
Analyzing Enzyme Kinetic Data Using the Powerful Statistical Capabilities of R

Carly Huitema1 and Geoff Horsman2

1Waterloo Centre for Microbial Research, Waterloo ON N2L 3G1, Canada

2Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo ON N2L 5S5, Canada

Abstract

We describe a powerful tool for enzymologists to use for typical non-linear fitting of common equations in enzyme
kinetics using the statistical program R. Enzyme kinetics is a powerful tool for understanding enzyme catalysis,
regulation, and inhibition but tools to perform the analysis have limitations. Software to perform the necessary non-
linear analysis may be proprietary, expensive or difficult to use, especially for a beginner. The statistical program R is
ideally suited to analyzing enzyme kinetic data; it is free in two respects: there is no cost and there is freedom to
distribute and modify. It is also robust, powerful and widely used in other fields of biology. In this paper we introduce
the program R to enzymologists who want to analyze their data but are unfamiliar with R or similar command line
statistical analysis programs. Data are inputted and examples of different non-linear models are fitted. Results are
extracted and plots are generated to assist judging the goodness of fit. The instructions will allow users to create their
own modifications to adapt the protocol to their own experiments. Because of the use of scripts, a method can be
modified and used to analyze different datasets in less than one hour.

Introduction

Enzyme kinetics is a powerful tool for understanding
enzyme catalysis, regulation, and inhibition. For
example, details about transition state structures
garnered from kinetic isotope effects on steady-state
rate constants continues to inform the design of
powerful transition state analog inhibitors of
therapeutic value (Schramm, 2015, and Namanja-
Magliano, Stratton, and Schramm, 2016). Moreover,
the pioneering work of Cleland and many others over
the last four decades has democratized enzyme kinetics
so that it is no longer necessarily confined to specialists
(Cook and Cleland, 2007). However, this
popularization beyond the specialist community has
driven demand for non-linear regression analysis
software that is accessible to the non-specialist but also
powerful enough to satisfy more advanced analyses.
Although several commercial mathematical software
packages exist, their costs can be prohibitive for labs in
developing nations or other cost-conscious researchers.
Standard software packages such as Excel can be
adapted for these purposes (Kemmer and Keller, 2010),
but the proprietary nature of the software makes
customization difficult and presents a barrier to open
science. Furthermore, spreadsheets are notorious for
easy calculation mistakes and they are difficult to error
check, test and validate because code is hidden away in
tens or even hundreds of different cells. Proprietary
software can also be a problem when expertise with
one particular software tool becomes obsolete after
moving to another organization that uses a different
software package. Web-based tools offer a poor and
partial solution, as they can be difficult to verify and
transient in nature; a webpage used today may not be
around tomorrow and a user has no ability to judge if
the implementation is without error.

The statistical program R is an incredibly robust and
powerful program that is widely used in life sciences
for applications ranging from basic model fitting to
large-scale analysis of gene expression data. It is open

source, free to use, and available for multiple operating
systems (Windows, Mac and Linux). From a training
perspective, effort spent learning how to work in the R
environment represents an easily transferable skill.
However, with the robustness and flexibility of R
comes a barrier to entry, as researchers may feel
intimidated by its command line nature and lack of a
user-friendly interface. Herein we provide a step-by-
step guide for analyzing enzyme kinetic data in R, with
the goal of increasing the accessibility to
enzymologists of this powerful and free program. For
the reader’s convenience we have included scripts as
downloadable files in the supplemental online material.

Getting started with R

The R program (a GNU project) can be acquired from
the project webpage https://www.r-project.org/ by
following the download and installation instructions for
your specific operating system. Work in R is done
using a command line and this program is sufficient for
all analyses presented here. R Studio is a free and
open-source integrated development environment for
R. The base program R remains the same and work is
still done using the command line. However, additional
features (such as script integration and variable
display) are added for easier development. There are
many excellent tutorials and courses available online
and in textbooks for an interested reader to get started
using R (an excellent resource is the manuals available
on the R project page: https://cran.r-project.org/). Here
only the most basic introduction is given to provide the
reader with the necessary starting point to perform the
analyses described in this paper.

Methods of inputting data into R

When R is started the user is presented with a prompt
">" and can enter commands. R can be used as a
calculator, for example:

2^4 * 10 + log10(100)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

gives a result of:

162

We can also use R to print out lists of numbers, for
example:

-5:5 # anything after a pound/hash
symbol is a comment and is ignored by
R

gives a result of:

-5 -4 -3 -2 -1 0 1 2 3 4 5

An easy trick for lists is to multiply or divide the result:

-5:5/10

gives a result of:

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1
0.2 0.3 0.4 0.5

In R you can also work with variables that have been
assigned values. The "=" symbol can be used to assign
the value to a variable. However, the symbol "<-" is the
more general assignment symbol than the "=" symbol
and to avoid using both assignment symbols in this
paper only "<-" will be used here.

a <- 2

a (not A as R is case sensitive) has been assigned the
value of 2. Now the variable "a" can be used in
calculations, for example:

a * 10

gives the result:

20

In evaluating enzyme kinetics, two of the most useful
formats of storing data are in vectors and data frames.
For example, the different concentrations of substrate
used in an experiment can be stored in the vector
conc.uM, using the function c() where c is short form
for concatenate or paste together. The same can be
done with the rate results.

conc.uM <- c(0.5,1,2.5,3.5,5,7.5,10,1
5,25,50,70,75,100)
rate <- c(0.6,1.1,2.1,2.3,3.7,3.,4.3,
4.8,5.3,6.0,5.1,5.7,5.8)

The up arrow cycles through previously typed
commands and can be useful to change something if
you have made a mistake.

