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Robust Design for Coalescent Model Inference

Kris V Parag and Oliver G Pybus

Abstract—The coalescent process describes how changes in the size of
a population influence the genealogical patterns of sequences sampled
from that population. The estimation of population size changes from
genealogies that are reconstructed from these sequence samples, is an
important problem in many biological fields. Often, population size is
characterised by a piecewise-constant function, with each piece serving as
a population size parameter to be estimated. Estimation quality depends
on both the statistical coalescent inference method employed, and on
the experimental protocol, which controls variables such as the sampling
of sequences through time and space, or the transformation of model
parameters. While there is an extensive literature devoted to coalescent
inference methodology, there is surprisingly little work on experimental
design. The research that does exist is largely simulation based, preclud-
ing the development of provable or general design theorems. We examine
three key design problems: temporal sampling of sequences under the
skyline demographic coalescent model, spatio-temporal sampling for the
structured coalescent model, and time discretisation for sequentially
Markovian coalescent models. In all cases we prove that (i) working
in the logarithm of the parameters to be inferred (e.g. population size),
and (ii) distributing informative coalescent events uniformly among these
log-parameters, is uniquely robust. ‘Robust’ means that the total and
maximum uncertainty of our estimates are minimised, and are also
insensitive to their unknown (true) parameter values. Given its persistence
among models, this formally derived two-point theorem may form the
basis of an experimental design paradigm for coalescent inference.

The coalescent process [1] is a popular population genetic model
that describes how past changes in the size or structure of a population
shape the reconstructed (observed) genealogy of genetic sequences
sampled from that population. This genealogy is also known as
a coalescent tree or phylogeny. The estimation of a function that
describes past population size from the sequences, or from a recon-
structed phylogeny, is a problem encountered in many fields including
epidemiology, conservation and anthropology. Accordingly, there is
an extensive and growing literature [2] [3] [4] [5] [6] [7] [8] [9]
[10] [11] [12] [13] focussed on developing new statistical methods
for solving coalescent inference problems.

However, the power and accuracy of the resulting coalescent
estimates is not solely a function of the statistical method employed.
Variables under the control of the experimenter, such as choices of
where and when sequences are sampled, or on how time is discretised,
may have a strong influence on the performance and reliability of
coalescent inference methods [14] [9] [11]. Good designs can
result in sharper inferences and sounder conclusions [14], whereas
bad designs, such as size-biased sampling strategies, can lead to
overconfident or spurious estimates [15]. The best approach to
coalescent inference should therefore jointly optimise experimental
design and statistical methodology.

Surprisingly few studies have investigated optimal coalescent infer-
ence design. These works [14] [16] [12] [17] [15], typically take
a simulation based approach, in which several alternate designs are
numerically examined and compared. While such studies can yield
useful hypotheses about the components of good designs, they can
neither provide analytic insights nor criteria for provably optimal
experimental design. A more general and methodical analysis is
therefore warranted.

Additionally, there has been little consideration of what data
or parameter transformations might aid experimental design. This
contrasts with the development of inference theory in other fields.
For example, in regression problems, research has emphasised the
benefits of power transformations and regularisation procedures [18].
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While some coalescent inference methods have used parameter
transformations (e.g. the log transform), these are usually justified for
heuristic or practical reasons, such as algorithmic stability or ease of
visualisation [12] [19]. As a result, parameter transformations used
in the coalescent literature are applied inconsistently and rigorous
proof of their benefits is lacking.

Here we take a fully analytical approach and formally derive
optimal design criteria for coalescent inference. As we are interested
in widely applicable theoretical insights, we do not construct method-
specific rules, but instead define benchmarks which, if achieved,
guarantee certain well-defined and desired properties. We investigate
three popular coalescent models, which we class as ‘piecewise’ due
to the characteristic functions they infer. For each model we describe
a coalescent tree as being composed of sample lineages, with time
flowing from the present into the past. A coalescent event occurs
when two lineages merge into a single ancestral lineage.

(1) Skyline demographic models. These infer past population size
changes using piecewise-constant, time-varying functions [20], and
usually feature genealogies with many samples from a few (usually
one) loci [13]. The large sample size of these trees means that the
choice of sequence sampling times is a critical design variable that
can significantly influence the precision of population size inference.
Skyline models are popular in epidemiology where the population
describes the number of infected individuals in an epidemic. Optimal
sampling designs could improve epidemic surveillance and control
strategies [4] [14].

(2) Structured coalescent models. Here the population is divided
into distinct but connected sub-populations (demes), which typically
represent different spatial locations. Usually each deme has a constant
(stable) population size. Lineages may migrate between demes but
can only coalesce within demes. The population sizes and migration
rates are our parameters of interest [21] [22]. The locations and
times of sampled sequences, which are our design variables here, are
known to bias inference under these models [9]. This model has
been applied to describe the migration history of animal, plant and
pathogen populations [9].

(3) Sequentially Markovian coalescent (SMC) models. These are
typically applied to complete metazoan genomes, and consider many
independent coalescent trees (multiple unlinked loci), each containing
few (or two) samples. SMC processes involve recombination, and
event times are discretised to occur in finite intervals. Past population
size change is often assumed to be piecewise-constant and most SMC
applications focus on human demographic history [10] [12]. The
design variable here is the time discretisation, which controls the
resolution with which population size changes are estimated. Poor
discretisations can lead to overestimation or runaway behaviour [11].

We examine the above models using optimal design theory, which
aims to optimise experimental protocols using statistical criteria
that confer useful properties, such as minimum bias or maximum
precision [23]. As the coalescent event times contain information
about population size change, the distribution and total number of co-
alescent events controls the amount of information available. Within
this context, we treat our sampling/discretisation choice problem as
an experimental design on this coalescent event distribution.

We show that it is optimal to (i) estimate the logarithm of our
parameters of interest, which usually refer to effective population
size, and (ii) sample (through time and location) or discretise time
such that coalescent events are divided evenly among each log scaled
parameter. If (i)-(ii) are achieved, then the resulting design is provably
robust, and optimal for use with existing maximum likelihood and
Bayesian coalescent inference methods. ‘Robust’ means that both the
maximum dimension and the total volume of the confidence ellipsoid
that circumscribes (asymptotic) estimate uncertainty are jointly min-
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imised. These two objectives hold for all piecewise coalescent models
(such as those above) and therefore comprise simple, unifying rules
for coalescent inference design.

