar1 mutant, we
- hypothesized that BCG_3282c may be the methionine transporter. *M. tuberculosis* is known to utilize
- reverse transsulfuration to assimilate sulfur from methionine which can serve as the sole source of
- sulfur for this bacterium (Wheeler et al. 2005). Therefore, we tested whether disruption of
- 195 BCG 3282c would affect the ability of the bacilli to assimilate sulfur derived from methionine.
- When M. bovis BCG and the BCG_3282c::himar1 disruption strain were grown in sulfate-free
- Sautons medium, growth of both strains was limited (maximum $OD_{600} = 0.3$). Upon addition of
- sodium sulfate to the medium, both strains resumed growth and achieved typical growth yields
- confirming these strains were previously starved for sulfur (**Figure. 3B**). When methionine was
- added to sulfur starved M. bovis BCG, growth also resumed in a dose-dependent manner producing
- similar growth yields as compared to the addition of sulfate alone. In contrast, growth of the
- 202 BCG_3282c::himar1 disruption strain could not be restored in the presence of methionine as the sole
- source of sulfur, indicating that methionine is a transport substrate of BCG 3282c. These findings
- indicate antagonism requires methionine import across the cell membrane via BCG_3282c.

205 PABA biosynthesis is indispensable for methionine-mediated PAS antagonism in M.

- 206 tuberculosis.
- 207 Our large-scale screening failed to identify genes directly involved in methionine-mediated PAS
- antagonism. Thus, it is possible that genes involved in this process are redundant or are essential for

- 209 M. bovis BCG survival in vitro. Because addition of methionine can increase SAM levels and many
- 210 M. tuberculosis SAM-dependent methyltransferase genes are essential, we investigated whether the
- ability to methylate PAS plays a role in methionine-mediated PAS antagonism. To test this, we
- evaluated whether methionine can antagonize the activated PAS species, 2'-hydroxy-pteroate (pterin-
- 213 PAS), in *M. bovis* BCG. It is known that *N,N*-dimethyl-PAS has no anti-tubercular activity,
- 214 presumably because N,N-dimethyl-PAS cannot react with DHPPP during the first step of PAS
- bioactivation (**Figure 1**). Thus, once PAS is activated to pterin-PAS, N-methylation should not affect
- 216 its anti-tubercular activity. We confirmed pterin-PAS was active against wild-type M. bovis BCG at a
- comparable molar concentration to PAS (**Table 3**). Surprisingly, pterin-PAS was still potently
- 218 antagonized by methionine suggesting methionine-mediated PAS antagonism does not occur by
- 219 methylation of PAS to inhibit PAS bioactivation.
- 220 It is also known that intracellular PABA levels affect PAS susceptibility in M. tuberculosis (Thiede,
- Kordus, Turman, Buonomo, Aldrich, Minato and Baughn 2016). Since PABA biosynthesis is
- 222 essential for Mycobacterium survival *in vitro*, we hypothesized that methionine may affect PAS
- activity. PabB, aminodeoxychorismate synthase, is one of the essential enzymes required to convert
- 224 chorismate to PABA in M. tuberculosis (Figure 4A). Consequently, a M. tuberculosis H37Ra pabB
- deletion strain is a PABA auxotroph and relies upon exogenous sources of PABA for growth (**Figure**
- **4B**). The folate precursor dihydropteroate is produced from PABA and DHPPP (**Figure 4A**). We
- found that pteroic acid, an oxidized form of dihydropteroate can also support the growth of the M.
- 228 tuberculosis H37Ra pabB deletion strain (Figure 4B). As expected, unlike PABA and pteroic acid,
- 229 methionine did not support the growth of the M. tuberculosis H37Ra pabB deletion strain indicating
- that methionine alone is insufficient to fulfill cellular folate requirements in PABA starved M.
- 231 tuberculosis cells. Using the M. tuberculosis H37Ra ΔpabB deletion strain, we tested the requirement
- of PABA biosynthesis on methionine-mediated PAS antagonism. We observed that methionine
- potently antagonized PAS susceptibility in wild type M. tuberculosis H37Ra. In contrast, PAS
- susceptibility of the M. tuberculosis H37Ra $\Delta pabB$ deletion strain was not antagonized by the
- addition of methionine (**Table 3**). Taken together, these data demonstrated that a functional PABA
- biosynthetic pathway is essential for methionine to antagonize PAS in *M. tuberculosis*.
- 237 Biotin cofactor biosynthesis is essential for intrinsic resistance to PAS and other anti-
- 238 tubercular drugs
- Our screening also identified several mutations that conferred increased susceptibility to PAS even in
- 240 the absence of methionine. One strain, harboring a *himar1* insertion within *bioB*, encoding biotin
- synthase, showed increased susceptibility to PAS both in the presence and absence of methionine
- 242 (**Table 2**). BioB is a radical SAM-dependent enzyme required for the final step in the synthesis of
- biotin. We confirmed the *bioB::himar1* strain exhibited biotin auxotrophy, which could be chemically
- complemented by a minimum of $0.05 \mu g/ml$ biotin supplementation for restoration of growth (**Figure**
- 5A). We speculated that susceptibility of the bioB::himar1 strain to PAS was dependent upon
- intracellular concentrations of biotin. Thus, we examined the PAS susceptibility of the bioB::himarl
- strain using media containing minimal (0.05 µg/ml) or excess (5 µg/ml) concentrations of biotin
- 248 (Figure 5B). We observed the *bioB::himar1* strain was far more susceptible to PAS (8-fold decrease
- in MIC₉₀) in minimal biotin medium, and that excess biotin medium was sufficient to restore
- susceptibility back to near wild-type levels. Interestingly, the bioB::himar1 strain was also more
- susceptible to sulfamethoxazole (SMX) and rifampicin (RIF), but maintained wild-type susceptibility
- 252 to isoniazid, indicating that alterations in susceptibility profiles are drug-specific (**Figure 5B**).

