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Abstract 
 
We describe a powerful tool for enzymologists to use for typical non-linear fitting of common equations in enzyme 
kinetics using the statistical program R. Enzyme kinetics is a powerful tool for understanding enzyme catalysis, 
regulation, and inhibition but tools to perform the analysis have limitations. Software to perform the necessary non-
linear analysis may be proprietary, expensive or difficult to use, especially for a beginner. The statistical program R is 
ideally suited to analyzing enzyme kinetic data; it is free in two respects: there is no cost and there is freedom to 
distribute and modify. It is also robust, powerful and widely used in other fields of biology. In this paper we introduce 
the program R to enzymologists who want to analyze their data but are unfamiliar with R or similar command line 
statistical analysis programs. Data are inputted and examples of different non-linear models are fitted. Results are 
extracted and plots are generated to assist judging the goodness of fit. The instructions will allow users to create their 
own modifications to adapt the protocol to their own experiments. Because of the use of scripts, a method can be 
modified and used to analyze different datasets in less than one hour. 
 
Introduction 
 
Enzyme kinetics is a powerful tool for understanding 
enzyme catalysis, regulation, and inhibition. For 
example, details about transition state structures 
garnered from kinetic isotope effects on steady-state 
rate constants continues to inform the design of 
powerful transition state analog inhibitors of 
therapeutic value (Schramm, 2015, and Namanja-
Magliano, Stratton, and Schramm, 2016). Moreover, 
the pioneering work of Cleland and many others over 
the last four decades has democratized enzyme kinetics 
so that it is no longer necessarily confined to specialists 
(Cook and Cleland, 2007). However, this 
popularization beyond the specialist community has 
driven demand for non-linear regression analysis 
software that is accessible to the non-specialist but also 
powerful enough to satisfy more advanced analyses. 
Although several commercial mathematical software 
packages exist, their costs can be prohibitive for labs in 
developing nations or other cost-conscious researchers. 
Standard software packages such as Excel can be 
adapted for these purposes (Kemmer and Keller, 2010), 
but the proprietary nature of the software makes 
customization difficult and presents a barrier to open 
science. Furthermore, spreadsheets are notorious for 
easy calculation mistakes and they are difficult to error 
check, test and validate because code is hidden away in 
tens or even hundreds of different cells. Proprietary 
software can also be a problem when expertise with 
one particular software tool becomes obsolete after 
moving to another organization that uses a different 
software package. Web-based tools offer a poor and 
partial solution, as they can be difficult to verify and 
transient in nature; a webpage used today may not be 
around tomorrow and a user has no ability to judge if 
the implementation is without error. 
 
The statistical program R is an incredibly robust and 
powerful program that is widely used in life sciences 
for applications ranging from basic model fitting to 
large-scale analysis of gene expression data. It is open 

source, free to use, and available for multiple operating 
systems (Windows, Mac and Linux). From a training 
perspective, effort spent learning how to work in the R 
environment represents an easily transferable skill. 
However, with the robustness and flexibility of R 
comes a barrier to entry, as researchers may feel 
intimidated by its command line nature and lack of a 
user-friendly interface. Herein we provide a step-by-
step guide for analyzing enzyme kinetic data in R, with 
the goal of increasing the accessibility to 
enzymologists of this powerful and free program. For 
the reader’s convenience we have included scripts as 
downloadable files in the supplemental online material. 
 
Getting started with R 
 
The R program (a GNU project) can be acquired from 
the project webpage https://www.r-project.org/ by 
following the download and installation instructions for 
your specific operating system. Work in R is done 
using a command line and this program is sufficient for 
all analyses presented here. R Studio is a free and 
open-source integrated development environment for 
R. The base program R remains the same and work is 
still done using the command line. However, additional 
features (such as script integration and variable 
display) are added for easier development. There are 
many excellent tutorials and courses available online 
and in textbooks for an interested reader to get started 
using R (an excellent resource is the manuals available 
on the R project page: https://cran.r-project.org/). Here 
only the most basic introduction is given to provide the 
reader with the necessary starting point to perform the 
analyses described in this paper.  
 
Methods of inputting data into R 
 
When R is started the user is presented with a prompt 
">" and can enter commands. R can be used as a 
calculator, for example: 
 
2^4 * 10 + log10(100) 
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gives a result of: 
 
162 
 

We can also use R to print out lists of numbers, for 
example: 
 

-5:5  # anything after a pound/hash 
symbol is a comment and is ignored by 
R 
 

gives a result of: 
 
-5 -4 -3 -2 -1  0  1  2  3  4  5 
 

An easy trick for lists is to multiply or divide the result: 
 

-5:5/10 
 

gives a result of: 
 

-0.5 -0.4 -0.3 -0.2 -0.1  0.0  0.1  
0.2  0.3  0.4  0.5 
 
In R you can also work with variables that have been 
assigned values. The "=" symbol can be used to assign 
the value to a variable. However, the symbol "<-" is the 
more general assignment symbol than the "=" symbol 
and to avoid using both assignment symbols in this 
paper only "<-" will be used here. 
 
a <- 2 
 
a (not A as R is case sensitive) has been assigned the 
value of 2. Now the variable "a" can be used in 
calculations, for example: 
 
a * 10 
 
gives the result: 
 
20 
 
In evaluating enzyme kinetics, two of the most useful 
formats of storing data are in vectors and data frames. 
For example, the different concentrations of substrate 
used in an experiment can be stored in the vector 
conc.uM, using the function c() where c is short form 
for concatenate or paste together. The same can be 
done with the rate results. 
 
conc.uM <- c(0.5,1,2.5,3.5,5,7.5,10,1
5,25,50,70,75,100) 
rate <- c(0.6,1.1,2.1,2.3,3.7,3.,4.3,
4.8,5.3,6.0,5.1,5.7,5.8) 
 
The up arrow cycles through previously typed 
commands and can be useful to change something if 
you have made a mistake.  
 