In the Preliminaries we provide mathematical background on
optimal design. We use these concepts to derive a robust design
theorem for coalescent inference, in Results. This is then applied
to each of the three coalescent models described above, yielding new
and specific insights. We close with a Discussion of how our formally
derived design principles relate to existing heuristics in the literature.

PRELIMINARIES

Consider an arbitrary parameter vector ψ = [ψ1, . . . , ψp], which
is to be estimated from a statistical model. Let T represent data
(a random variable sequence) generated under this statistical model
(the genealogy in the case of coalescent inference) and let L(ψ) :=
log P(T |ψ) be the log-likelihood of T given ψ. The p × p Fisher
information matrix, denoted I(ψ), measures how informative T is
about ψ [24]. Since all the coalescent models used here belong
to an exponential family [25] (and so satisfy necessary regularity
conditions [26]) then the (i, j)th element of I(ψ) is I(ψ)(i, j) :=

−ET
[

∂2L
∂ψi∂ψj

]
, with the expectation taken across the data (tree

branches). The Fisher information is sensitive to parametrisation
choices. Eq. (1) gives the transformation between ψ and an arbitrary
alternate parametrisation σ = [h(ψ1), . . . , h(ψp)] = [σ1, . . . , σp].
Here h is a differentiable function, with inverse f = inv[h] [25].

I(σ)(i, j) =

(
∂ψi
∂σj

)2

I(f(σ))(i, j) (1)

The Fisher information lower bounds the best unbiased estimate
precision attainable, and quantifies the confidence bounds on maxi-
mum likelihood estimates (MLEs). For exponential families, these
bounds are attained so that if ψ̂ is the MLE then var(ψ̂j) =
inv
[
I(ψ)(j, j)

]
is the minimum achievable variance around the MLE

of the j th parameter by any inference method [27]. Importantly, for
any given parametrisation, the Fisher information serves as a metric
with which we can compare and rank various estimation schemes
(e.g. different sampling or discretisation protocols).

Since all of our statistical models are finite dimensional, the
Bernstein-von Mises theorem [28] [29] is valid. This states that,
asymptotically, any Bayesian estimate will have a posterior distri-
bution that matches that of the MLE, with equivalent confidence
intervals, for any ‘sensibly defined’ prior. Such a prior has some
positive probability mass in an interval around the true parameter
value. As a result, Bayesian credible intervals also depend on the
Fisher information and our designs are applicable to both maximum
likelihood and Bayesian approaches to coalescent inference.

We now construct our piecewise coalescent experimental design
problem. If the observed data T consists of n− 1 coalescent events
(i.e. a tree with n tips) then the set {mj} for 1 ≤ j ≤ p with∑p
j=1 mj = n − 1 describes a coalescent event distribution. Here

mj counts the coalescent events that are informative of parameter
ψj . Optimal designs are {mj} sets that satisfy desirable statistical
criteria. This is illustrated for a two parameter skyline demographic
model in Fig. 1 (with parameters ψj = Nj), for which sampling
choices would be used to achieve the optimal {mj} sets. Statistical
design criteria are typically functions of I(ψ), which defines our
asymptotic uncertainty about ψ̂. Geometrically, this uncertainty can
be represented as a confidence ellipsoid centred on ψ̂ [30].

Designing the Fisher information matrix is equivalent to controlling
the shape and size of this ellipsoid. We focus on two popular criteria,
known as D and E-optimality [30] [23], the definitions of which
are given in Eq. (2) and Eq. (3), with {m∗j} as the resulting optimal

design. As we have p design variables (the mj), our confidence
ellipsoid is p-dimensional. D-optimal designs minimise the volume of
this confidence ellipsoid while E-optimal ones minimise its maximum
diameter. Fig. 2 shows these ellipses for the skyline design problem
of Fig. 1.

{m∗j |D} = arg max
{mj}

det [I(ψ)] (2)

{m∗j |E} = arg max
{mj}

min eig [I(ψ)] (3)

Here arg, det and eig are short for argument, determinant, and
eigenvalues respectively. D-optimal designs therefore maximise the
total available information gained from the set of parameters while
E-optimal ones ensure that the worst parameter estimate is as good
as possible [30] [23].

T : n = 6, p = 2

φ = [2, 1, 3]

φ1

φ2

φ3

t

N(t)

ε10 ε2

N1

N2

m1 = 2

m2 = 3

Fig. 1: Two-parameter piecewise coalescent design problem. We
show a p = 2 design problem for a skyline demographic coalescent
model with population size parameters N1 and N2. An n = 6 tip
coalescent phylogeny, T , is shown with the φk counting the samples
introduced at the kth sample time. The j th population size parameter,
Nj , is only informed by the number of coalescent events, mj ,
occurring within its duration [εj−1, εj ] (with ε0 = 0). We manipulate
φ to achieve m1 and m2 counts that guarantee desirable properties
for estimates of N1 and N2.

The above optimisation problems can be solved using majorization
theory, which provides a way of naturally ordering vectors [31]. For
some p-dimensional vectors ~a and ~b, sorted in descending order to
form ~a ↓ and ~b ↓, ~a is said to majorize or dominate ~b if for all k ∈
{1, 2, . . . p},

∑k
j=1 ~a

↓ ≥
∑k
j=1

~b ↓ and
∑p
j=1 ~a =

∑p
j=1

~b = κ.
Here κ is a constant and this definition is written as ~a � ~b for short.
The total sum equality on the elements of the vectors is called an
isoperimetric constraint. Conceptually, ~a � ~b means that the elements
of ~a have the same mean as those of ~b, but a higher variance.

We will make use of Schur concave functions. A function g that
takes a p-dimensional input and produces a scalar output is called
Schur concave if ~a � ~b =⇒ g(~a) ≤ g(~b). Importantly, it is known
that the p-element uniform vector ~u = [κ

p
, κ
p
, . . . κ

p
] is majorized by

any arbitrary vector of sum κ and dimension p [31]. This means
that every ~a � ~u. As a result, ~u = arg max~a g(~a) for any Schur
concave function g. Thus if we can find a Schur concave function,
and an isoperimetric constraint holds, then a uniform vector will
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maximise that function. This type of argument will underpin many
of the following results.