Discussion

- Methionine is the only folate-dependent metabolite known to antagonize certain anti-folate drugs in
- 255 M. tuberculosis and other bacterial species. Interestingly, anti-folate drugs antagonized by
- 256 methionine are also antagonized by PABA, a folate precursor. Although the molecular mechanism of
- 257 PABA-mediated anti-folate antagonism is well understood, how methionine antagonizes anti-folate
- drugs has yet to be elucidated. Our findings revealed that methionine-mediated PAS antagonism is
- 259 linked to synthesis of folate precursors.
- 260 One strain isolated from our screen harboring a *himar1* disruption within the predicted amino acid
- permease BCG_3282c fully sensitized M. bovis BCG to PAS in the presence of normally antagonistic
- 262 concentrations of methionine. In addition, the *himar1* disruption within *BCG_3282c* prevented *M*.
- 263 bovis BCG from assimilating sulfur derived from methionine. BCG 3282c belongs to the APC
- superfamily of transporters and our data suggested that BCG_3282c is likely responsible for uptake
- of methionine in vitro. The most well-studied methionine transport system in bacteria is the MetD
- ABC transporter system of the methionine uptake transporter family found in numerous organisms
- including E. coli and even the closely related non-tubercular Mycobacterium, Mycobacterium
- 268 abscessus (Gál et al. 2002). In E. coli, the MetD ABC transporter is encoded by the metNIQ gene
- 269 cluster (Merlin et al. 2002). The *M. tuberculosis* complex has no known orthologs of this system,
- despite the known bioavailability of methionine in human and mouse serum (Lewis et al. 1980,
- Rivera et al. 1987). To our knowledge, this study represents the first characterization of a methionine
- transporter in the *M. tuberculosis* complex. Orthologues of BCG_3282c with high amino acid
- sequence similarities are found from Gordonia sputi, Bacillus subtilis and Lactococcus lactis and an
- orthologue from L. lactis has been shown to transport branched-chain amino acids, along with
- 275 methionine (den Hengst et al. 2006). Existence of a conserved methionine transporter within the
- 276 mycobacterium complex would be intriguing given that methionine/SAM biosynthesis is
- 277 indispensable for survival of *M. tuberculosis* in murine and macrophage models of infection (Berney
- 278 et al. 2015).
- We also found that methionine-mediated PAS antagonism does not appear to occur through N,N-
- dimethylation by SAM-dependent methyltransferase(s). We addressed this possibility because N.N-
- dimethyl PAS, an inactive metabolite of PAS, was previously identified in metabolite extracts from
- 282 PAS treated M. tuberculosis (Chakraborty, Gruber, Barry, Boshoff and Rhee 2013). In addition, a
- SAM-dependent methyltransferase (*Rv0560c*) is induced by salicylate and salicylate analogs,
- including PAS (Schuessler and Parish 2012). However, a recent report described that an unmarked
- in-frame deletion of Rv0560c in M. tuberculosis conferred no alteration in susceptibility to PAS, or
- other antimicrobials *in vitro* (Kokoczka et al. 2017). Consistent with this finding, our screen did not
- identify Rv0560c::himar1 mutants. Together with our observation that pterin-PAS is also antagonized
- by methionine, we concluded that methionine-mediated PAS antagonism is not likely via PAS
- inactivation by *N*,*N*-dimethylation.
- 290 Importantly, methionine was unable to antagonize PAS in a pabB deletion mutant strain indicating
- that methionine-mediated PAS antagonism is dependent upon a functional PABA biosynthesis
- 292 pathway. This finding is consistent with past and recent reports that methionine only antagonizes the
- anti-folate drugs that are also antagonized by PABA (Huang et al. 1997, Nixon, Saionz, Koo,
- Szymonifka, Jung, Roberts, Nandakumar, Kumar, Liao, Rustad, Sacchettini, Rhee, Freundlich and
- Sherman 2014, Zhao, Shadrick, Wallace, Wu, Griffith, Qi, Yun, White and Lee 2016, Zheng, Rubin,
- Bifani, Mathys, Lim, Au, Jang, Nam, Dick, Walker, Pethe and Camacho 2013). While the metabolic
- 297 connections linking methionine to folate precursor biosynthesis remain to be determined, the DHPPP
- 298 pathway has been shown to modulate susceptibility of E. coli, Salmonella enterica and Burkholderia
- 299 pseudomallei to sulfamethoxazole (Li et al. 2017, Podnecky et al. 2017, Minato et al. 2018), which is