In enzyme kinetics the best way to organize 
experimental data in R is with a very important and 
useful data structure called a data frame. Data frames 
are used for storing tables of data consisting of 

columns of values. In a data frame the columns are 
named (for example conc.uM and rate) and can be 
referred to by name. To put our two vectors into a data 
frame called exp1.df we use the function data.frame(). 
 
exp1.df <- data.frame(conc.uM, rate) 
 
and to look at the contents of our data frame simply 
type the variable name: 
 
exp1.df 
 
To access a column by name we use the $ symbol: 
 
exp1.df$conc.uM 
 
If you have a very large data frame you may only want 
to look at a portion of it to check the structure of the 
data. The functions head() or tail() will show you the 
first or last 6 entries in the data  frame as well as the 
labels of the columns. 
 
head(exp1.df) 
 
To count the number of rows in the data frame and 
confirm all your data is present use the function 
nrow(). 
 
nrow(exp1.df) 
 
We can perform different operations on the data in the 
data frame including adding new data. For example, 
before we perform further analysis we may want to 
work with the concentration in nM instead of µM. We 
can add another column to the data frame where we 
multiply exp1.df$conc.uM by 1000 to give us 
concentrations in nM with the command: 
 
exp1.df$conc.nM <- exp1.df$conc.uM * 
1000 
 
If you look at the contents of the data frame exp1.df 
now you will see the addition of a third column named 
conc.nM with the concentrations now expressed in nM. 
 
We have been creating objects in R and we can see all 
the objects that have been created in the current R 
session by using the function ls(). 
 
ls() 
 
To remove all these objects we have created we use the 
command rm(list=ls()). Briefly, the command 
rm(list="") will remove all objects passed (using the 
"=" sign) to the argument "list". If we pass all objects 
in the R environment with the function ls(), we will 
remove all objects.  
 
rm(list=ls()) 
 
You can also remove specific objects using this 
command, for example with rm(list=c("conc.uM", 
"rate")). 
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Data can be added manually to R using the functions 
c() and dataframe(), however, it can be easier to input 
the data from a .csv file which can be the output of 
many programs including Excel. 
 
The read.csv() function reads data from a .csv file and 
puts it directly in a data frame. It assumes that the first 
row specifies the names of your columns but if this is 
not the case you can add the argument 
"header=FALSE" to the function. 
 
exp1.df <- read.csv("filename.csv", 
header=TRUE) 
 
To know which folder/directory that R is looking in for 
your data file (your current working directory) use the 
function getwd(). 
 
To avoid the challenge of different computers with 
different working directories, in all examples in this 
paper the data will be inputted directly rather than read 
from a file. In this manner, all the scripts are complete 
and no extra data files are needed. 
 
Finally, rather than typing the commands into R 
directly each time analysis is performed, the commands 
can be put in a simple text file (the script file) using an 
editor such as notepad in the Windows environment, 
and then copied and pasted directly into R. In this way, 
the commands used to generate the data can be saved 
and then put with the data as a record of analysis, and 
copied and modified with each new experiment. After 
gaining familiarity with R, users are encouraged to 
learn the feature rich R Studio program, which better 
integrates scripts into the R environment. 
 
 
Plotting data 
 
Data plotting in R is robust, with many examples 
available on the internet demonstrating all that R is 
capable of. However, here we will only describe the 
most basic plotting techniques that will be useful for 
fitting enzyme kinetics. The reader may decide if they 
prefer to export the data and prepare figures in their 
chosen program or to learn more about plotting in R 
from other resources. 
 
Before any analysis of an enzyme kinetic experiment, 
the experimental results should be examined on a plot 
using the function plot(x,y) where x is the vector of 
values for the x axis and y the vector of values for the y 
axis. Using this dataset: 
 
conc.uM <- c(0.5,1,2.5,3.5,5,7.5,10,1
5,25,50,70,75,100) 
rate <- c(0.6,1.1,2.1,2.3,3.7,3.,4.3,
4.8,5.3,6.0,5.1,5.7,5.8) 
 
We can plot rate vs concentration with the command: 
 
plot(conc.uM, rate) 

 
In this example, the x and y axis will have labels with 
the name of the variables. To have our own custom 
title and axis labels we add a few arguments to the 
plot() function with the command: 
 
plot(conc.uM, rate, main="Plot 
Title", xlab="conc (uM)", ylab="rate 
(uM/min)") 
 
It is also useful to add lines to our plot, perhaps the line 
of best fit after we have fit our model to the data. We 
can add lines to our plot with the function lines(x, y, 
lty, col) where lty is line type and col is the color of the 
line. 
 
lines(conc.uM, rate, lty="dotted", 
col="red") 
 
For this example, we are simply joining the points of 
data, which is not very useful. However, once we have 
performed a fit we can generate a set of theoretical x, y 
data points using the solved parameters and use them 
to draw a smooth line on our plot showing our fit. 
 