RESULTS

Naive Coalescent Design

We define a naive coalescent inference design as one that works
directly in the original parametrisation of the model, which is usually
effective population size or its inverse. Let N = [N1, . . . , Np] be
the parameter vector to be estimated from a reconstructed genealogy,
T . Defining γ = [N−1

1 , . . . , N−1
p ], we will find that all three of the

coalescent models we consider here have log-likelihoods, L(γ) =
log P(T | γ), of the form of Eq. (4). We refer to these models as
piecewise.

L(γ) =

p∑
j=1

mj log γj −Ajγj +Bj (4)

Here Aj and Bj are constants, for a given T , and γj = N−1
j . Taking

partial derivatives we get ∂L
∂γj

= mjγ
−1
j − Aj and observe that

the MLE of γj , γ̂j = mjA
−1
j . The second derivatives follow as:

∂2L
∂γ2j

= −mjγ
−2
j , ∂2L

∂γj∂γi6=j
= 0. This leads to a diagonal Fisher

information matrix I(γ) = [m1γ
−2
1 , . . . , mpγ

−2
p ] Ip, with Ip as a

p×p identity matrix. Using Eq. (1) we obtain the Fisher information
in our original parametrisation as Eq. (5).

I(N) = [m1N
−2
1 , . . . , mpN

−2
p ] Ip (5)

Several points become obvious. First, the achievable precision around
N̂j = γ̂−1

j depends on the square of its unknown true value.
This is a highly undesirable property, since it means estimation
confidence will rapidly deteriorate as Nj grows. Second, if our
inference method directly worked in γ, instead of N (which is not
uncommon for harmonic mean estimators [2]), then the region in
which we achieve good γ precision is exactly that in which we obtain
poor N confidence.

Third, the design variable mj only informs on one parameter of
interest, Nj or γj . Good designs must therefore achieve mj ≥ 1 for
all j. Failure to attain this will result in a singular Fisher information
matrix and hence parameter non-identifiability [32], which can lead
to issues like poor algorithmic convergence. This is particularly
relevant for coalescent inference methods that feature pre-defined
parameter grids of a size comparable to the tree size n [33].

Using either the N or γ parametrisation creates issues even
when optimal design is employed. Consider the N parametrisa-
tion which has det [I(N)] =

∏p
j=1 mjN

−2
j . We let the constant

c =
∏p
j=1 N

−2
j . D-optimality is the solution to max{mj} c

∏p
j=1 mj

subject to
∑p
j=1 mj = n − 1. Our objective function is therefore

g({mj}) =
∏p
j=1 mj which is known to be Schur concave when all

mj > 0. The optimal design is uniform and is the first equality in
Eq. (6) below.

m∗j |D =
1

p
(n− 1), m∗j |E =

N2
j∑p

i=1 N
2
i

(n− 1) (6)

The E-optimal design solves: max{mj}minjmjN
−2
j . The objective

function is now g({mj}) = min(m1N
−2
1 , . . . , mpN

−2
p ) and is

also Schur concave. The E-optimal solution satisfies m∗1N
−2
1 =

m∗2N
−2
2 = . . . = m∗pN

−2
p [31], and is the second equality in

Eq. (6). This optimal design assigns more coalescent events to larger
populations with a square penalty. The equivalent D and E-designs
for inverse population size follow by simply replacing Nj with γj in
Eq. (6) above.

Thus, in theory, D-optimal designs that consider N or γ could re-
sult in some parameters being very poorly estimated while E-optimal
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−
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Fig. 2: D and E-optimal designs for a two-parameter piecewise
coalescent model. We provide asymptotic 99% confidence ellipses
for a p = 2 skyline demographic design problem (see Fig. 1) with
n − 1 = 100 = m1 + m2, N1 = 100 and N2 = 2N1. The ellipses
depict the confidence region of the bivariate normal distribution that
has covariance matrix equal to the inverse of the Fisher information.
Each light grey ellipse indicates a different {m1, m2} distribution.
D and E-optimal designs are in red and black respectively. The
top panel shows the design space in absolute population size, Nj
with m∗1 |D = 50 and m∗1 |E = 20. The bottom panel is in log
population size, logNj , and leads to a symmetrical, robust design
that has coincident D and E-optimal ellipses with m∗1 |D = 50.

ones could allocate all of the coalescent events to a single parameter,
increasing the possibility of non-identifiability. Additionally, for a
given criterion, optimal Nj and γj designs can be contradictory. A
robust design that is insensitive to both the parameter values and the
choice of optimality criteria is therefore needed.

This point is illustrated in the top panel of Fig. 2, which
presents D and E-optimal confidence ellipsoids under N , for the
model shown in Fig. 1. These ellipsoids, for some parameter vector
σ, with diagonal Fisher information matrix I(σ), are given by∑p
j=1 (xj − σj)2 I(σ)(j, j) = Ω. Here Ω controls the significance

level according to a χ2 distribution (with p degrees of freedom) and
xj is some coordinate on the j th parameter axis [34]. Under N the
D and E-optimal designs are notably different, and sensitive to the
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true values of N1 and N2.

Robust Coalescent Design

We define a robust experimental design as being (i) insensitive to
the true (unknown) parameter values and (ii) minimising both the
maximum and total uncertainty over the estimated parameters. The
latter condition means that a robust design is also insensitive to choice
of optimality criteria. We formulate our main results as the following
two-point theorem. In subsequent sections we will apply this robust
design to three popular coalescent models.

Theorem 1. If the p-parameter vector σ admits a diagonal Fisher
information matrix, I(σ) = [m1σ

−2
1 , . . . , mpσ

−2
p ]Ip, under an

isoperimetric constraint
∑p
j=1 mj = κ, then any design that (i)

works in the parametrisation [log σ1, . . . , log σp] and (ii) achieves
the distribution m∗1 = · · · = m∗p = 1

p
κ over this log σ space, is

provably and uniquely robust.