- 300 predicted to be metabolically linked with methionine-mediated antagonism (Minato and Baughn
- 301 2017). Further, we recently demonstrated that the biosynthetic pathway to DHPPP is essential for
- methionine-mediated antagonism of sulfonamide action in E. coli (Minato et al. 2018).
- One PAS-sensitive mutant strain with a disruption in biotin synthase (bioB) was found to be
- auxotrophic for the cofactor biotin. Characterization of this mutant confirmed that disruption of
- 305 biotin biosynthesis could enhance susceptibility to PAS and rifampicin in biotin-limited conditions.
- 306 In M. tuberculosis, biotin is a cofactor required for acyl-CoA-carboxylase (ACC) enzymes
- participating in key metabolic processes in lipid biosynthesis (Gago et al. 2011, Salaemae et al. 2011,
- Takayama et al. 2005, Woong Park et al. 2011). Biotin biosynthesis and protein biotinylation process
- have been targeted for novel drug development (Duckworth et al. 2011, Shi et al. 2013, Tiwari et al.
- 310 2018). On the basis of our *in vitro* findings, targeting biotin synthesis may promote accumulation of
- 311 antimycobacterial drugs by disrupting cell envelope integrity, which could revitalize drug therapies
- that are unable to overcome the relatively impermeable cell envelope of *M. tuberculosis* at clinically
- 313 relevant dosages. Indeed, it was recently reported that disruption of protein biotinylation potentiates
- 314 rifampicin activity against *M. tuberculosis* (Tiwari, Park, Essawy, Dawadi, Mason, Nandakumar,
- 315 Zimmerman, Mina, Ho, Engelhart, Ioerger, Sacchettini, Rhee, Ehrt, Aldrich, Dartois and
- 316 Schnappinger 2018). It was previously reported that biotin has a vital role in methionine-mediated,
- PAS antagonism, such that supplementation with exogenous biotin was required to observe
- antagonism by methionine (Hedgecock 1956). However, our study found that biotin supplementation
- was non-essential for methionine to antagonize PAS in M. bovis BCG suggesting that the effect of
- 320 biotin on PAS susceptibility is independent of the precise mechanism of antagonism, and the initial
- observations in *M. tuberculosis* by Hedgecock may be a strain specific phenotype.
- 322 In summary, the mechanistic basis of methionine-mediated PAS antagonism was examined. Over 30
- novel modulators of PAS susceptibility were identified by *Himar1* transposon mutagenesis.
- However, with exception of the putative amino acid permease BCG 3282c, none of the functions
- 325 identified were found to be directly involved in antagonism. Upon closer examination, de novo
- 326 biosynthesis of PABA was determined as essential for methionine-mediated antagonism, revealing a
- 327 previously unappreciated relationship between methionine and folate precursor synthesis. Further
- 328 studies are needed to reveal the precise mechanism of this process. The results presented here also
- identified tractable drug targets within *M. tuberculosis* that could be exploited to enhance
- antimycobacterial drug action.

Author Contributions

- 332 MDH, SLK, MSC, and AAB performed experiments. ADB, CCA and YM conceived the work.
- 333 MDH, ADB and YM wrote the manuscript. All authors contributed to analyzing data and editing of
- the manuscript.

335 Funding

331

339

- This work was supported by a grant from the University of Minnesota Academic Health Center
- Faculty Research Development Program to ADB and CCA and by startup funds from the University
- of Minnesota to ADB.

Conflict of Interest Statement

- The authors declare that the research was conducted in the absence of any commercial or financial
- relationships that could be construed as a potential conflict of interest.

Acknowledgements

342

346

347

348

- We thank Nicholas D. Peterson for assistance in construction of a library of M. bovis BCG
- transposon insertion mutants. We thank Drs. Richard Lee and Ying Zhao of St Jude Children's
- Research Hospital for the providing pterin-PAS.