Fitting the Michaelis-Menten equation 
 
The Michaelis-Menten equation is the fundamental 
equation of enzyme kinetics (Bowden, 2004) and has 
the typical format of: 
 
v = Vmax [S]/ (KM + [S]) 
 
Vmax is the maximum theoretical reaction rate where 
additional substrate does not noticeably increase the 
substrate turnover (Vmax is theoretical because it is at 
the asymptote that the fitted curve will never reach). 
KM is the Michaelis constant and often oversimplified 
in being described as the affinity of the enzyme for the 
substrate. The Michaelis constant is always the 
concentration of substrate ([S]) where the rate v is half 
that of Vmax. 
 
The plot of results from an experiment to determine KM 
and Vmax has substrate concentration [S] on the x-axis 
and reaction rate v on the y-axis. Prior to the era of 
personal computing it was acceptable to transform this 
data into a linear format (typically the Lineweaver-
Burk plot) in order to generate a fit for the data and 
determine KM and Vmax. However, today it is 
recommended to fit the Michaelis-Menten equation 
directly to the data using nonlinear least-squares fitting. 
 
An excellent introduction to nonlinear least-squares 
fitting and how to perform this fitting in Excel is 
described by Kemmer and Keller (2010). Unlike linear 
regression there is no analytical solution to the fitting, 
instead a fit is determined through trial and error. The 
fitting algorithm begins with estimated starting values 
and attempts to lower the sum of square of errors (the 
difference between expected and calculated values, 
squared) by altering the parameters until a minimum is 
reached (or the algorithm cannot find a solution). In 
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this process there is no guarantee that a global 
minimum has been obtained. As only a local minimum 
is found, a good estimate of starting parameters is 
important. 
 
Here are the commands for performing a fit followed 
by detailed instruction and description. 
 
# Fit Michaelis-Menten equation 
# input the data and plot 
conc <- c(0.5,1,2.5,3.5,5,7.5,10,15,2
5,50,70,75,100) 
rate <- c(0.6,1.1,2.1,2.3,3.7,3.,4.3,
4.8,5.3,6.0,5.1,5.7,5.8) 
test.df <- data.frame(conc,rate) 
plot(test.df$conc,test.df$rate) 
 
# perform the fitting 
mm.nls <- nls(rate ~ (Vmax * conc / 
(Km + conc)), data=test.df, 
start=list(Km=5, Vmax=6)) 
summary(mm.nls) 
 
# extract coefficients  
Km <- unname(coef(mm.nls)["Km"]) 
Vmax <- unname(coef(mm.nls)["Vmax"]) 
 
# plot data and plot line of best fit 
x <- c(0:100) 
y <- (Vmax*x/(Km+x)) 
lines(x,y, lty="dotted", col="blue") 
 
# confidence intervals of parameters 
confint(mm.nls) 
 
# look at residuals and plot 
mm.resid <- resid(mm.nls) 
plot(test.df$conc, mm.resid) 
 
# add weighting to fit 
test.df$weight <- 1/test.df$conc^2 
mm.weight.nls <- nls(rate ~ (Vmax * 
conc / (Km + conc)), data=test.df, 
start=list(Km=5, Vmax=6), 
weight=test.df$weight) 
summary(mm.weight.nls) 
 
To begin with fitting, we will start by entering data, 
putting it into a data frame and plotting the data to 
evaluate the potential for fitting using the commands: 
 
conc <- c(0.5,1,2.5,3.5,5,7.5,10,15,2
5,50,70,75,100) 
rate <- c(0.6,1.1,2.1,2.3,3.7,3.,4.3,
4.8,5.3,6.0,5.1,5.7,5.8) 
test.df <- data.frame(conc,rate) 
test.df    
# have a look at your data 
plot(test.df$conc,test.df$rate) 
 
By examining the plot we can see that the data appears 
suitable for fitting a Michaelis-Menten curve and from 
the plot we can estimate initial starting values for the 
parameters KM and Vmax. In this example, good 

estimates of Vmax and KM would be 6 and 5 
respectively. 
 
In R, the function for fitting using nonlinear least-
squares is nls() and there are several arguments that 
must be passed in the function for proper analysis. 
First, the command: 
 
mm.nls <- nls(formula(rate ~ (Vmax * 
conc / (Km + conc))), data=test.df, 
start=list(Km=5, Vmax=6)) 
 
The formula to be fit is the first argument 
“formula(rate ~ (Vmax *conc/(Km + conc))”. rate and 
conc are variables that match the column names in the 
data frame test.df and Vmax and KM are parameters that 
we wish to solve for. We specify which data frame to 
be used in the fitting using the argument data=test.df. 
Finally, we must give the function starting values for 
the two parameters that we wish to solve with the 
argument start=list(Km=5, Vmax=6). The names of 
these variables and parameters must match either 
column labels in the data frame or listed in the starting 
values or R will serve the user an error. Note that the 
arguments are separated by commas. The result of the 
fitting is saved in the object mm.nls. It contains 
information from the fit including estimates of the 
parameters, test statistics, residuals etc. 
 
We can add an additional argument trace=TRUE or 
FALSE to the function nls(), this will show us each 
iteration during the fitting and the different values of 
Vmax and KM that are evaluated and can be useful for 
troubleshooting if the fit is not successful. If the fitting 
fails one of the first things to test is better starting 
values. A fitting may also fail if the data being fit does 
not represent the model. 
 