Theorem 1 guarantees that inference is consistent and reliable
across parameter space. We derive point (i), by maximising how
distinguishable our parameters are within their space of possible
values. ‘Distinguishability’ is a property that determines parameter
identifiability and model complexity [35]. Let ψ be some parametri-
sation, in space Ψ, of a piecewise coalescent model. Then h(ψ) = σ
defines a parameter transformation. Two vectors in Ψ, ψ(1) and
ψ(2), are distinguishable if, given T , we can discriminate between
them with some statistical confidence. Distinguishability is therefore
intrinsically linked to the quality of inference. More detail on these
information geometric concepts is given in [36] [35].

The number of distinguishable distributions in Ψ is described by

the volume V :=
∫

Ψ
det
[

1
n−1
I(ψ)

] 1
2 dψ [35]. The n − 1 comes

from the number of informative events in T . While V is invariant to
the parametrisation choice h [35], different h functions control how
the parameter space is discretised into distinguishable segments. For
example, under ψ = σ poor distinguishability results when any σj
becomes large. We therefore pose the problem of finding an optimal
bijective parameter transformation h(ψj) = σj , which maximises
how distinguishable our distributions across parameter space are, or
equivalently minimises the sensitivity or our estimates to the unknown
true values of our parameters.

Applying Eq. (1), with h′ := ∂h
∂ψj

, we get that I(ψ)(j, j) =

mjh
−2 (h′)

2. The orthogonality of the diagonal Fisher information
matrix means that ψj only depends on σj . Using the properties of
determinants, we can decompose the volume as V =

∏p
j=1

mj
n−1
Vj .

Since V is constant for any parametrisation, our parameters are
orthogonal and our transformation bijective, then Vj is also constant.
If σj ∈ [σj(1), σj(2)], then h(ψj(1)) = σj(1) and h(ψj(2)) = σj(2).
Using these endpoints and the invariance of V we obtain Eq. (7).

Vj =

∫ ψj(2)

ψj(1)

h−1h′ dψj =

∫ σj(2)

σj(1)

σj
−1 dσj (7)

This equality defines the conserved property across parametrisations
of coalescent models with likelihoods given in Eq. (4). We can
maximise both the insensitivity of our parametrisation, h, to the
unknown true parameters and our ability to distinguish between
distributions across parameter space by forcing h−1h′ to be con-
stant irrespective of ψj . This is equivalent to solving a minimax
problem. We choose a unit constant and evaluate Eq. (7) to obtain:
ψj(2)−ψj(1) = log σj(2)−log σj(1). Due to the bijective nature of h,
this implies that our (unique) optimal parametrisation is ψj = log σj
and hence proves (i).

Point (ii) follows by solving optimal design problems under the
log σ parametrisation. For consistency with Eq. (6), we set σ = N .

This gives ∂Nj
∂ψj

= eψj and results in the Fisher information matrix,
I(logN), in Eq. (8).

I(logN) = [m1, . . . , mp] Ip =⇒ m∗j |D =
1

p
(n− 1) (8)

Let D be an optimal design criterion, with event distribution
{m∗j |D}. When D ≡ D, we maximise det [I(logN)] to obtain
the uniform coalescent distribution in Eq. (8). The D-optimal design
for N , N−1 and logN are therefore the same. However, we see
interesting behaviour under other design criteria. When D ≡ E, we
maximise min eig [I(logN)] to again obtain Eq. (8). This is very
different to analogous designs under N and N−1. While we do not
assess further optimal design criteria here, several others also yield
the design of Eq. (8).

Thus, under a log-parametrisation we see an important convergence
of optimal experimental designs. This results in parameter confidence
ellipsoids that are invariant to optimality criteria. This is shown in
the bottom panel of Fig. 2 for a skyline model. This desirable design
insensitivity emerges from the independence of I(logN) from N ,
for piecewise coalescent models, and proves (ii). We will now apply
Theorem 1 to three different and commonly used coalescent models.

Skyline Demographic Models

Consider a coalescent process with deterministically time-varying
population size, N(t), for t ≥ 0 that features sequences sampled
at different times. As with the popular ‘skyline’ family of inference
methods [2] [3] [4] [19], we assume that N(t) can be described
by a piecewise-constant function with p ≥ 1 values so that N(t) :=∑p
j=1 Nj1(εj−1 ≤ t < εj) with ε0 = 0 and εp = ∞. Nj is the

constant population size of the j th segment which is delimited by
times [εj−1, εj). The indicator function 1(a) = 1 when a is true and
0 otherwise.

We start by assuming that this process has generated an observable
coalescent tree, T , with n ≥ ns+ 1 tips, with ns ≥ 1 as the number
of distinct sampling times. Each tree tip is a sample and the tuple
(sk, φk) defines a sampling protocol in which φk tips are introduced
at time sk with 1 ≤ k ≤ ns and

∑ns
k=1 φk = n. Since trees always

start from the present then s1 = 0 and φ1 ≥ 2. In keeping with
the literature, we assume that sampling times are independent of
N(t) [4]. The choice of sampling times and the number of sequences
obtained at each sampling time (i.e. the sampling protocol) is what
the experimenter controls. Fig. 1 explains this notation for a p = 2
skyline demographic model.

The observed n tip tree has n − 1 coalescent events. We use ci
to denote the time of the ith such event with 1 ≤ i ≤ n − 1. We
define l(t) as a piecewise-constant function that counts the number
of lineages in T at t and let α(t) :=

(
l(t)
2

)
. At the kth sample

time l(t) increases by φk and at every ci it decreases by 1. The
rate of producing coalescent events can then be defined as: λ(t) =∑p
j=1 γjα(t)1(εj−1 ≤ t < εj) with γj = N−1

j as the inverse
population in segment j. We initially work in γ = [γ1, . . . , γp],
and then transform to N space.

The log-likelihood L(γ) = log P(T | γ) follows from Poisson pro-
cess theory as [37] [5]: L(γ) = −

∫ cn−1

0
λ(t) dt+

∑n−1
i=1 log λ(ci).

Splitting the integral across the p segments we get:
∫ cn−1

0
λ(t) dt =∑p

j=1 γj
∫ εj
εj−1

α(t) dt =
∑p
j=1 γjωj . Here ωj is a constant for a

given tree and it is independent of γ. Similarly,
∑n−1
i=1 log λ(ci) =∑p

j=1

∑n−1
i=1 log(γjα(ci)1(εj−1 ≤ ci ≤ εj)). Expanding yields

Eq. (9) with Γj as a constant depending on α(ci) for all i falling
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in the j th segment. The count of all the coalescent events within
[εj−1, εj ] is mj .