References

- 349 Allen BW. 1998. Mycobacteria. General culture methodology and safety considerations. Methods
- 350 Mol Biol.101:15-30.
- Baughn AD, Deng J, Vilchèze C, Riestra A, Welch JT, Jacobs WR, Zimhony O. 2010. Mutually
- exclusive genotypes for pyrazinamide and 5-chloropyrazinamide resistance reveal a potential
- resistance-proofing strategy. Antimicrob Agents Chemother. Dec;54:5323-5328. Epub 2010/09/27.
- Berney M, Berney-Meyer L, Wong KW, Chen B, Chen M, Kim J, Wang J, Harris D, Parkhill J, Chan
- J, et al. 2015. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of
- 356 Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. Aug;112:10008-10013. Epub 2015/07/28.
- 357 Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, Dos Santos S, Duthoy S,
- Lacroix C, Garcia-Pelayo C, et al. 2007. Genome plasticity of BCG and impact on vaccine efficacy.
- 359 Proc Natl Acad Sci U S A. Mar;104:5596-5601. Epub 2007/03/19.
- Chakraborty S, Gruber T, Barry CE, Boshoff HI, Rhee KY. 2013. Para-aminosalicylic acid acts as an
- alternative substrate of folate metabolism in *Mycobacterium tuberculosis*. Science. Jan;339:88-91.
- Dawadi S, Kordus SL, Baughn AD, Aldrich CC. 2017. Synthesis and Analysis of Bacterial Folate
- Metabolism Intermediates and Antifolates. Org Lett. Oct;19:5220-5223. Epub 2017/09/19.
- den Hengst CD, Groeneveld M, Kuipers OP, Kok J. 2006. Identification and functional
- 365 characterization of the *Lactococcus lactis* CodY-regulated branched-chain amino acid permease
- 366 BcaP (CtrA). J Bacteriol. May;188:3280-3289.
- Dillon NA, Peterson ND, Rosen BC, Baughn AD. 2014. Pantothenate and pantetheine antagonize the
- antitubercular activity of pyrazinamide. Antimicrob Agents Chemother. Dec;58:7258-7263.
- Donald PR, Diacon AH. 2015. para-Aminosalicylic acid: the return of an old friend. Lancet Infect
- 370 Dis. Sep;15:1091-1099. Epub 2015/08/12.
- Duckworth BP, Geders TW, Tiwari D, Boshoff HI, Sibbald PA, Barry CE, Schnappinger D, Finzel
- 372 BC, Aldrich CC. 2011. Bisubstrate adenylation inhibitors of biotin protein ligase from
- 373 *Mycobacterium tuberculosis*. Chem Biol. Nov;18:1432-1441.
- Elbourne LD, Tetu SG, Hassan KA, Paulsen IT. 2017. TransportDB 2.0: a database for exploring
- 375 membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res.
- 376 Jan;45:D320-D324. Epub 2016/11/28.
- Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H. 2011. Fatty acid biosynthesis in
- actinomycetes. FEMS Microbiol Rev. May;35:475-497. Epub 2011/01/19.
- Gál J, Szvetnik A, Schnell R, Kálmán M. 2002. The metD D-methionine transporter locus of
- 380 Escherichia coli is an ABC transporter gene cluster. J Bacteriol. Sep;184:4930-4932.