After the fitting is complete we can view a summary of 
the model including values determined for the 
parameters with the function summary(). 
 
summary(mm.nls)  
 
To see the fit on the plot with the data we first generate 
a vector of x values (concentration) covering the range 
we wish to plot. We use the function c() to create our 
vector with values from 0 to 100. 
 
x <- c(0:100) 
 
Then for each value we calculate the expected rate 
values for each of these concentrations using the values 
of the parameters revealed using the summary() 
function (Vmax=6.069 and Km=4.701). 
 
y <- (6.069*x/(4.701+x)) 
 
Finally, we draw a line on the plot with this generated 
data giving us our line of best fit. The function lines() 
adds to an existing plot, so you must not close a plot 
window when you intend to add lines to your figure. 
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lines(x, y, lty="dotted", col="red") 
 
Rather than copying the values of the parameters 
manually we can extract the coefficients from the 
model using the function coef().   
 
coef(mm.nls) 
 
We can access each coefficient by name (used within 
square brackets and quotes) and then assign the value 
to a new variable. Sometimes a named variable can 
cause problems when using other functions in R so we 
strip the name from the coefficient using the function 
unname(). 
 
Km <- unname(coef(mm.nls)["Km"]) 
Vmax <- unname(coef(mm.nls)["Vmax"]) 
 
Now we can use the values directly in the equation to 
calculate line of best fit: 
 
y.2 <- (Vmax*x/(Km+x)) 
lines(x,y.2, lty="dotted", 
col="blue") 
 
Once we have fit our model we can extract the 
confidence intervals for the parameters from the fit 
object mm.nls using the function confint(). 
 
confint(mm.nls) 
 
Finally, after performing a fit it is important to plot the 
residuals from your fit to determine if the model 
selected is good and if the fit was successful. The 
values of the residuals can be accessed from the fit 
object mm.nls using the function resid(). 
 
mm.resid <- resid(mm.nls) 
plot(test.df$conc, mm.resid) 
 
A common technique when fitting experimental data is 
to weight the fit. To add weighting add another column 
to your data in the data frame with the values for the 
weighting. For example, to weight the low 
concentration values more in the fit we can use an 
equation of weight = 1/conc^2. The following 
command assigns these weighting values to a new 
column in the test.df data frame. 
 
test.df$weight <- 1/test.df$conc^2 
 
To perform nonlinear least-squares analysis with 
weighting we add a new weight argument to our nls() 
function. 
 
mm.weight.nls <- nls(rate ~ (Vmax * 
conc / (Km + conc)), data=test.df, 
start=list(Km=5, Vmax=6), 
weight=test.df$weight) 
 
 
 
 

Fitting Michaelis-Menten equation with substrate 
inhibition 
 
The effect of substrate inhibition can be accounted for 
with a different model: 
 
v = Vmax * conc / (KM + conc * (1 + 
conc / KS)) 
 
Where KS is the parameter that accounts for the 
inhibition of the substrate. However, fitting is very 
similar to the simple Michelis-Menten equation with 
just an additional parameter to the nls() fitting function. 
 
# Fit Michaelis-Menten equation with 
substrate inhibition 
# input the data and plot 
conc <- c(0.01,0.02,0.03,0.04,0.06,0.
08,0.1,0.3,0.3,0.4,0.6,0.8,1,1,2,3,4,
5,5,5,6) 
rate <- c(3.1,5.2,5.6,5.9,7.2,7.6,8.4
,9.2,10.4,10,11,10.9,10.3,10.4,10.1,9
.6,9.4,9.6,8.6,8.7,8.5) 
test.df <- data.frame(conc,rate) 
plot(test.df$conc,test.df$rate) 
 
# perform the fitting, look at plot 
to estimate start values 
mminhib.nls <- nls(rate ~ (Vmax * 
conc / (Km + conc*(1+conc/Ks))), 
data=test.df, start=list(Km=0.2, 
Vmax=11, Ks=1)) 
summary(mminhib.nls) 
 
# extract coefficients  
Km <- unname(coef(mminhib.nls)["Km"]) 
Vmax <- 
unname(coef(mminhib.nls)["Vmax"]) 
Ks <- unname(coef(mminhib.nls)["Ks"]) 
 
# plot data and plot line of best fit 
x <- c(0:60)/10 
y <- (Vmax*x/(Km+x*(1+x/Ks))) 
lines(x,y, lty="dotted", col="blue") 
 
# confidence intervals of parameters 
confint(mminhib.nls) 
 
# look at residuals and plot 
mminhib.resid <- resid(mminhib.nls) 
plot(test.df$conc, mminhib.resid) 
 
Determining IC50  
 
The IC50 of an inhibitor is the concentration of an 
inhibitor where the enzyme activity is half of 
maximum and is done by fitting a four-parameter S-
curve to the experimental data (in this example the 4-
parameter logistic model (Rodbard and Frazier, 1975)) 
using the nls() function in R. First the script is 
presented followed by a description. 
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# Calculate IC50 
# enter the data into a data frame 
and plot 
conc.uM <- c(300,150,75,38,19,5,2,1,0
.6) 
percent.activity <- c(2,7,12,22,36,53
,67,83,85) 
ic50.df <- data.frame(conc.uM, 
percent.activity) 
ic50.df$conc.nM <- ic50.df$conc.uM * 
1000 
ic50.df$logconc.nM <- log10(ic50.df$c
onc.nM) 
plot(ic50.df$logconc.nM,ic50.df$perce
nt.activity) 
 
# estimate initial values of the 
curve by examining the plot 
# add a 4-parameter rodbard curve 
with these initial parameters to the 
plot  
# to check they are reasonable 
initial estimates 
x <- c(2:12/2) 
y <- 0+(80-0)/(1+(x/4)^10) 
lines(x,y, col="red") 
 