L(γ) =

p∑
j=1

mj log γj − γjωj + log Γj (9)

Eq. (9) is an alternate expression of the skyline log-likelihood given in
[4], except that N(t) is not constrained to change only at coalescent
event times. Importantly, sampling events do not contribute to the
log-likelihood [4]. As a result we can focus on defining a desired
coalescent distribution across the population size intervals, {m∗j}. An
optimal sampling protocol would then aim to achieve this coalescent
distribution.

Since Eq. (9) is equivalent to Eq. (4), Theorem 1 applies. The
relevant robust design is given by Eq. (8), and recommends inferring
logN and sampling sequences in such a way that n−1

p
coalescent

events fall in each [εj−1, εj) segment. Note that the number of
lineages, l(t), the timing of the mj events within [εj−1, εj), and
the wait between the last of these and εj are all non-informative
about population size. As an illustrative example, we solve a simple
skyline model design problem in the Supporting Text. There we apply
Theorem 1 to a square wave approximation of a cyclic population
size function and find sampling protocols that achieve robust {m∗j}
designs.

Lastly, we consider the impact of priors. More recent inference
methods, such as the skyride [19] and skygrid [33] approaches, use
smoothing priors that ease the sharpness of the inferred piecewise-
constant population profile. While these priors embed extra (implicit)
information about N , they do not alter the optimal design point, even
for small n. This follows because the informativeness of a prior is
unaffected by {mj} choices. The robust design therefore proceeds as
above, independent of any contributions from the smoothing prior.

Structured Coalescent Models

Let T be an observed structured coalescent tree with p ≥ 1 demes
that have been sampled through time (branches are labelled according
to the deme in which they exist). Our experimental variables are the
placement (both in time and in deme location) of the samples, and our
goal is to define robust coalescent and migration design objectives.
We set T as the number of intervals in T , with each interval
delimited by a pair of events, which can be sampling, migration or
coalescent events. The ith interval has length ui and

∑T
i=1 ui gives

the time to the most recent common ancestor of T . We use lji to
count the number of lineages in deme j during interval i. Lineage
counts increase on sampling or immigration events, and decrement at
coalescent or emigration events. We define the migration rate from
deme j into i as ζji. Nj and γj = N−1

j are the absolute and inverse
population size in deme j.

Our initial p2 vector of parameters to be inferred is
σ = [γ1, . . . , γp, {ζ11̄}, . . . , {ζpp̄}] = [γ, ζ], with {ζkk̄} =
[ζk1, ζk2, . . . ] as the p−1 sub-vector of all the migration rates from
deme k. The log-likelihood L(σ) = log P (T | γ, ζ) is then adapted
from [21] and [38]. We decompose L(σ) =

∑p
j=1 Lj(γ) + Lj(ζ)

into coalescent and migration sums with j th deme components given
in Eq. (10) and Eq. (11). Here mj and wjk respectively count the
total number of coalescent events in sub-population j and the sum of
migrations from that deme into deme k, across all T time intervals.
The factor αji :=

(
lji
2

)
accounts for the contribution of the number

of lineages to the coalescent rates. We constrain our tree to have a

total of n− 1 coalescent events so that
∑p
j=1 mj = n− 1.

Lj(γ) = mj log γj −
T∑
i=1

uiαjiγj (10)

Lj(ζ) =

p∑
k=1, k 6=j

wjk log ζjk −
T∑
i=1

uiljiζjk (11)

The log-likelihoods of both Eq. (10) and Eq. (11) are generalisa-
tions of Eq. (4) and lead to diagonal (orthogonal) Fisher information
matrices like Eq. (5). This orthogonality results because migration
events do not inform on population size and coalescent events tell us
nothing about migrations. While migrations do change the number
of lineages in a deme that can then coalesce, the lineage count
component of the coalescent rate, αji, does not influence the Fisher
information. Importantly, since the Fisher information is independent
of the sample times and locations, we can tune our sampling protocols
to potentially achieve optimal design objectives.

Applying Theorem 1, we find that we should infer log pop-
ulation sizes and log migration rates from structured models.
This removes the dependence on both the unknown popula-
tion sizes and migration rates, and leads to a Fisher informa-
tion of I(ψ) = [m1, . . .mp, {w11̄}, . . . {wpp̄}]Ip2 when ψ =
[logN1, . . . logNp, {log ζ11̄}, . . . {log ζpp̄}]. The robust design un-
der this ψ, given in Eq. (12), involves distributing coalescent and
migration events uniformly among the demes. Note that the migration
rate distribution, w∗ji |D, only holds if the total number of migration
events are fixed, i.e.

∑p
j=1

∑p
i=1, i6=j wji = M , for some constant

M .

m∗j |D =
1

p
(n− 1), w∗ji |D =

1

p(p− 1)
M (12)

Two points are clear from Eq. (12). First, if all the migration rates
are known, so that only population sizes are to be estimated then the
structured model yields exactly the same robustness results as the
skyline demographic model. Second, the migration rate design is the
same at both the strong and weak migration limits of the structured
model [39]. Thus, the true (unknown) migration rates do not affect
their optimal design, provided log-migration rates are inferred.

If we generalise the population size function in each deme to
be piecewise-constant in time, then we obtain a combination of the
structured and skyline model design results. The robust design in this
case maintains the log-population and migration recommendations
but now requires that coalescent events are equally divided among
both the demes and the piecewise-constant population segments.

Sequentially Markovian Coalescent Models

We now focus on coalescent models where recombination is
applied along a genome, resulting in many hidden trees (multiple
loci) [10]. Each tree typically consists of a small number of lineages.
Popular inference methods in this field are based on an approxi-
mation to the coalescent with recombination called the sequentially
Markovian coalescent (SMC) [40]. These methods typically handle
SMC inference by constructing a hidden Markov model (HMM) over
discretised coalescent time [10] [41] [11]. If we partition time into
p segments: 0 = ε0 < ε1 < . . . < εp =∞ then, when the HMM is
in state j, the coalescent time is in [εj−1, εj) [11]. Recombinations
lead to state changes in the HMM and the genomic sequence serves
as the observed process of the HMM. Expectation-maximisation type
algorithms are used to iteratively infer the HMM states from the
genome [10] [41].