In enzyme kinetics the best way to organize
experimental data in R is with a very important and
useful data structure called a data frame. Data frames
are used for storing tables of data consisting of

columns of values. In a data frame the columns are
named (for example conc.uM and rate) and can be
referred to by name. To put our two vectors into a data
frame called exp1.df we use the function data.frame().

exp1.df <- data.frame(conc.uM, rate)

and to look at the contents of our data frame simply
type the variable name:

exp1.df

To access a column by name we use the $ symbol:

exp1.df$conc.uM

If you have a very large data frame you may only want
to look at a portion of it to check the structure of the
data. The functions head() or tail() will show you the
first or last 6 entries in the data frame as well as the
labels of the columns.

head(exp1.df)

To count the number of rows in the data frame and
confirm all your data is present use the function
nrow().

nrow(exp1.df)

We can perform different operations on the data in the
data frame including adding new data. For example,
before we perform further analysis we may want to
work with the concentration in nM instead of µM. We
can add another column to the data frame where we
multiply exp1.df$conc.uM by 1000 to give us
concentrations in nM with the command:

exp1.df$conc.nM <- exp1.df$conc.uM *
1000

If you look at the contents of the data frame exp1.df
now you will see the addition of a third column named
conc.nM with the concentrations now expressed in nM.

We have been creating objects in R and we can see all
the objects that have been created in the current R
session by using the function ls().

ls()

To remove all these objects we have created we use the
command rm(list=ls()). Briefly, the command
rm(list="") will remove all objects passed (using the
"=" sign) to the argument "list". If we pass all objects
in the R environment with the function ls(), we will
remove all objects.

rm(list=ls())

You can also remove specific objects using this
command, for example with rm(list=c("conc.uM",
"rate")).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

Data can be added manually to R using the functions
c() and dataframe(), however, it can be easier to input
the data from a .csv file which can be the output of
many programs including Excel.

The read.csv() function reads data from a .csv file and
puts it directly in a data frame. It assumes that the first
row specifies the names of your columns but if this is
not the case you can add the argument
"header=FALSE" to the function.

exp1.df <- read.csv("filename.csv",
header=TRUE)

To know which folder/directory that R is looking in for
your data file (your current working directory) use the
function getwd().

To avoid the challenge of different computers with
different working directories, in all examples in this
paper the data will be inputted directly rather than read
from a file. In this manner, all the scripts are complete
and no extra data files are needed.

Finally, rather than typing the commands into R
directly each time analysis is performed, the commands
can be put in a simple text file (the script file) using an
editor such as notepad in the Windows environment,
and then copied and pasted directly into R. In this way,
the commands used to generate the data can be saved
and then put with the data as a record of analysis, and
copied and modified with each new experiment. After
gaining familiarity with R, users are encouraged to
learn the feature rich R Studio program, which better
integrates scripts into the R environment.

Plotting data

Data plotting in R is robust, with many examples
available on the internet demonstrating all that R is
capable of. However, here we will only describe the
most basic plotting techniques that will be useful for
fitting enzyme kinetics. The reader may decide if they
prefer to export the data and prepare figures in their
chosen program or to learn more about plotting in R
from other resources.

Before any analysis of an enzyme kinetic experiment,
the experimental results should be examined on a plot
using the function plot(x,y) where x is the vector of
values for the x axis and y the vector of values for the y
axis. Using this dataset:

conc.uM <- c(0.5,1,2.5,3.5,5,7.5,10,1
5,25,50,70,75,100)
rate <- c(0.6,1.1,2.1,2.3,3.7,3.,4.3,
4.8,5.3,6.0,5.1,5.7,5.8)

We can plot rate vs concentration with the command:

plot(conc.uM, rate)

In this example, the x and y axis will have labels with
the name of the variables. To have our own custom
title and axis labels we add a few arguments to the
plot() function with the command:

plot(conc.uM, rate, main="Plot
Title", xlab="conc (uM)", ylab="rate
(uM/min)")

It is also useful to add lines to our plot, perhaps the line
of best fit after we have fit our model to the data. We
can add lines to our plot with the function lines(x, y,
lty, col) where lty is line type and col is the color of the
line.

lines(conc.uM, rate, lty="dotted",
col="red")

For this example, we are simply joining the points of
data, which is not very useful. However, once we have
performed a fit we can generate a set of theoretical x, y
data points using the solved parameters and use them
to draw a smooth line on our plot showing our fit.

Fitting the Michaelis-Menten equation

The Michaelis-Menten equation is the fundamental
equation of enzyme kinetics (Bowden, 2004) and has
the typical format of:

v = Vmax [S]/ (KM + [S])

Vmax is the maximum theoretical reaction rate where
additional substrate does not noticeably increase the
substrate turnover (Vmax is theoretical because it is at
the asymptote that the fitted curve will never reach).
KM is the Michaelis constant and often oversimplified
in being described as the affinity of the enzyme for the
substrate. The Michaelis constant is always the
concentration of substrate ([S]) where the rate v is half
that of Vmax.

The plot of results from an experiment to determine KM
and Vmax has substrate concentration [S] on the x-axis
and reaction rate v on the y-axis. Prior to the era of
personal computing it was acceptable to transform this
data into a linear format (typically the Lineweaver-
Burk plot) in order to generate a fit for the data and
determine KM and Vmax. However, today it is
recommended to fit the Michaelis-Menten equation
directly to the data using nonlinear least-squares fitting.