- 381 Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, Zeller K, Andrews J, Friedland
- 382 G. 2006. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with
- tuberculosis and HIV in a rural area of South Africa. Lancet. Nov;368:1575-1580.
- 384 Gehre F, Otu J, Kendall L, Forson A, Kwara A, Kudzawu S, Kehinde AO, Adebiyi O, Salako K,
- Baldeh I, et al. 2016. The emerging threat of pre-extensively drug-resistant tuberculosis in West
- 386 Africa: preparing for large-scale tuberculosis research and drug resistance surveillance. BMC Med.
- 387 Nov;14:160. Epub 2016/11/03.
- 388 Hedgecock LW. 1956. Antagonism of the inhibitory action of aminosalicylic acid on *Mycobacterium*
- 389 *tuberculosis* by methionine, biotin and certain fatty acids, amino acids, and purines. J Bacteriol.
- 390 Dec;72:839-846.
- 391 Huang EY, Mohler AM, Rohlman CE. 1997. Protein expression in response to folate stress in
- 392 Escherichia coli. J Bacteriol. Sep;179:5648-5653.
- Jack DL, Paulsen IT, Saier MH. 2000. The amino acid/polyamine/organocation (APC) superfamily
- of transporters specific for amino acids, polyamines and organocations. Microbiology. Aug;146 (Pt
- 395 8):1797-1814.
- Kokoczka R, Schuessler DL, Early JV, Parish T. 2017. Mycobacterium tuberculosis Rv0560c is not
- essential for growth in vitro or in macrophages. Tuberculosis (Edinb). 01;102:3-7. Epub 2016/11/05.
- 398 Kriakov J, Lee S, Jacobs WR. 2003. Identification of a regulated alkaline phosphatase, a cell surface-
- associated lipoprotein, in *Mycobacterium smegmatis*. J Bacteriol. Aug;185:4983-4991.
- 400 Lehmann J. 1946. *para-*Aminosalicylic acid in the treatment of tuberculosis. Lancet. Jan;247:15-16.
- 401 Lewis AM, Waterhouse C, Jacobs LS. 1980. Whole-blood and plasma amino acid analysis: gas-
- 402 liquid and cation-exchange chromatography compared. Clin Chem. Feb;26:271-276.
- 403 Li K, Li T, Yang SS, Wang XD, Gao LX, Wang RQ, Gu J, Zhang XE, Deng JY. 2017. Deletion of
- 404 nudB Causes Increased Susceptibility to Antifolates in Escherichia coli and Salmonella enterica.
- 405 Antimicrob Agents Chemother. Apr;24:e02378-16.
- 406 Merlin C, Gardiner G, Durand S, Masters M. 2002. The Escherichia coli metD locus encodes an
- 407 ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol.
- 408 Oct;184:5513-5517.
- 409 Minato Y, Baughn AD. 2017. Subversion of Metabolic Wasting as the Mechanism for *folm*-Linked
- 410 Sulfamethoxazole Resistance. mBio. Nov;8:e01769-17.
- 411 Minato Y, Dawadi S, Kordus SL, Sivanandam A, Aldrich CC, Baughn AD. 2018. Mutual
- 412 potentiation drives synergy between trimethoprim and sulfamethoxazole. Nature Communications.
- 413 Mar;9:1003.
- 414 Minato Y, Thiede JM, Kordus SL, McKlveen EJ, Turman BJ, Baughn AD. 2015. *Mycobacterium*
- 415 tuberculosis Folate Metabolism and the Mechanistic Basis for para-Aminosalicylic Acid
- 416 Susceptibility and Resistance. Antimicrob Agents Chemother. Sep;59:5097-5106.
- Nixon MR, Saionz KW, Koo MS, Szymonifka MJ, Jung H, Roberts JP, Nandakumar M, Kumar A,
- 418 Liao R, Rustad T, et al. 2014. Folate pathway disruption leads to critical disruption of methionine
- derivatives in *Mycobacterium tuberculosis*. Chem Biol. Jun;21:819-830.
- 420 Podnecky NL, Rhodes KA, Mima T, Drew HR, Chirakul S, Wuthiekanun V, Schupp JM, Sarovich
- DS, Currie BJ, Kiem P, Schweizer HP. Mechanisms of Resistance to Folate Pathway Inhibitors in
- 422 Burkholderia pseudomallei: Deviation from the Norm. mBio. Sep;8:e01357-17.