A central aspect of these techniques is the assumption that during
each coalescent interval the population size is constant [12]. If
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the vector N = [N1, . . . , Np] denotes population size, then it is
common to assign Nj for the [εj−1, εj) interval [10]. This not
only allows an easy transformation from the inferred HMM state
sequence to estimates of N [13] but also controls the precision of
SMC based inference. For example, if too few coalescent events fall
within [εj−1, εj), then Nj will generally be overestimated [11].
Thus, the choice of discretisation times (and hence population size
change-points) is critical to SMC inference performance [12] [42].

Our experimental design problem therefore involves finding an
optimal criterion for choosing these discretisation times. Currently,
only heuristic strategies exist [11] [13] [12]. We define a vector
of bins β = [β1, . . . , βp] such that βj = εj − εj−1 and assume we
have T loci (and hence coalescent trees). In keeping with [10] and
[41] we assume that each tree only leads to a single coalescent event,
and hence we can neglect lineage counts. Since these counts merely
rescale time (piecewise) linearly, we do not lose generality.

Let mij be the number of coalescent events observed in bin
βj from the ith locus so that

∑p
j=1 mij = 1. We further use

mj :=
∑T
i=1 mij to count the total number of events from all

loci falling in βj . As before, we constrain the total number of
coalescent events so that

∑p
j=1 mj = n − 1. Using Poisson

process theory we can write the log-likelihood of observing a
set of coalescent event counts {mij}, within our bins {βj} for
the ith locus as Li(γ, β) = log P(Ti | γ, β) = −

∫∞
0
λ(t) dt +∑p

j=1 mij log
(∫ εj

εj−1
λ(t) dt

)
[37]. Here λ(t) is the coalescent rate

at t so that λ(t) =
∑p
j=1 γj1(εj−1 ≤ t < εj) and

∫ εj
εj−1

λ(t) dt =

βjγj with γj = N−1
j . Using the independence of the T loci gives

the complete log-likelihood of Eq. (13).

L(γ, β) =

T∑
i=1

p∑
j=1

−γjβj +mij log γjβj (13)

Eq. (13) is an alternative form of the log-likelihood given in [43],
and describes a binned coalescent process that is analogous to the
discrete one presented in [42]. Interestingly, Eq. (13) is a function
of the product N−1

j βj so that we cannot identify both the bins and
the population size without extra information. This explains why
choosing a time discretisation is seen to be as difficult as estimating
population sizes [13].

Eq. (13) is analogous to Eq. (4), and so results in Fisher informa-
tion matrices with square dependence on either Nj or βj depending
on what is known. Applying Theorem 1, we find that it is optimal
to infer log-bin size (ψ = [log β1, . . . , log βp]), if population size
history is known (this corresponds to discretisation results presented
in [42]), or log-population size (ψ = [logN1, . . . , logNp]), if the
bins are known. We generally assume the latter since bin end-points
can often be set by the user [12]. Under either parametrisation, the
provably robust design objective is to discretise time such that the
resulting bins contain equal numbers of coalescent events.

DISCUSSION

Judicious experimental design can improve the ability of any
inference method to extract useful information from observed data
[44]. Despite these potential advantages, experimental design has
received little attention in the coalescent inference literature [15]. We
therefore defined and investigated robust designs for three important
and popular coalescent models. Theorem 1, which summarises our
main results, presents a clear and simple two-point robust design
benchmark.

The first point recommends inferring the logarithm (and not the
absolute value or inverse) of our parameters of interest. As this is
usually effective population size, N , then logN is the uniquely robust

parametrisation for piecewise coalescent estimation problems. While
methods using logN do exist [12] [19], the stated reasons for doing
so are centred around algorithmic convenience. Here we provide firm
theoretical backing for using logN in coalescent inference.

The second point requires equalising the number of coalescent
events informing on each parameter. This may initially appear
obvious, as apportioning data evenly among the unknowns to be
inferred seems wise. Indeed, [11] and [42], which focus on SMC
models, state that time discretisations should aim to achieve uniform
coalescent distributions. However, no proof for this statement is given.
Here we not only provide theoretical support for uniform coalescent
distributions, but also prove that they are only robust if the log-
parameter stipulation is jointly satisfied.

Several unifying insights for piecewise coalescent models (i.e.
those with likelihoods of form Eq. (4)) emerge as corollaries of our
analysis. Because the precision with which we estimate a coalescent
parameter only depends on the number of events informing on it, we
can reinterpret all the designs considered here simply as different
ways of allocating events to ‘pigeon-holes’. These pigeon-holes
correspond to skyline intervals, structured coalescent demes and SMC
time discretisation bins. This perspective reveals a straightforward
rule for statistical identifiability: any piecewise coalescent model
with at least one empty pigeon-hole is non-identifiable. This has
specific ramifications. For example, it implies that we need at least
one coalescent and migration event in each deme of the structured
coalescent model to guarantee identifiability.

Knowing the boundaries or change-points of our pigeon-holes (e.g.
the {εj} for the SMC) is crucial for inference [42]. Throughout, we
have assumed that these are indeed known. This is reasonable as it
is generally not possible to jointly infer parameters and their change-
points [11] [42]. Methods that do achieve this are usually data
driven, iterative and case specific, allowing no general design insight
[12] [45]. This raises the question about how to derive optimal design
objectives when the change-points are unknown.

In the Supporting Text, we use Theorem 1 to compute robust
change-point objectives. Interestingly, we show that it is wise to
assign change-points according to the 1

p
quantiles of the normalised

lineages through time plot of the observed phylogeny. This results
in a maximum spacings estimator (MSE) that makes the observed
tree as uniformly informative as possible, relative to the pigeon-holes
[46]. This means that if we wish to robustly infer p log-parameters
from a tree containing n− 1 coalescent events, we should define our
pigeon-holes such that they change every r = n−1

p
events.