An excellent introduction to nonlinear least-squares
fitting and how to perform this fitting in Excel is
described by Kemmer and Keller (2010). Unlike linear
regression there is no analytical solution to the fitting,
instead a fit is determined through trial and error. The
fitting algorithm begins with estimated starting values
and attempts to lower the sum of square of errors (the
difference between expected and calculated values,
squared) by altering the parameters until a minimum is
reached (or the algorithm cannot find a solution). In

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

this process there is no guarantee that a global
minimum has been obtained. As only a local minimum
is found, a good estimate of starting parameters is
important.

Here are the commands for performing a fit followed
by detailed instruction and description.

Fit Michaelis-Menten equation
input the data and plot
conc <- c(0.5,1,2.5,3.5,5,7.5,10,15,2
5,50,70,75,100)
rate <- c(0.6,1.1,2.1,2.3,3.7,3.,4.3,
4.8,5.3,6.0,5.1,5.7,5.8)
test.df <- data.frame(conc,rate)
plot(test.df$conc,test.df$rate)

perform the fitting
mm.nls <- nls(rate ~ (Vmax * conc /
(Km + conc)), data=test.df,
start=list(Km=5, Vmax=6))
summary(mm.nls)

extract coefficients
Km <- unname(coef(mm.nls)["Km"])
Vmax <- unname(coef(mm.nls)["Vmax"])

plot data and plot line of best fit
x <- c(0:100)
y <- (Vmax*x/(Km+x))
lines(x,y, lty="dotted", col="blue")

confidence intervals of parameters
confint(mm.nls)

look at residuals and plot
mm.resid <- resid(mm.nls)
plot(test.df$conc, mm.resid)

add weighting to fit
test.df$weight <- 1/test.df$conc^2
mm.weight.nls <- nls(rate ~ (Vmax *
conc / (Km + conc)), data=test.df,
start=list(Km=5, Vmax=6),
weight=test.df$weight)
summary(mm.weight.nls)

To begin with fitting, we will start by entering data,
putting it into a data frame and plotting the data to
evaluate the potential for fitting using the commands:

conc <- c(0.5,1,2.5,3.5,5,7.5,10,15,2
5,50,70,75,100)
rate <- c(0.6,1.1,2.1,2.3,3.7,3.,4.3,
4.8,5.3,6.0,5.1,5.7,5.8)
test.df <- data.frame(conc,rate)
test.df
have a look at your data
plot(test.df$conc,test.df$rate)

By examining the plot we can see that the data appears
suitable for fitting a Michaelis-Menten curve and from
the plot we can estimate initial starting values for the
parameters KM and Vmax. In this example, good

estimates of Vmax and KM would be 6 and 5
respectively.

In R, the function for fitting using nonlinear least-
squares is nls() and there are several arguments that
must be passed in the function for proper analysis.
First, the command:

mm.nls <- nls(formula(rate ~ (Vmax *
conc / (Km + conc))), data=test.df,
start=list(Km=5, Vmax=6))

The formula to be fit is the first argument
“formula(rate ~ (Vmax *conc/(Km + conc))”. rate and
conc are variables that match the column names in the
data frame test.df and Vmax and KM are parameters that
we wish to solve for. We specify which data frame to
be used in the fitting using the argument data=test.df.
Finally, we must give the function starting values for
the two parameters that we wish to solve with the
argument start=list(Km=5, Vmax=6). The names of
these variables and parameters must match either
column labels in the data frame or listed in the starting
values or R will serve the user an error. Note that the
arguments are separated by commas. The result of the
fitting is saved in the object mm.nls. It contains
information from the fit including estimates of the
parameters, test statistics, residuals etc.

We can add an additional argument trace=TRUE or
FALSE to the function nls(), this will show us each
iteration during the fitting and the different values of
Vmax and KM that are evaluated and can be useful for
troubleshooting if the fit is not successful. If the fitting
fails one of the first things to test is better starting
values. A fitting may also fail if the data being fit does
not represent the model.

After the fitting is complete we can view a summary of
the model including values determined for the
parameters with the function summary().

summary(mm.nls)

To see the fit on the plot with the data we first generate
a vector of x values (concentration) covering the range
we wish to plot. We use the function c() to create our
vector with values from 0 to 100.

x <- c(0:100)

Then for each value we calculate the expected rate
values for each of these concentrations using the values
of the parameters revealed using the summary()
function (Vmax=6.069 and Km=4.701).

y <- (6.069*x/(4.701+x))

Finally, we draw a line on the plot with this generated
data giving us our line of best fit. The function lines()
adds to an existing plot, so you must not close a plot
window when you intend to add lines to your figure.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

lines(x, y, lty="dotted", col="red")

Rather than copying the values of the parameters
manually we can extract the coefficients from the
model using the function coef().

coef(mm.nls)

We can access each coefficient by name (used within
square brackets and quotes) and then assign the value
to a new variable. Sometimes a named variable can
cause problems when using other functions in R so we
strip the name from the coefficient using the function
unname().