# fit the data using the nls() 
function to the 4-parameter logistic 
model 
rodbard.fit <- nls(formula(percent.ac
tivity ~ bot+(top-
bot)/(1+(logconc.nM/logic50)^slope)), 
algorithm="port", data=ic50.df, 
start=list(bot=0, top=80, logic50=4, 
slope=10), lower=c(bot=-Inf, top=-
Inf, logic50=0, slope=-Inf) ) 
 
# generate a summary of the fit 
summary(rodbard.fit) 
 
# extract coefficients 
top <- unname(coef(rodbard.fit)["top"
]) 
bot <- unname(coef(rodbard.fit)["bot"
]) 
logic50 <- unname(coef(rodbard.fit)["
logic50"]) 
slope <- unname(coef(rodbard.fit)["sl
ope"]) 
 
# calculate line of best fit and add 
to plot 
y.fit <- bot+(top-bot)/(1+(x/logic50)
^slope) 
lines(x,y.fit, col="green") 
 
# log scale to linear scale to get 
IC50 
# remember the results are in nM 
10^logic50 
 
The 4-parameter logistic model is of the form y = d + 
(a - d) / (1 + (x/c)^b) where x is the log(conc), y is the 

inhibition (or percent activity) and a, b, c and d are 
parameters. The parameter c is the log(IC50) and is the 
parameter we are interested in. To estimate the initial 
starting values for using in the nls() function examine 
the plotted data. Estimates for a and d are the expected 
highest and lowest y-axis values of the fitted curve 
respectively and c the value of the x-axis at the 
midpoint of inflection of the curve. Parameter b 
controls the steepness of the curve and reasonable 
starting values of b are 10 if the curve curves down (if 
you are graphing percent activity) and -10 if the curve 
goes up (if you are graphing percent inhibition). Initial 
starting values are at best guesses and plotting expected 
curves with the data will help in refining the estimates. 
 
It is important when fitting with the 4-parameter 
logistic model that the log of the concentrations (x) 
must all be positive (x values must all be greater than 
1). The reason is mathematical, when x is negative and 
b is not a whole number (x/c)^b can result in a complex 
number and you will get an error when attempting to fit 
the model. In this example, the concentration of 
inhibitor used in the fit is converted to nM which 
results in no negative values of x. 
 
Fitting competitive inhibition 
 
Competitive inhibition can be described by the model: 
 
v = Vmax * conc / (KM*(1+inhibitor/Kic) 
+ conc) 
 
Fitting competitive inhibition is similar to the fitting of 
Michaelis-Menten data but with some more 
sophistication necessary to make a generally useful 
script; specifically, data subsets and loops. A script for 
fitting competitive inhibition is presented here and a 
description of the script follows. 
 
# Fit competitive inhibition 
# input the raw data into a data 
frame 
conc <- c(3.9,1.9,0.7,0.5,0.4,0.3,3.9
,1.9,0.7,0.5,0.4,0.3,3.9,1.9,0.7,0.5,
0.4,0.3,3.9,1.9,0.7,0.5,0.4,3.9,1.9,0
.7,0.5,0.4) 
rate <- c(0.19,0.19,0.18,0.14,0.13,0.
08,0.18,0.17,0.15,0.13,0.11,0.11,0.2,
0.15,0.11,0.1,0.09,0.07,0.16,0.14,0.1
,0.08,0.07,0.16,0.13,0.08,0.08,0.07) 
inhibitor <- c(0,0,0,0,0,0,100,100,10
0,100,100,100,300,300,300,300,300,300
,500,500,500,500,500,700,700,700,700,
700) 
 
kic.df <- data.frame(conc, rate, 
inhibitor) 
 
# determine concentrations of 
inhibitor used in experiment 
inhibitor.conc <- 
unique(kic.df$inhibitor) 
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# create colors for each inhibitor 
concentration 
inhib.color <- 
rainbow(length(inhibitor.conc)) 
 
# generate a blank plot and then plot 
the raw data 
plot(kic.df$conc,kic.df$rate, pch="") 
for (i in 1:length(inhibitor.conc)) { 
  points(subset(kic.df$conc, 
kic.df$inhibitor==inhibitor.conc[i]), 
subset(kic.df$rate, 
kic.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i], pch=1) 
} 
 
# perform the fitting 
kic.nls <- nls(rate ~ (Vmax * conc / 
(Km*(1+inhibitor/Kic) + conc)), 
data=kic.df, start=list(Km=0.5, 
Vmax=.2, Kic=300)) 
 
# generate a summary of the fit 
summary(kic.nls) 
 
# confidence intervals of parameters 
confint(kic.nls) 
 
# extract coefficients 
Km <- unname(coef(kic.nls)["Km"]) 
Vmax <- unname(coef(kic.nls)["Vmax"]) 
Kic <- unname(coef(kic.nls)["Kic"]) 
 
# use the values directly in the 
equation to calculate line of best 
fit 
fit.data <- expand.grid(x=(1:40)/10, 
inhib=inhibitor.conc) 
fit.data$y <- Vmax*fit.data$x/(Km*(1+
fit.data$inhib/Kic)+fit.data$x) 
 
# plot lines of best fit 
for (i in 1:length(inhibitor.conc)) { 
  lines(subset(fit.data$x, 
fit.data$inhib==inhibitor.conc[i]), 
subset(fit.data$y, 
fit.data$inhib==inhibitor.conc[i]), 
col=inhib.color[i]) 
} 
 
The experimental data for competitive inhibition 
consists of measurements of reaction rates for different 
concentrations both substrate and inhibitor. The entire 
dataset is fit to the competitive model and so the data 
cannot be in a 'wide' form with a column for each 
inhibitor concentration. Instead, we will have a ‘long’ 
form dataframe with three columns: substrate 
concentration, inhibitor concentration and measured 
rate for each experimental measurement. 
 