Optimal skyline population profiles were examined in [3], with
change-points selected on the basis of time. Our results suggest
change-points should be based on coalescent event counts. If r = 1,
we recover the classic skyline plot [2] as the low information limit
of this MSE strategy. Under our unifying corollary, grouping skyline
intervals is analogous to aggregating demes in structured models, or
combining bins in the SMC. Interestingly, this MSE strategy formally
connects some popular SMC design choices. Specifically, [10] based
its discretisation on a log spacing through time, while [41] used the
quantiles of an exponential distribution. Our MSE result recommends
using quantiles with logarithmic time bins.

Another unifying insight from Theorem 1 is that any parameter
entering the coalescent log-likelihood in a functionally equivalent way
to γj in Eq. (4), should be inferred in log-space. This maximises
distinguishability in model space, and means, for example, that it
is best to work with log-migration rates for structured coalescent
models. Using the log of the migration matrix is uncommon and
could potentially improve current structured coalescent inference
algorithms. Similarly, for the SMC, this insight implies that we must
decide between absolute bin sizes for inferring log-populations and
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absolute population sizes for estimating log-bin widths.
Theorem 1 is also useful for finding cases where non-robust designs

are inevitable. In the skyline demographic model, for example, a short
interval during which population size is large would be difficult to
estimate. Large N implies long coalescent times, making it unlikely
that n−1

p
events can be forced to occur in such regions (see the

square wave example in the Supporting Text). This hypothesis is
corroborated by [13]. A similar effect occurs for SMC models if
the bin size is small during a period of large population size [11].
For the structured model, the log-population size criteria is likely
simpler to achieve than the log-migration rate one, since controlling
p−1 stochastic migration event types per deme could be challenging,
depending on how close the process is to the strong or weak migration
limits [47] [48].

While we have provided robust coalescent design objectives, we
have not defined what sampling or discretisation protocols can be
used to achieve them. Existing analyses on this topic [14] [16]
[47] [12] tend to examine a set of reasonable but ad-hoc protocols
via extensive simulation. However, since no optimal design references
exist, these works could only compare performance among their
chosen protocols. Our analytical approach provides a general robust
design theorem that can be used by future simulation studies for
benchmarking.
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SUPPORTING TEXT

Robust Coalescent Change-point Designs

Consider the class of ‘piecewise’ coalescent models, which we
define as having log-likelihoods analogous to Eq. (4) in the main
text. This class includes the skyline demographic model, structured
coalescent model and the SMC. We derived a robust design theorem
(Theorem 1 of the main text) for inferring the parameters (e.g.
effective population size) of these models. Theorem 1 suggested
that experimental designs under piecewise coalescent models could
be viewed as allocations of informative events (e.g. coalescent
events) to ‘pigeon-holes’, which essentially encapsulate the different
parameters that we wish to infer. These pigeon-holes, for example,
are the piecewise-constant population size segments in the skyline
demographic model, the demes of the structured coalescent model
and the bins in the SMC. The boundaries or change-points of these
pigeon-holes effectively control the complexity of our coalescent
inference problem.

The analysis behind Theorem 1 presumed that we had knowledge
of the pigeon-hole change-points. This corresponds to knowing the
piecewise-constant segment times of the skyline model, the number
of demes in the structured coalescent, and the bin sizes in the SMC.
Such assumptions are reasonable, since simultaneously inferring both
change-points and parameter values is an ill-conditioned problem.
For example, if we do not know anything a-priori about either bin
or population size, then it is impossible to derive optimal SMC time
discretisations [11] [42]. Similar identifiability problems emerge
when trying to simultaneously infer the change-points of piecewise-
constant segments and their population sizes, or the number of demes
and the population sizes and migration rates within each deme. In
such cases iterative and data-driven computational methods can be
employed [12] [45]. These methods will typically jointly optimise
over these unknowns and produce sensible estimates, but their results
will be case specific, allowing no general design insight to be derived.

While the general change-point inference problem is outside
the scope of our work, we can provide some guidelines on how
to robustly specify pigeon-hole change-points using the observed
coalescent genealogy. We do this explicitly within the context of
the SMC, but observe that the same results apply to all other
piecewise coalescent models. It is known that if we condition on
n − 1 events from an inhomogeneous Poisson process occurring in
[0, εp], with intensity λ(t), then the event times are independently
and identically distributed according to density f(t) = λ(t)∫ εp

0 λ(u) du

[37]. If we let λ(t) be our piecewise-constant SMC rate we find
that

∫ εp
0
λ(u) du =

∑T
i=1

∑p
j=1 γjβj =

∑p
j=1(n − 1)γjβj , with

γj = N−1
j as the inverse population size over the region [εj−1, εj ].

The pigeon-hole size or bin width is βj = εj − εj−1 with the εj
as the change-points, and T as the number of loci. Note that, for
example, in the skyline demographic model, we would have a single
locus and the βj would correspond to scaled interval times (see ωj in
the derivation of the skyline demographic log-likelihood in the main
text).

We can define the cumulative distribution function (CDF) at the
pigeon-hole change-points as: F (εj) =

∫ εj
0
f(t) dt and denote the

consecutive spacing of this CDF as ∆j = F (εj) − F (εj−1).
Empirically, this CDF corresponds to the lineage through time plot
(LTT) of the observed phylogeny, normalised by its total number
of coalescent events. Solving for ∆j using the piecewise-constant
coalescent rate gives the left part of Eq. (14). This expression is
precisely the same for the skyline and structured models. If we
substitute the MLE for either βj or γj (depending on what is
known) then we derive ∆̂j . Applying the m∗j design from Theorem
1 produces the rest of Eq. (14).

∆j =
γjβj∑p
i=1 γiβi

=⇒ ∆̂j =
mj

n− 1
=⇒ ∆̂∗j |D =

1

p
(14)

The robust coalescent interval spacing, ∆̂∗j |D, is therefore fixed
by the number of pigeon-holes (and hence parameters). This has
two important ramifications. First, as quantiles are defined as inverse
cumulative distribution values, it means that the optimal choice of
pigeon-holes is such that their boundaries are the 1

p
quantiles of

the normalised LTT. Robust coalescent experimental design therefore
recommends assigning a new pigeon-hole after every n−1

p
events

of the LTT. This quantile design clearly suggests that the largest
admissible number of change-points occurs when p = n − 1. This
limit, for skyline demographic inference problems, corresponds to the
formulation of the classic skyline plot [2].