Km <- unname(coef(mm.nls)["Km"])
Vmax <- unname(coef(mm.nls)["Vmax"])

Now we can use the values directly in the equation to
calculate line of best fit:

y.2 <- (Vmax*x/(Km+x))
lines(x,y.2, lty="dotted",
col="blue")

Once we have fit our model we can extract the
confidence intervals for the parameters from the fit
object mm.nls using the function confint().

confint(mm.nls)

Finally, after performing a fit it is important to plot the
residuals from your fit to determine if the model
selected is good and if the fit was successful. The
values of the residuals can be accessed from the fit
object mm.nls using the function resid().

mm.resid <- resid(mm.nls)
plot(test.df$conc, mm.resid)

A common technique when fitting experimental data is
to weight the fit. To add weighting add another column
to your data in the data frame with the values for the
weighting. For example, to weight the low
concentration values more in the fit we can use an
equation of weight = 1/conc^2. The following
command assigns these weighting values to a new
column in the test.df data frame.

test.df$weight <- 1/test.df$conc^2

To perform nonlinear least-squares analysis with
weighting we add a new weight argument to our nls()
function.

mm.weight.nls <- nls(rate ~ (Vmax *
conc / (Km + conc)), data=test.df,
start=list(Km=5, Vmax=6),
weight=test.df$weight)

Fitting Michaelis-Menten equation with substrate
inhibition

The effect of substrate inhibition can be accounted for
with a different model:

v = Vmax * conc / (KM + conc * (1 +
conc / KS))

Where KS is the parameter that accounts for the
inhibition of the substrate. However, fitting is very
similar to the simple Michelis-Menten equation with
just an additional parameter to the nls() fitting function.

Fit Michaelis-Menten equation with
substrate inhibition
input the data and plot
conc <- c(0.01,0.02,0.03,0.04,0.06,0.
08,0.1,0.3,0.3,0.4,0.6,0.8,1,1,2,3,4,
5,5,5,6)
rate <- c(3.1,5.2,5.6,5.9,7.2,7.6,8.4
,9.2,10.4,10,11,10.9,10.3,10.4,10.1,9
.6,9.4,9.6,8.6,8.7,8.5)
test.df <- data.frame(conc,rate)
plot(test.df$conc,test.df$rate)

perform the fitting, look at plot
to estimate start values
mminhib.nls <- nls(rate ~ (Vmax *
conc / (Km + conc*(1+conc/Ks))),
data=test.df, start=list(Km=0.2,
Vmax=11, Ks=1))
summary(mminhib.nls)

extract coefficients
Km <- unname(coef(mminhib.nls)["Km"])
Vmax <-
unname(coef(mminhib.nls)["Vmax"])
Ks <- unname(coef(mminhib.nls)["Ks"])

plot data and plot line of best fit
x <- c(0:60)/10
y <- (Vmax*x/(Km+x*(1+x/Ks)))
lines(x,y, lty="dotted", col="blue")

confidence intervals of parameters
confint(mminhib.nls)

look at residuals and plot
mminhib.resid <- resid(mminhib.nls)
plot(test.df$conc, mminhib.resid)

Determining IC50

The IC50 of an inhibitor is the concentration of an
inhibitor where the enzyme activity is half of
maximum and is done by fitting a four-parameter S-
curve to the experimental data (in this example the 4-
parameter logistic model (Rodbard and Frazier, 1975))
using the nls() function in R. First the script is
presented followed by a description.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

Calculate IC50
enter the data into a data frame
and plot
conc.uM <- c(300,150,75,38,19,5,2,1,0
.6)
percent.activity <- c(2,7,12,22,36,53
,67,83,85)
ic50.df <- data.frame(conc.uM,
percent.activity)
ic50.df$conc.nM <- ic50.df$conc.uM *
1000
ic50.df$logconc.nM <- log10(ic50.df$c
onc.nM)
plot(ic50.df$logconc.nM,ic50.df$perce
nt.activity)

estimate initial values of the
curve by examining the plot
add a 4-parameter rodbard curve
with these initial parameters to the
plot
to check they are reasonable
initial estimates
x <- c(2:12/2)
y <- 0+(80-0)/(1+(x/4)^10)
lines(x,y, col="red")

fit the data using the nls()
function to the 4-parameter logistic
model
rodbard.fit <- nls(formula(percent.ac
tivity ~ bot+(top-
bot)/(1+(logconc.nM/logic50)^slope)),
algorithm="port", data=ic50.df,
start=list(bot=0, top=80, logic50=4,
slope=10), lower=c(bot=-Inf, top=-
Inf, logic50=0, slope=-Inf))

generate a summary of the fit
summary(rodbard.fit)

extract coefficients
top <- unname(coef(rodbard.fit)["top"
])
bot <- unname(coef(rodbard.fit)["bot"
])
logic50 <- unname(coef(rodbard.fit)["
logic50"])
slope <- unname(coef(rodbard.fit)["sl
ope"])

calculate line of best fit and add
to plot
y.fit <- bot+(top-bot)/(1+(x/logic50)
^slope)
lines(x,y.fit, col="green")

log scale to linear scale to get
IC50
remember the results are in nM
10^logic50

The 4-parameter logistic model is of the form y = d +
(a - d) / (1 + (x/c)^b) where x is the log(conc), y is the

inhibition (or percent activity) and a, b, c and d are
parameters. The parameter c is the log(IC50) and is the
parameter we are interested in. To estimate the initial
starting values for using in the nls() function examine
the plotted data. Estimates for a and d are the expected
highest and lowest y-axis values of the fitted curve
respectively and c the value of the x-axis at the
midpoint of inflection of the curve. Parameter b
controls the steepness of the curve and reasonable
starting values of b are 10 if the curve curves down (if
you are graphing percent activity) and -10 if the curve
goes up (if you are graphing percent inhibition). Initial
starting values are at best guesses and plotting expected
curves with the data will help in refining the estimates.