conc <- c(3.9,1.9,0.7,0.5,0.4,0.3,3.9
,1.9,0.7,0.5,0.4,0.3,3.9,1.9,0.7,0.5,
0.4,0.3,3.9,1.9,0.7,0.5,0.4,3.9,1.9,0
.7,0.5,0.4) 

rate <- c(0.19,0.19,0.18,0.14,0.13,0.
08,0.18,0.17,0.15,0.13,0.11,0.11,0.2,
0.15,0.11,0.1,0.09,0.07,0.16,0.14,0.1
,0.08,0.07,0.16,0.13,0.08,0.08,0.07) 
inhibitor <- c(0,0,0,0,0,0,100,100,10
0,100,100,100,300,300,300,300,300,300
,500,500,500,500,500,700,700,700,700,
700) 
 
kic.df <- data.frame(conc, rate, 
inhibitor) 
 
plot(kic.df$conc,kic.df$rate) 
 
While this ‘long’ dataframe format is necessary for the 
fitting, a downside is obvious in a plot of this data; we 
do not visually distinguish which points correspond to 
different inhibitor concentrations. However, inhibitor 
concentrations are accounted for in the model fitting 
and making a more human readable plot will be 
covered at the end of this section. 
 
As before, we can fit the competitive inhibition model 
using the nls() function, extract the coefficients and 
calculate confidence intervals of the parameters. 
 
kic.nls <- nls(rate ~ (Vmax * conc / 
(Km*(1+inhibitor/Kic) + conc)), 
data=kic.df, start=list(Km=0.5, 
Vmax=.2, Kic=300)) 
summary(kic.nls) 
 
Km <- unname(coef(kic.nls)["Km"]) 
Vmax <- unname(coef(kic.nls)["Vmax"]) 
Kic <- unname(coef(kic.nls)["Kic"]) 
 
confint(kic.nls) 
 
To plot our line of best fit in R we introduce the very 
useful function expand.grid() which creates a data 
frame using all combinations of supplied vectors (in 
this case x and inhib). 
 
fit.data <- expand.grid(x=(1:40)/10, 
inhib=c(0,100,300,500,700)) 
 
Using the generated data we calculate rates (y) for the 
lines of best fit and graph the results on the raw data 
plot. 
 
fit.data$y <- Vmax*fit.data$x/(Km*(1+
fit.data$inhib/Kic)+fit.data$x) 
lines(fit.data$x,fit.data$y, 
lty="dotted", col="red") 
 
Looking at this example we can see the fit of the result 
but it is not so easy to interpret. We want to plot 5 
different lines (one for each inhibitor concentration) 
but we instead plot one single line which awkwardly 
connects all the data at all inhibitor concentrations. For 
an initial quick look this may be sufficient. 
 
For a more easily interpreted plot of our data we must 
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take our large data frame and subset it and then plot 
lines for each inhibitor concentration separately. We 
can do this using the function subset() where the first 
argument in the function is the data to be subsetted 
(fit.data) and the second argument is the logical 
expression that is being evaluated (inhib==0). Watch 
for the double equal signs in the logical expression! 
The following commands pull out a subset of data 
where the concentration of inhibitor is zero, assigns it 
to a new data frame fit.0 and plots the result. 
 
fit.0 <- subset(fit.data, inhib==0) 
lines(fit.0$x,fit.0$y, lty="dotted", 
col="blue") 
 
And then for another concentration of inhibitor: 
 
fit.100 <- subset(fit.data, 
inhib==100) 
lines(fit.100$x,fit.100$y, 
lty="dotted", col="red") 
 
We can imagine that manually creating different data 
subsets for each concentration of inhibitor achieves the 
plotting result we want but this approach is time 
consuming and not a very general solution. 
Fortunately, with a bit more sophistication we can 
create a more general script using for loops. 
 
Using our data frame kic.df, we want to identify all the 
unique concentrations of inhibitor are present using the 
function unique().  
 
unique(kic.df$inhibitor) 
 
We then store that value in the vector inhibitor.conc. 
Using the function length() we can see there are five 
values in inhibitor.conc. 
 
inhibitor.conc <- 
unique(kic.df$inhibitor) 
length(inhibitor.conc) 
 
Square brackets can be used to identify the n'th value in 
a vector. For example, the value of the third entry in 
the vector inhibitor.conc is 300. 
 
inhibitor.conc[3] 
 
We can substitute a variable within the square brackets 
(in this example i) to identify the same value. 
 
i=3 
inhibitor.conc[i] 
 
Using our vector of inhibitor concentrations 
(inhibitor.conc) we can subset the data as we saw 
previously using the same subset() function.  
 
i=3 
subset(kic.df$conc, 
kic.df$inhibitor==inhibitor.conc[i]) 
 

Then we can plot this subset of values and produce a 
plot with only one inhibitor concentration (300 in this 
example). The function plot is in the form plot(x,y, col) 
- look for the comma separating x and y vectors. 
 
plot(subset(kic.df$conc, 
kic.df$inhibitor==inhibitor.conc[i]), 
subset(kic.df$rate, 
kic.df$inhibitor==inhibitor.conc[i]), 
col="blue") 
 
There is one more tool that we need before we can 
make our plotting loop, the color. We want each 
different concentration in the plot to be shown with a 
different color. R can generate a vector of colors with 
the rainbow() function where the number in the 
brackets is the number of colors to be generated. 
 