- Rivera S, López-Soriano FJ, Azcón-Bieto J, Argilés JM. 1987. Blood amino acid compartmentation
- in mice bearing Lewis lung carcinoma. Cancer Res. Nov;47:5644-5646.
- Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ. 1999. In vivo transposition
- of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A.
- 427 Feb;96:1645-1650.
- 428 Salaemae W, Azhar A, Booker GW, Polyak SW. 2011. Biotin biosynthesis in *Mycobacterium*
- 429 *tuberculosis*: physiology, biochemistry and molecular intervention. Protein Cell. Sep;2:691-695.
- 430 Schuessler DL, Parish T. 2012. The promoter of Rv0560c is induced by salicylate and structurally-
- related compounds in *Mycobacterium tuberculosis*. PLoS One.7:e34471. Epub 2012/04/02.
- Shi C, Tiwari D, Wilson DJ, Seiler CL, Schnappinger D, Aldrich CC. 2013. Bisubstrate Inhibitors of
- Biotin Protein Ligase in. ACS Med Chem Lett. Dec;4.
- Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR. 1990. Isolation and characterization of
- efficient plasmid transformation mutants of *Mycobacterium smegmatis*. Mol Microbiol. Nov;4:1911-
- 436 1919.
- 437 Steenken W. 1935. Lysis of Tubercle Bacilli in Vitro. In: Experimental Biology and Medicine p.
- 438 253-255.
- Takayama K, Wang C, Besra GS. 2005. Pathway to synthesis and processing of mycolic acids in
- 440 *Mycobacterium tuberculosis*. Clin Microbiol Rev. Jan;18:81-101.
- Taylor RG, Walker DC, McInnes RR. 1993. E. coli host strains significantly affect the quality of
- small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res. Apr;21:1677-1678.
- Thiede JM, Kordus SL, Turman BJ, Buonomo JA, Aldrich CC, Minato Y, Baughn AD. 2016.
- Targeting intracellular *p*-aminobenzoic acid production potentiates the anti-tubercular action of
- antifolates. Sci Rep. Dec;6:38083. Epub 2016/12/01.
- Tiwari D, Park SW, Essawy MM, Dawadi S, Mason A, Nandakumar M, Zimmerman M, Mina M,
- Ho HP, Engelhart CA, et al. 2018. Targeting protein biotinylation enhances tuberculosis
- chemotherapy. Sci Transl Med. Apr;10.
- Wheeler PR, Coldham NG, Keating L, Gordon SV, Wooff EE, Parish T, Hewinson RG. 2005.
- 450 Functional demonstration of reverse transsulfuration in the *Mycobacterium tuberculosis* complex
- reveals that methionine is the preferred sulfur source for pathogenic Mycobacteria. J Biol Chem.
- 452 Mar;280:8069-8078. Epub 2004/12/02.
- Woong Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H, Manjunatha U, Blumenthal A, Rhee K,
- Barry CE, Aldrich CC, et al. 2011. Evaluating the sensitivity of *Mycobacterium tuberculosis* to biotin
- deprivation using regulated gene expression. PLoS Pathog. Sep;7:e1002264.
- 456 Youmans GP, Raleigh GW, Youmans AS. 1947. The Tuberculostatic Action of *para*-Aminosalicylic
- 457 Acid. J Bacteriol. Oct;54:409-416.
- Zhao F, Wang XD, Erber LN, Luo M, Guo AZ, Yang SS, Gu J, Turman BJ, Gao YR, Li DF, et al.
- 459 2014. Binding pocket alterations in dihydrofolate synthase confer resistance to *para*-aminosalicylic
- acid in clinical isolates of *Mycobacterium tuberculosis*. Antimicrob Agents Chemother.58:1479-
- 461 1487.
- Zhao Y, Shadrick WR, Wallace MJ, Wu Y, Griffith EC, Qi J, Yun MK, White SW, Lee RE. 2016.
- 463 Pterin-sulfa conjugates as dihydropteroate synthase inhibitors and antibacterial agents. Bioorg Med
- 464 Chem Lett. 08;26:3950-3954. Epub 2016/07/04.

Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, Jang J, Nam J, Dick T, Walker JR, et al. 2013. *para*-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in *Mycobacterium tuberculosis*. J Biol Chem. Aug;288:23447-23456.
Zumla A, Nahid P, Cole ST. 2013. Advances in the development of new tuberculosis drugs and
treatment regimens. Nat Rev Drug Discov. May;12:388-404.

Strain	Relevant features	Source
M. bovis BCG Pasteur	Pasteur strain of spontaneously attenuated variant of <i>M. bovis</i>	(Brosch et al. 2007)
M. bovis Pasteur BCG_3282c::himar1	Transposon insertion mutant with disruption in BCG_3282c	This work
M. bovis BCG Pasteur bioB::himar1	Transposon insertion mutant with disruption in bioB	This work
M. tuberculosis H37Ra	Spontaneously attenuated variant of <i>M. tuberculosis</i> strain H37	(Steenken 1935)
M. tuberculosis H37Ra ΔpabB	H37Ra strain with the <i>pabB</i> coding sequence replaced by a hygromycin resistance cassette	(Thiede, Kordus, Turman, Buonomo, Aldrich, Minato and Baughn 2016)
M. smegmatis mc ² 155	Used for propagation of himar1 mycobacteriophage	(Snapper et al. 1990)
E. coli DH5αλpir	Utilized to replicate self-ligated <i>himar1</i> plasmids for determination of transposon insertion site	(Taylor et al. 1993)

Table 1. List of bacterial strains used in this study

Table 2. Sequence-validated gene insertions that affect PAS susceptibility in the presence or absence of antagonistic concentrations of methionine