It is important when fitting with the 4-parameter
logistic model that the log of the concentrations (x)
must all be positive (x values must all be greater than
1). The reason is mathematical, when x is negative and
b is not a whole number (x/c)^b can result in a complex
number and you will get an error when attempting to fit
the model. In this example, the concentration of
inhibitor used in the fit is converted to nM which
results in no negative values of x.

Fitting competitive inhibition

Competitive inhibition can be described by the model:

v = Vmax * conc / (KM*(1+inhibitor/Kic)
+ conc)

Fitting competitive inhibition is similar to the fitting of
Michaelis-Menten data but with some more
sophistication necessary to make a generally useful
script; specifically, data subsets and loops. A script for
fitting competitive inhibition is presented here and a
description of the script follows.

Fit competitive inhibition
input the raw data into a data
frame
conc <- c(3.9,1.9,0.7,0.5,0.4,0.3,3.9
,1.9,0.7,0.5,0.4,0.3,3.9,1.9,0.7,0.5,
0.4,0.3,3.9,1.9,0.7,0.5,0.4,3.9,1.9,0
.7,0.5,0.4)
rate <- c(0.19,0.19,0.18,0.14,0.13,0.
08,0.18,0.17,0.15,0.13,0.11,0.11,0.2,
0.15,0.11,0.1,0.09,0.07,0.16,0.14,0.1
,0.08,0.07,0.16,0.13,0.08,0.08,0.07)
inhibitor <- c(0,0,0,0,0,0,100,100,10
0,100,100,100,300,300,300,300,300,300
,500,500,500,500,500,700,700,700,700,
700)

kic.df <- data.frame(conc, rate,
inhibitor)

determine concentrations of
inhibitor used in experiment
inhibitor.conc <-
unique(kic.df$inhibitor)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

create colors for each inhibitor
concentration
inhib.color <-
rainbow(length(inhibitor.conc))

generate a blank plot and then plot
the raw data
plot(kic.df$conc,kic.df$rate, pch="")
for (i in 1:length(inhibitor.conc)) {
 points(subset(kic.df$conc,
kic.df$inhibitor==inhibitor.conc[i]),
subset(kic.df$rate,
kic.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i], pch=1)
}

perform the fitting
kic.nls <- nls(rate ~ (Vmax * conc /
(Km*(1+inhibitor/Kic) + conc)),
data=kic.df, start=list(Km=0.5,
Vmax=.2, Kic=300))

generate a summary of the fit
summary(kic.nls)

confidence intervals of parameters
confint(kic.nls)

extract coefficients
Km <- unname(coef(kic.nls)["Km"])
Vmax <- unname(coef(kic.nls)["Vmax"])
Kic <- unname(coef(kic.nls)["Kic"])

use the values directly in the
equation to calculate line of best
fit
fit.data <- expand.grid(x=(1:40)/10,
inhib=inhibitor.conc)
fit.data$y <- Vmax*fit.data$x/(Km*(1+
fit.data$inhib/Kic)+fit.data$x)

plot lines of best fit
for (i in 1:length(inhibitor.conc)) {
 lines(subset(fit.data$x,
fit.data$inhib==inhibitor.conc[i]),
subset(fit.data$y,
fit.data$inhib==inhibitor.conc[i]),
col=inhib.color[i])
}

The experimental data for competitive inhibition
consists of measurements of reaction rates for different
concentrations both substrate and inhibitor. The entire
dataset is fit to the competitive model and so the data
cannot be in a 'wide' form with a column for each
inhibitor concentration. Instead, we will have a ‘long’
form dataframe with three columns: substrate
concentration, inhibitor concentration and measured
rate for each experimental measurement.

conc <- c(3.9,1.9,0.7,0.5,0.4,0.3,3.9
,1.9,0.7,0.5,0.4,0.3,3.9,1.9,0.7,0.5,
0.4,0.3,3.9,1.9,0.7,0.5,0.4,3.9,1.9,0
.7,0.5,0.4)

rate <- c(0.19,0.19,0.18,0.14,0.13,0.
08,0.18,0.17,0.15,0.13,0.11,0.11,0.2,
0.15,0.11,0.1,0.09,0.07,0.16,0.14,0.1
,0.08,0.07,0.16,0.13,0.08,0.08,0.07)
inhibitor <- c(0,0,0,0,0,0,100,100,10
0,100,100,100,300,300,300,300,300,300
,500,500,500,500,500,700,700,700,700,
700)

kic.df <- data.frame(conc, rate,
inhibitor)

plot(kic.df$conc,kic.df$rate)

While this ‘long’ dataframe format is necessary for the
fitting, a downside is obvious in a plot of this data; we
do not visually distinguish which points correspond to
different inhibitor concentrations. However, inhibitor
concentrations are accounted for in the model fitting
and making a more human readable plot will be
covered at the end of this section.

As before, we can fit the competitive inhibition model
using the nls() function, extract the coefficients and
calculate confidence intervals of the parameters.

kic.nls <- nls(rate ~ (Vmax * conc /
(Km*(1+inhibitor/Kic) + conc)),
data=kic.df, start=list(Km=0.5,
Vmax=.2, Kic=300))
summary(kic.nls)

Km <- unname(coef(kic.nls)["Km"])
Vmax <- unname(coef(kic.nls)["Vmax"])
Kic <- unname(coef(kic.nls)["Kic"])

confint(kic.nls)

To plot our line of best fit in R we introduce the very
useful function expand.grid() which creates a data
frame using all combinations of supplied vectors (in
this case x and inhib).

fit.data <- expand.grid(x=(1:40)/10,
inhib=c(0,100,300,500,700))

Using the generated data we calculate rates (y) for the
lines of best fit and graph the results on the raw data
plot.

fit.data$y <- Vmax*fit.data$x/(Km*(1+
fit.data$inhib/Kic)+fit.data$x)
lines(fit.data$x,fit.data$y,
lty="dotted", col="red")

Looking at this example we can see the fit of the result
but it is not so easy to interpret. We want to plot 5
different lines (one for each inhibitor concentration)
but we instead plot one single line which awkwardly
connects all the data at all inhibitor concentrations. For
an initial quick look this may be sufficient.