rainbow(3) 
 
We can make a vector containing one colour for each 
inhibitor concentration in our data frame. 
 
inhib.color <- 
rainbow(length(inhibitor.conc)) 
inhib.color 
 
And the rewritten plot() function with the color 
determined by rainbow() will be: 
 
i=3 
plot(subset(kic.df$conc, 
kic.df$inhibitor==inhibitor.conc[i]), 
subset(kic.df$rate, 
kic.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i]) 
 
Finally, to plot our data we first create an empty plot of 
the dimensions that will fit all the data, then we will go 
through a loop and plot the rate vs concentration for 
each concentration of inhibitor. We could create the 
empty plot of the correct size using the function 
new.plot() but we will need to specify details such as 
axis size and labels manually. As a short-cut we can 
create the plot using all the data but with 'invisible' 
points (we use the argument pch="", that is, the point 
character 'pch' is nothing ""). This way a plot will be 
automatically created that will fit the entire dataset. 
 
plot(kic.df$conc,kic.df$rate, pch="")   
# our blank plot 
 
Now all the components come together in a loop which 
loops 5 times (the length of the vector inhibitor.conc) 
and for each inhibitor concentration it plots the 
substrate concentration versus rate in a different color. 
To demonstrate the looping (and as a useful 
troubleshooting technique) the function print() will 
display values as the loop runs. In this example print(i) 
will return the value of i for each loop (1, 2, 3, 4, and 
5). The function points() is similar to the function 
lines() only it plots points instead of lines. 
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for (i in 1:length(inhibitor.conc)) { 
  print(i) 
  points(subset(kic.df$conc, 
kic.df$inhibitor==inhibitor.conc[i]), 
subset(kic.df$rate, 
kic.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i],  
lty=0, pch=1) 
} 
 
The advantage of this loop method is that once a script 
is written, with the same few short lines of script 
different data sets can be displayed without requiring 
much extra effort. 
 
To plot the lines of best fit (as calculated using the 
function nls() as described earlier in this example) we 
generate the data again using the function 
expand.grid() and this time instead of manually 
specifying the inhibitor concentrations we use the 
vector inhibitor.conc.  
 
fit.data <- expand.grid(x=(1:40)/10, 
inhib=inhibitor.conc) 
fit.data$y <- 
Vmax*fit.data$x/(Km*(1+fit.data$inhib
/Kic)+fit.data$x) 
 

Then we use another loop to draw lines of best fit for 
each concentration of inhibitor. 
 
for (i in 1:length(inhibitor.conc)) { 
  lines(subset(fit.data$x, 
fit.data$inhib==inhibitor.conc[i]), 
subset(fit.data$y, 
fit.data$inhib==inhibitor.conc[i]), 
col=inhib.color[i]) 
} 
 
 
Script with Uncompetitive, Competitive and Mixed 
inhibition 
This script uses all the techniques from this paper and 
fits data to uncompetitive inhibition, competitive 
inhibition and mixed inhibition models. It plots all the 
data and the fits as well as the residuals from the 
fitting. Finally, it plots the Lineweaver-Burk 
transformation of the data with fits for visual 
confirmation. No new techniques are presented here 
and so there is no explanation. Remember, in the R 
environment each new plot that is generated overwrites 
the previous plot so if you run the entire script at once 
you will only see the last plot generated.   If R studio is 
used all plots are not overwritten as they are generated.

 
 
Script with Uncompetitive, Competitive and Mixed inhibition 
 
 

# Fit multiple types of inhibition 
# input the raw data into a data frame 
conc <- 
c(3.9,1.9,0.7,0.5,0.4,0.3,3.9,1.9,0.7,0.5,0.4,0.3,3.9,1.9,0.7,0.5,0.4,0.
3,3.9,1.9,0.7,0.5,0.4,3.9,1.9,0.7,0.5,0.4) 
rate <- 
c(0.19,0.19,0.18,0.14,0.13,0.08,0.18,0.17,0.15,0.13,0.11,0.11,0.2,0.15,0
.11,0.1,0.09,0.07,0.16,0.14,0.1,0.08,0.07,0.16,0.13,0.08,0.08,0.07) 
inhibitor <- 
c(0,0,0,0,0,0,100,100,100,100,100,100,300,300,300,300,300,300,500,500,50
0,500,500,700,700,700,700,700) 
 
ki.df <- data.frame(conc,rate,inhibitor) 
ki.df$inv.conc <- 1/ki.df$conc 
ki.df$inv.rate <- 1/ki.df$rate 
 
# determine concentrations of inhibitor used in experiment 
inhibitor.conc <- unique(ki.df$inhibitor) 
 
# create colors for each inhibitor concentration 
inhib.color <- rainbow(length(inhibitor.conc)) 
 
# perform the fittings 
kic.nls <- nls(rate ~ (Vmax * conc / (Km*(1+inhibitor/Kic) + conc)), 
data=ki.df, start=list(Km=0.5, Vmax=.2, Kic=300)) 
mixed.nls <- nls(rate ~ (Vmax * conc / (Km*(1+inhibitor/Kic) + 
conc*(1+inhibitor/Kiu))), data=ki.df, start=list(Km=0.5, Vmax=.2, 
Kic=300, Kiu=100)) 
kiu.nls <- nls(rate ~ (Vmax * conc / (Km + conc*(1+inhibitor/Kiu))), 
data=ki.df, start=list(Km=0.5, Vmax=.2, Kiu=100)) 
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# generate a summary of the fits 
summary(kic.nls) 
summary(mixed.nls) 
summary(kiu.nls) 
 