Second, since the spacing at the MLE is constant, robustness is
achieved by the maximum spacings estimate (MSE) [49] [46]. For
a given set of observations, drawn from the CDF of a parameter θ,
the MSE is the estimate of θ that maximises the geometric mean of
the spacing of the CDF, evaluated at each observed random sample.
Our results suggest that if we view the pigeon-hole change-points as
binned draws from f(t) then, given a robust design, the MSE of θ
results in optimal spacing. Here θ is the effective coalescent rate with
density f(t). It is not difficult to prove that robust designs for the
skyline demographic and structured models also imply equivalent 1

p

MSEs. Under MSE designs, the observed tree, from the perspective
of the pigeon-holes, will appear as uniformly informative as possible.

Simulation Study: Square Wave Populations

Here we show how to apply Theorem 1 to a simple skyline
demographic coalescent model. Let N(t), define a square wave
population size function with period T , with time t into the past.
N(t) models the harmonic mean [2] of the fluctuating number of
infected individuals across time in a seasonal epidemic. N1 recurs
on odd half-periods and N2 on even ones ([0, T

2
) is the first (odd)

half-period). Given n total samples (n − 1 coalescent events) we
want to optimally infer N(t). Fig 1 of the main text illustrates the
experimental set-up and notation for a similar design problem. Panel
(a) of Fig. 3 shows a typical N(t) with its half-period numbers.

The precision with which N1 and N2 are estimated is an increasing
function of the number of coalescent events falling within their half-
periods. Let m1i be the number of events in the ith recurrence
of N1 and m2i be the equivalent for N2. Theorem 1 stipulates
that robust sampling schemes will distribute 1

2
of all coalescent

events to N1 half-periods (Eq. (15)). Thus, if m1 is the observed
count of coalescent events falling within N1 half-periods, then the
performance of any sampling scheme can be measured by the size of
the scalar d(m1) :=

∣∣I(logN1)
n−1

− 1
2

∣∣ =
∣∣ m1
n−1
− 1

2

∣∣. Note that d(m1)
increases as the Fisher information becomes more skewed (higher
I(logN1) means lower I(logN2)), and d(m∗1 |D) = 0.

I(logN1) = m1 =
∑
i≥0

m1(i+1) =⇒ m∗1 |D =
1

2
(n− 1) (15)
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If we define, p1, as the probability that a sampled tip is introduced
in an N1 interval then a robust sampling strategy achieves p∗1 =
arg minp1 d(m1). We assume p1 is constant with time. Thus, we
focus on the mapping p1 → d(m1) with p2 = 1 − p1. A sampling
protocol involves the tuple (sk, φk) with sk as the time of the kth

sampling event at which φk lineages are introduced. Since coalescent
events are always delayed in time relative to the point in time at
which samples are placed, we will always introduce our φk samples
all at once, and only at the change-points so that sk = (k − 1)T

2

(the arrows in panel (a) of Fig. 3). This procedure maximises the
probability that samples will coalesce within the half-period in which
they are introduced.

We examine a range of deterministic sampling strategies in order
to explore how p1 controls d(m1). For a given p1, we set the number
of samples introduced in N1 and N2 half-periods as fractions f1 =
round [p1(n− 1)] and f2 = n − 1 − f1. Here round indicates the
nearest integer. Note that maxpj fj = n − 1 as we assume that
there is always an initial sample to allow the first coalescent event.
We allocate the f1 and f2 samples uniformly relative to N1 and N2

half-periods respectively, so that φi = a or 0 depending on whether
samples are introduced or not. Here p1 = 0 means we have placed
all n samples on N2 half-periods while p1 = 1 means that they are
all on N1 ones. Intermediate p1 values compromise between these
two extremes. We illustrate these sampling strategies for a = 1 and
n = 10, relative to the half-periods of N(t), in panel (b) of Fig. 3.

Panel (c) of Fig. 3 shows the sampling protocol performance under
a = 1 schemes at different N1 values (scaled against T ), with N2 =
2N1. We find that as N1 becomes smaller relative to T , the optimal
protocol p∗1 gets closer to 1

2
. This makes sense since here population

changes are slow relative to the coalescent times, so that we have the
greatest chance of any sample falling within the half-period in which
it was introduced. As N1 increases, coalescent times lengthen and we
get samples falling outside this original half-period. This leads to a
weaker, less discernible minimum with larger uncertainty (we cannot
estimate fluctuations in population that are fast compared to our rate
of producing coalescent events [48]). The optimal strategy here is
p∗1 <

1
2

(if we made N2 = 1
2
N1 we would get curves skewed in the

opposite direction so that p∗1 > 1
2

). Robust sampling therefore favours
placing more samples in periods of time with larger population size.
This has an interesting implication for structured coalescent models
with known, symmetrical migration rates. In this case the demes are
directly analogous to the Nj segments and robust sampling would
recommend allocating sample numbers in proportion to the deme
population sizes.
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Fig. 3: Deterministic sampling protocols for a skyline coalescent
model. We apply a deterministic sampling strategy with φi = 1 or
0 to a skyline demographic model with a population that fluctuates
between N1 and N2 = 2N1 across time. This fluctuation is described
by a square wave with period T , and is shown in panel (a) for
N1 = T

4
and N2 = T

2
. The arrows in this sub-plot indicate the points

at which we can introduce a sample. Panel (b) shows how n = 10
samples are allocated at these arrow points for three different p1

protocols (p1 controls the fraction of the n available samples that are
placed in N1 half-periods). We observe how the absolute difference,
d(m1), between the Fisher information and the uniquely robust
design changes with p1 in panel (c), for n = 100. The black, red,
green and magenta curves are for N1 = [T

8
, T

4
, T

2
, T ] respectively.

Each curve gives the mean of d(m1) across 5000 repeated runs
(solid line) and the 95% confidence interval around that mean. As
N1 decreases relative to T , d(m1) becomes more symmetrical and
maximal performance (defined as min d(m1)) improves (gets closer
to 0 and has sharper confidence). The uniquely robust sampling
protocol in each N1 case, is visualised with a grey, filled circle.
See the supporting text for further interpretations of these results.
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