For a more easily interpreted plot of our data we must

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

take our large data frame and subset it and then plot
lines for each inhibitor concentration separately. We
can do this using the function subset() where the first
argument in the function is the data to be subsetted
(fit.data) and the second argument is the logical
expression that is being evaluated (inhib==0). Watch
for the double equal signs in the logical expression!
The following commands pull out a subset of data
where the concentration of inhibitor is zero, assigns it
to a new data frame fit.0 and plots the result.

fit.0 <- subset(fit.data, inhib==0)
lines(fit.0$x,fit.0$y, lty="dotted",
col="blue")

And then for another concentration of inhibitor:

fit.100 <- subset(fit.data,
inhib==100)
lines(fit.100$x,fit.100$y,
lty="dotted", col="red")

We can imagine that manually creating different data
subsets for each concentration of inhibitor achieves the
plotting result we want but this approach is time
consuming and not a very general solution.
Fortunately, with a bit more sophistication we can
create a more general script using for loops.

Using our data frame kic.df, we want to identify all the
unique concentrations of inhibitor are present using the
function unique().

unique(kic.df$inhibitor)

We then store that value in the vector inhibitor.conc.
Using the function length() we can see there are five
values in inhibitor.conc.

inhibitor.conc <-
unique(kic.df$inhibitor)
length(inhibitor.conc)

Square brackets can be used to identify the n'th value in
a vector. For example, the value of the third entry in
the vector inhibitor.conc is 300.

inhibitor.conc[3]

We can substitute a variable within the square brackets
(in this example i) to identify the same value.

i=3
inhibitor.conc[i]

Using our vector of inhibitor concentrations
(inhibitor.conc) we can subset the data as we saw
previously using the same subset() function.

i=3
subset(kic.df$conc,
kic.df$inhibitor==inhibitor.conc[i])

Then we can plot this subset of values and produce a
plot with only one inhibitor concentration (300 in this
example). The function plot is in the form plot(x,y, col)
- look for the comma separating x and y vectors.

plot(subset(kic.df$conc,
kic.df$inhibitor==inhibitor.conc[i]),
subset(kic.df$rate,
kic.df$inhibitor==inhibitor.conc[i]),
col="blue")

There is one more tool that we need before we can
make our plotting loop, the color. We want each
different concentration in the plot to be shown with a
different color. R can generate a vector of colors with
the rainbow() function where the number in the
brackets is the number of colors to be generated.

rainbow(3)

We can make a vector containing one colour for each
inhibitor concentration in our data frame.

inhib.color <-
rainbow(length(inhibitor.conc))
inhib.color

And the rewritten plot() function with the color
determined by rainbow() will be:

i=3
plot(subset(kic.df$conc,
kic.df$inhibitor==inhibitor.conc[i]),
subset(kic.df$rate,
kic.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i])

Finally, to plot our data we first create an empty plot of
the dimensions that will fit all the data, then we will go
through a loop and plot the rate vs concentration for
each concentration of inhibitor. We could create the
empty plot of the correct size using the function
new.plot() but we will need to specify details such as
axis size and labels manually. As a short-cut we can
create the plot using all the data but with 'invisible'
points (we use the argument pch="", that is, the point
character 'pch' is nothing ""). This way a plot will be
automatically created that will fit the entire dataset.

plot(kic.df$conc,kic.df$rate, pch="")
our blank plot

Now all the components come together in a loop which
loops 5 times (the length of the vector inhibitor.conc)
and for each inhibitor concentration it plots the
substrate concentration versus rate in a different color.
To demonstrate the looping (and as a useful
troubleshooting technique) the function print() will
display values as the loop runs. In this example print(i)
will return the value of i for each loop (1, 2, 3, 4, and
5). The function points() is similar to the function
lines() only it plots points instead of lines.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

for (i in 1:length(inhibitor.conc)) {
 print(i)
 points(subset(kic.df$conc,
kic.df$inhibitor==inhibitor.conc[i]),
subset(kic.df$rate,
kic.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i],
lty=0, pch=1)
}

The advantage of this loop method is that once a script
is written, with the same few short lines of script
different data sets can be displayed without requiring
much extra effort.

To plot the lines of best fit (as calculated using the
function nls() as described earlier in this example) we
generate the data again using the function
expand.grid() and this time instead of manually
specifying the inhibitor concentrations we use the
vector inhibitor.conc.

fit.data <- expand.grid(x=(1:40)/10,
inhib=inhibitor.conc)
fit.data$y <-
Vmax*fit.data$x/(Km*(1+fit.data$inhib
/Kic)+fit.data$x)

Then we use another loop to draw lines of best fit for
each concentration of inhibitor.

for (i in 1:length(inhibitor.conc)) {
 lines(subset(fit.data$x,
fit.data$inhib==inhibitor.conc[i]),
subset(fit.data$y,
fit.data$inhib==inhibitor.conc[i]),
col=inhib.color[i])
}

Script with Uncompetitive, Competitive and Mixed
inhibition
This script uses all the techniques from this paper and
fits data to uncompetitive inhibition, competitive
inhibition and mixed inhibition models. It plots all the
data and the fits as well as the residuals from the
fitting. Finally, it plots the Lineweaver-Burk
transformation of the data with fits for visual
confirmation. No new techniques are presented here
and so there is no explanation. Remember, in the R
environment each new plot that is generated overwrites
the previous plot so if you run the entire script at once
you will only see the last plot generated. If R studio is
used all plots are not overwritten as they are generated.