Disrupted gene (M. tuberculosis H37Rv homolog)	Predicted function	Increased PAS susceptibility ^a	Growth on PAS-Met ^b	
M. bovis BCG	Wild-type	no		
BCG_3282c (Rv3253c)	Amino acid permease	no	-	
ftsH (ftsH)	Membrane-bound protease (insertion located near upstream folate biosynthesis operon)	yes	+	
bioB (bioB)	Biotin synthase involved in biotin biosynthesis	yes	+	
metB (metB)	Cystathionine gamma-synthase involved in methionine biosynthesis	yes	+	
BCG_1906c (Rv1870c)	Unknown	yes	+	
cysQ(cysQ)	Sulfate assimilation pathway regulator	no	+	
accD2 (accD2)	Acetyl-CoA carboxylase involved in mycolic acid biosynthesis	no	+	
BCG_1988c-1989c (Rv1949c-Rv1950c)	Unknown (conserved hypotheticals)	no	+	
PPE11(PPE11)	Unknown (PPE family protein)	no	+	
arsC (arsC)	Protein involved in arsenate resistance	no	+	
mmpL7 (mmpL7)	Phthiocerol dimycocerosate transporter	no	+	
BCG_2043c (Rv2024c)	Unknown	no	+	
BCG_3116 (Rv3091)	Unknown	no	+	
BCG_0914c (Rv0862c)	Unknown	no	+	
papA2 (papA2)	Protein involved in sulfolipid-1 biosynthesis	no	+	
BCG_2017 (Rv2000)	Unknown	no	+	
BCG_1401 (Rv1339)	Unknown	no	+	
BCG_1635 (Rv1597)	Unknown	no	+	
BCG_1082 (Rv1026)	Protein involved in polyphosphate regulation	no	+	
BCG_2497c (Rv2477c)	Macrolide exporter	no	++	
BCG_3185c (Rv3161c)	Dioxygenase	no	++	
BCG_0233 (Rv0196)	Transcriptional regulator	no	++	
BCG_3873 (Rv3811)	Cell surface protein involved in virulence	no	++	
BCG_1897 (Rv1861)	Conserved transmembrane protein	no	++	
BCG_2026 (vapB15)	Antitoxin component of an toxin-antitoxin operon with BCG_2027 (<i>vapC15</i>)	no	++	
kgtP (kgtP)	Ketoglutarate transport protein	no	++	
mbtJ (mbtJ)	Protein involved in mycobactin biosynthesis	no	++	
BCG_1492 (Rv1431)	Conserved membrane protein	no	++	
thiG (thiG)	Protein involved in thiamine biosynthesis	no	++	
BCG_3826c (3767c)	SAM-dependent methyltransferase which may be involved in Polyketide synthesis	no	++	
BCG_0424 (Rv0386)	Transcriptional regulator	no	++	
upp-sapM (upp-sapM)	Proteins involved in pyrimidine the salvage pathway and arresting phagosomal maturation, respectively (insertion is located within the intergenic region of these two genes)	no	++	
fadD2 (fadD2)	Fatty-acid CoA Ligase	no	++	
PPE33a (PPE33a)	Unknown (PPE family protein)	no	++	
esxJ(esxJ)	Unknown	no	++	

^aPAS susceptibility was assessed by determining the minimum concentration (MIC) of drug required to inhibit growth on 7H10 agar plates. The *M. bovis* BCG PAS MIC was found to be 0.25 μg/ml. ^bGrowth of *M. bovis* BCG transposants on

methionine (10 µg/ml) only plates compared visually to plates containing methionine (10 µg/ml) and PAS (5 µg/ml) to screen for transposon insertion mutants susceptible to PAS-methionine treatment. (++++) represents no growth difference between PAS-methionine and methionine only plates (WT BCG). (++) represents approximately 50% impairment in growth. (+) represents 25% or less growth. (-) represents no growth observed.

Table 3. Antagonism of PAS and pterin-PAS by methionine

	PAS MIC ₉₀ ^a		Pterin-PAS MIC ₉₀	
Strain	- Met	+ Met ^b	- Met	+ Met
M. bovis BCG	1 (6.53)	>250 (1630)	5 (15.1)	>20 (61.5)
M. tuberculosis H37Ra	0.6 (3.92)	>250 (1630)	ND	ND
M. tuberculosis H37Ra ΔpabB	0.15 (0.98)	0.3 (1.96)	ND	ND

^aMIC₉₀ is defined as the minimum concentration of drug required to restrict at least 90% of growth relative to growth seen in the no-drug control cultures. MIC90 are shown in μg/ml (μM).

Figure legends

494

495

496

497

498

499 500

501

502

503

504

505

506

507

508

509

510

511

512 Figure 1. Previously proposed models for PAS activation and methionine-mediated PAS

- inactivation. As indicated on the left, PAS is a prodrug that must be activated by the *M. tuberculosis*
- folate biosynthetic pathway. PAS is incorporated in lieu of PABA by FolP1 and glutamoylated by
- FolC to form the antimetabolite HDHF which inhibits DfrA activity (indicated as red blunted arrows)
- 516 (Dawadi, Kordus, Baughn and Aldrich 2017, Minato, Thiede, Kordus, McKlveen, Turman and
- Baughn 2015, Zhao, Wang, Erber, Luo, Guo, Yang, Gu, Turman, Gao, Li, Cui, Zhang, Bi, Baughn,
- Zhang and Deng 2014, Zheng, Rubin, Bifani, Mathys, Lim, Au, Jang, Nam, Dick, Walker, Pethe and
- 519 Camacho 2013). Previous work has identified N-methyl and N,N-dimethyl PAS species (methyl
- groups indicated with dotted red boxes) in metabolite extracts from *M. tuberculosis* treated with PAS
- 521 (Chakraborty, Gruber, Barry, Boshoff and Rhee 2013). As N,N-dimethylation of PAS prevents
- incorporation by FolP1, the resulting metabolite is inactive (shown on the right). This activity is
- 523 presumed to be dependent upon an as of yet unidentified SAM-dependent methyltransferase(s).
- 524 Supplementation with methionine may increase SAM pools, which could be utilized by the
- methyltransferase(s) to inactivate PAS, thus conferring resistance. Abbreviations: PAS, para-

ND, not determined; Met, methionine; PAS, para-aminosalicylic acid.