Script with Uncompetitive, Competitive and Mixed inhibition

Fit multiple types of inhibition
input the raw data into a data frame
conc <-
c(3.9,1.9,0.7,0.5,0.4,0.3,3.9,1.9,0.7,0.5,0.4,0.3,3.9,1.9,0.7,0.5,0.4,0.
3,3.9,1.9,0.7,0.5,0.4,3.9,1.9,0.7,0.5,0.4)
rate <-
c(0.19,0.19,0.18,0.14,0.13,0.08,0.18,0.17,0.15,0.13,0.11,0.11,0.2,0.15,0
.11,0.1,0.09,0.07,0.16,0.14,0.1,0.08,0.07,0.16,0.13,0.08,0.08,0.07)
inhibitor <-
c(0,0,0,0,0,0,100,100,100,100,100,100,300,300,300,300,300,300,500,500,50
0,500,500,700,700,700,700,700)

ki.df <- data.frame(conc,rate,inhibitor)
ki.df$inv.conc <- 1/ki.df$conc
ki.df$inv.rate <- 1/ki.df$rate

determine concentrations of inhibitor used in experiment
inhibitor.conc <- unique(ki.df$inhibitor)

create colors for each inhibitor concentration
inhib.color <- rainbow(length(inhibitor.conc))

perform the fittings
kic.nls <- nls(rate ~ (Vmax * conc / (Km*(1+inhibitor/Kic) + conc)),
data=ki.df, start=list(Km=0.5, Vmax=.2, Kic=300))
mixed.nls <- nls(rate ~ (Vmax * conc / (Km*(1+inhibitor/Kic) +
conc*(1+inhibitor/Kiu))), data=ki.df, start=list(Km=0.5, Vmax=.2,
Kic=300, Kiu=100))
kiu.nls <- nls(rate ~ (Vmax * conc / (Km + conc*(1+inhibitor/Kiu))),
data=ki.df, start=list(Km=0.5, Vmax=.2, Kiu=100))

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

generate a summary of the fits
summary(kic.nls)
summary(mixed.nls)
summary(kiu.nls)

extract coefficients - competitive inhibition
kic.Km <- unname(coef(kic.nls)["Km"])
kic.Vmax <- unname(coef(kic.nls)["Vmax"])
kic.Kic <- unname(coef(kic.nls)["Kic"])

extract coefficients - mixed inhibition
mixed.Km <- unname(coef(mixed.nls)["Km"])
mixed.Vmax <- unname(coef(mixed.nls)["Vmax"])
mixed.Kic <- unname(coef(mixed.nls)["Kic"])
mixed.Kiu <- unname(coef(mixed.nls)["Kiu"])

extract coefficients - uncompetitive inhibition
kiu.Km <- unname(coef(kiu.nls)["Km"])
kiu.Vmax <- unname(coef(kiu.nls)["Vmax"])
kiu.Kiu <- unname(coef(kiu.nls)["Kiu"])

use the values directly in the equation to calculate line of best fit
fit.data <- expand.grid(x=(1:40)/10, inhib=inhibitor.conc)
fit.data$inv.x <- 1/fit.data$x
fit.data$kic.y <-
kic.Vmax*fit.data$x/(kic.Km*(1+fit.data$inhib/kic.Kic)+fit.data$x)
fit.data$mixed.y <-
mixed.Vmax*fit.data$x/(mixed.Km*(1+fit.data$inhib/mixed.Kic)+fit.data$x*
(1+fit.data$inhib/mixed.Kiu))
fit.data$kiu.y <-
kiu.Vmax*fit.data$x/(kiu.Km+fit.data$x*(1+fit.data$inhib/kiu.Kiu))
fit.data$inv.kic.y <- 1/fit.data$kic.y
fit.data$inv.mixed.y <- 1/fit.data$mixed.y
fit.data$inv.kiu.y <- 1/fit.data$kiu.y

############ Plot Data and Best Fit #############

plot lines of best fit - competitive
generate a blank plot and then plot the raw data
plot(ki.df$conc,ki.df$rate, pch="", main="Competitive")
for (i in 1:length(inhibitor.conc)) {
 points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]),
subset(ki.df$rate, ki.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i], pch=1)
}
for (i in 1:length(inhibitor.conc)) {
 lines(subset(fit.data$x, fit.data$inhib==inhibitor.conc[i]),
subset(fit.data$kic.y, fit.data$inhib==inhibitor.conc[i]),
col=inhib.color[i])
}

plot lines of best fit - mixed
generate a blank plot and then plot the raw data
plot(ki.df$conc,ki.df$rate, pch="", main="Mixed")
for (i in 1:length(inhibitor.conc)) {
 points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]),
subset(ki.df$rate, ki.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i], pch=1)
}
for (i in 1:length(inhibitor.conc)) {
 lines(subset(fit.data$x, fit.data$inhib==inhibitor.conc[i]),
subset(fit.data$mixed.y, fit.data$inhib==inhibitor.conc[i]),
col=inhib.color[i])
}