^bMethionine was supplemented at 10 μg/ml.

- aminosalicylic acid; PABA, para-aminobenzoic acid; HDHP, 2'-hydroxy-7,8-dihydropteroate;
- 527 HDHF, 2'-hydroxy-7,8-dihydrofolate; FolP1, dihydropteroate synthase; FolC, dihydrofolate
- 528 synthase; DfrA, dihydrofolate reductase; MT, methyltransferase; SAM, S-adenosyl methionine;
- 529 SAH, S-adenosyl homocysteine.
- Figure 2. Schematic representation of genome-wide transposon mutagenesis of *M. bovis* BCG
- and Met-PAS screening method. M. bovis BCG::himar1 mutants (approximately 10,000 mutants)
- were patched onto Met and Met-PAS plates. Colonies with observable growth defects on Met-PAS
- 533 plates were subjected to secondary screening. These 35 mutants that passed the secondary screening
- were collected and insertion site locations were determined.
- Figure 3. BCG_3282c is essential for methionine-mediated PAS antagonism and utilization of
- sulfur derived from methionine in M. bovis BCG. (A) Growth kinetics of M. bovis BCG
- 537 BCG_3282c::himar1 and M. bovis BCG wild type during PAS exposure when antagonistic
- metabolites are added. Growth was assessed by OD_{600} readings every 2-3 days. (**B**) M. bovis BCG
- strains were grown to an OD_{600} of approximately 0.5, washed three times to remove residual sulfate
- with sulfate-free Sautons medium, and resuspended in sulfate-free Sautons medium to a starting
- 541 OD₆₀₀ of 0.01 and cells were starved for sulfur for 5 days. Following the exhaust period, sulfur-
- sources were added, and cells were incubated for 7 days to resume growth. The fold-change in
- growth was assessed as a ratio of the final OD_{600} over the starting OD_{600} following the exhaust period
- (final OD₆₀₀/starting OD₆₀₀). p-values of pairwise comparisons (denoted by lines) were calculated
- using the Student t test. *, p < 0.05, **, p.<.0.005, ns indicates no significant difference (p \square > \square 0.05).
- 546 (A,B) Error bars denote standard deviation and are representative of 3 separate experiments.
- Figure 4. Methionine can affect but not bypass essentiality of upstream folate biosynthetic
- pathways in *M. tuberculosis*. (A) New working model of methionine-mediated PAS antagonism.
- **(B)** M. tuberculosis $\triangle pabB$ was grown to an OD₆₀₀ of approximately 0.5, washed three times to
- remove residual PABA with PABA-free 7H9 medium, and resuspended in PABA-free 7H9 medium
- to a starting OD_{600} of 0.01 (3 x 10^6 cells/mL). Cultures were then supplemented with the indicated
- metabolites and incubated for 14 days with OD_{600} readings taken at the given time points.
- Figure 5. Disruption of bioB is growth inhibitory and potentiates drug action. (A,B) M. bovis
- BCG bioB::himar1 was grown to an OD₆₀₀ of approximately 0.5, washed three times to remove
- residual biotin with biotin-free 7H9 medium, and resuspended in biotin-free 7H9 medium to a
- starting OD_{600} of 0.01. Cultures were then supplemented with biotin and incubated for 14 days with
- OD_{600} readings taken at the given time points. Error bars denote standard deviation and are
- representative of 2 separate experiments. (**B**) *M. bovis* BCG and *bioB::himar1* were grown to an
- OD_{600} of approximately 0.5, washed three times to remove residual biotin, and resuspended in biotin-
- free 7H9 medium to a starting OD_{600} of 0.01. Cultures were then supplemented with biotin (0.05 and
- 561 5) and incubated for 14 days with OD_{600} readings taken at the given time points. MIC_{90} is defined as
- the minimum concentration of inhibitor required to restrict at least 90% of growth relative to growth
- seen in the no-drug control cultures. Abbreviations: PAS, para-aminosalicylic acid; SMX,
- sulfamethoxazole; RIF, rifampin; INH, isoniazid. Results shown are representative of 3 separate
- 565 experiments.

566

567

PAS inactivation

ОН

HO

(inactive)

PAS

M. bovis BCG::himar1 mutant library

~10000 mutants

1. Collect all mutants with growth defects on Met-PAS plates

142 mutants

2. Collect mutants with severe growth defects on Met-PAS plates

35 mutants