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

plot lines of best fit - uncompetitive
generate a blank plot and then plot the raw data
plot(ki.df$conc,ki.df$rate, pch="", main="Uncompetitive")
for (i in 1:length(inhibitor.conc)) {
 points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]),
subset(ki.df$rate, ki.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i], pch=1)
}
for (i in 1:length(inhibitor.conc)) {
 lines(subset(fit.data$x, fit.data$inhib==inhibitor.conc[i]),
subset(fit.data$kiu.y, fit.data$inhib==inhibitor.conc[i]),
col=inhib.color[i])
}

############ Plot Residuals #############

look at residuals and plot
ki.df$kic.resid<- resid(kic.nls)
ki.df$mixed.resid<- resid(mixed.nls)
ki.df$kiu.resid<- resid(kiu.nls)

plot Residuals - competitive
generate a blank plot and then plot the raw data
plot(ki.df$conc,ki.df$kic.resid, pch="", main="Residuals - Competitive")
for (i in 1:length(inhibitor.conc)) {
 points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]),
subset(ki.df$kic.resid, ki.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i], pch=1)
}

plot Residuals - mixed
generate a blank plot and then plot the raw data
plot(ki.df$conc,ki.df$mixed.resid, pch="", main="Residuals - Mixed")
for (i in 1:length(inhibitor.conc)) {
 points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]),
subset(ki.df$mixed.resid, ki.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i], pch=1)
}

plot Residuals - uncompetitive
generate a blank plot and then plot the raw data
plot(ki.df$conc,ki.df$kiu.resid, pch="", main="Residuals -
Uncompetitive")
for (i in 1:length(inhibitor.conc)) {
 points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]),
subset(ki.df$kiu.resid, ki.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i], pch=1)
}

############ Plot Lineweaver Burk #############

plot lines of best fit - competitive
generate a blank plot and then plot the raw data
plot(ki.df$inv.conc,ki.df$inv.rate, pch="", main="Lineweaver Burk -
Competitive")
for (i in 1:length(inhibitor.conc)) {
 points(subset(ki.df$inv.conc, ki.df$inhibitor==inhibitor.conc[i]),
subset(ki.df$inv.rate, ki.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i], pch=1)
}
for (i in 1:length(inhibitor.conc)) {
 lines(subset(fit.data$inv.x, fit.data$inhib==inhibitor.conc[i]),
subset(fit.data$inv.kic.y, fit.data$inhib==inhibitor.conc[i]),

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

col=inhib.color[i])
}

plot lines of best fit - mixed
generate a blank plot and then plot the raw data
plot(ki.df$inv.conc,ki.df$inv.rate, pch="", main="Lineweaver Burk -
Mixed")
for (i in 1:length(inhibitor.conc)) {
 points(subset(ki.df$inv.conc, ki.df$inhibitor==inhibitor.conc[i]),
subset(ki.df$inv.rate, ki.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i], pch=1)
}
for (i in 1:length(inhibitor.conc)) {
 lines(subset(fit.data$inv.x, fit.data$inhib==inhibitor.conc[i]),
subset(fit.data$inv.mixed.y, fit.data$inhib==inhibitor.conc[i]),
col=inhib.color[i])
}

plot lines of best fit - uncompetitive
generate a blank plot and then plot the raw data
plot(ki.df$inv.conc,ki.df$inv.rate, pch="", main="Lineweaver Burk -
Uncompetitive")
for (i in 1:length(inhibitor.conc)) {
 points(subset(ki.df$inv.conc, ki.df$inhibitor==inhibitor.conc[i]),
subset(ki.df$inv.rate, ki.df$inhibitor==inhibitor.conc[i]),
col=inhib.color[i], pch=1)
}
for (i in 1:length(inhibitor.conc)) {
 lines(subset(fit.data$inv.x, fit.data$inhib==inhibitor.conc[i]),
subset(fit.data$inv.kiu.y, fit.data$inhib==inhibitor.conc[i]),
col=inhib.color[i])

}

References

Bowden, A.C. 2004. Fundamentals of Enzyme Kinetics (3rd Edition). Marseilles, France: Portland Press Ltd.

Cook, P.F. and Cleland, W.W. 2007. Enzyme Kinetics and Mechanism. New York, NY: Garland Science.

Dowd, J.E. and Riggs, D.S. 1965. A comparison of estimates of Michaels-Menten kinetic constants from various linear
transformations. The Journal of Biological Chemistry. 240(2):863-896

Kemmer, G. and Keller, S. 2010. Nonlinear least-squares data fitting in Excel spreadsheets. Nature Protocols. 5(2):267-
281

Namanja, Magliano, H.A., Stratton, C.F., and Schramm, V.L. 2016. Transition State Structure and Inhibition of
Rv0091, a 5′-Deoxyadenosine/5′-methylthioadenosine Nucleosidase from Mycobacterium tuberculosis. ACS Chemical
Biology. 11(6):1669-1676

Rodbard, D. and Frazier, G.R. 1975. Statistical Analysis of Radioligand Assay Data. Methods in Enzymology. 37:3-22

Schramm, V.L. 2015. Transition States and transition state analogue interactions with enzymes. Accounts of Chemical
Research. 48(4):1032-1039

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 16, 2018. ; https://doi.org/10.1101/316588doi: bioRxiv preprint

https://doi.org/10.1101/316588
http://creativecommons.org/licenses/by-nc-nd/4.0/