# extract coefficients - competitive inhibition 
kic.Km <- unname(coef(kic.nls)["Km"]) 
kic.Vmax <- unname(coef(kic.nls)["Vmax"]) 
kic.Kic <- unname(coef(kic.nls)["Kic"]) 
 
# extract coefficients - mixed inhibition 
mixed.Km <- unname(coef(mixed.nls)["Km"]) 
mixed.Vmax <- unname(coef(mixed.nls)["Vmax"]) 
mixed.Kic <- unname(coef(mixed.nls)["Kic"]) 
mixed.Kiu <- unname(coef(mixed.nls)["Kiu"]) 
 
# extract coefficients - uncompetitive inhibition 
kiu.Km <- unname(coef(kiu.nls)["Km"]) 
kiu.Vmax <- unname(coef(kiu.nls)["Vmax"]) 
kiu.Kiu <- unname(coef(kiu.nls)["Kiu"]) 
 
# use the values directly in the equation to calculate line of best fit 
fit.data <- expand.grid(x=(1:40)/10, inhib=inhibitor.conc) 
fit.data$inv.x <- 1/fit.data$x 
fit.data$kic.y <- 
kic.Vmax*fit.data$x/(kic.Km*(1+fit.data$inhib/kic.Kic)+fit.data$x) 
fit.data$mixed.y <- 
mixed.Vmax*fit.data$x/(mixed.Km*(1+fit.data$inhib/mixed.Kic)+fit.data$x*
(1+fit.data$inhib/mixed.Kiu)) 
fit.data$kiu.y <-
kiu.Vmax*fit.data$x/(kiu.Km+fit.data$x*(1+fit.data$inhib/kiu.Kiu)) 
fit.data$inv.kic.y <- 1/fit.data$kic.y 
fit.data$inv.mixed.y <- 1/fit.data$mixed.y 
fit.data$inv.kiu.y <- 1/fit.data$kiu.y 
 
############ Plot Data and Best Fit ############# 
 
# plot lines of best fit - competitive 
# generate a blank plot and then plot the raw data 
plot(ki.df$conc,ki.df$rate, pch="", main="Competitive") 
for (i in 1:length(inhibitor.conc)) { 
  points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]), 
subset(ki.df$rate, ki.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i], pch=1) 
} 
for (i in 1:length(inhibitor.conc)) { 
  lines(subset(fit.data$x, fit.data$inhib==inhibitor.conc[i]), 
subset(fit.data$kic.y, fit.data$inhib==inhibitor.conc[i]), 
col=inhib.color[i]) 
} 
 
# plot lines of best fit - mixed 
# generate a blank plot and then plot the raw data 
plot(ki.df$conc,ki.df$rate, pch="", main="Mixed") 
for (i in 1:length(inhibitor.conc)) { 
  points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]), 
subset(ki.df$rate, ki.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i], pch=1) 
} 
for (i in 1:length(inhibitor.conc)) { 
  lines(subset(fit.data$x, fit.data$inhib==inhibitor.conc[i]), 
subset(fit.data$mixed.y, fit.data$inhib==inhibitor.conc[i]), 
col=inhib.color[i]) 
} 
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# plot lines of best fit - uncompetitive 
# generate a blank plot and then plot the raw data 
plot(ki.df$conc,ki.df$rate, pch="", main="Uncompetitive") 
for (i in 1:length(inhibitor.conc)) { 
  points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]), 
subset(ki.df$rate, ki.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i], pch=1) 
} 
for (i in 1:length(inhibitor.conc)) { 
  lines(subset(fit.data$x, fit.data$inhib==inhibitor.conc[i]), 
subset(fit.data$kiu.y, fit.data$inhib==inhibitor.conc[i]), 
col=inhib.color[i]) 
} 
 
############ Plot Residuals ############# 
 
# look at residuals and plot 
ki.df$kic.resid<- resid(kic.nls) 
ki.df$mixed.resid<- resid(mixed.nls) 
ki.df$kiu.resid<- resid(kiu.nls) 
 
# plot Residuals - competitive 
# generate a blank plot and then plot the raw data 
plot(ki.df$conc,ki.df$kic.resid, pch="", main="Residuals - Competitive") 
for (i in 1:length(inhibitor.conc)) { 
  points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]), 
subset(ki.df$kic.resid, ki.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i], pch=1) 
} 
 
# plot Residuals - mixed 
# generate a blank plot and then plot the raw data 
plot(ki.df$conc,ki.df$mixed.resid, pch="", main="Residuals - Mixed") 
for (i in 1:length(inhibitor.conc)) { 
  points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]), 
subset(ki.df$mixed.resid, ki.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i], pch=1) 
} 
 
# plot Residuals - uncompetitive 
# generate a blank plot and then plot the raw data 
plot(ki.df$conc,ki.df$kiu.resid, pch="", main="Residuals - 
Uncompetitive") 
for (i in 1:length(inhibitor.conc)) { 
  points(subset(ki.df$conc, ki.df$inhibitor==inhibitor.conc[i]), 
subset(ki.df$kiu.resid, ki.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i], pch=1) 
} 
 
############ Plot Lineweaver Burk ############# 
 
# plot lines of best fit - competitive 
# generate a blank plot and then plot the raw data 
plot(ki.df$inv.conc,ki.df$inv.rate, pch="", main="Lineweaver Burk - 
Competitive") 
for (i in 1:length(inhibitor.conc)) { 
  points(subset(ki.df$inv.conc, ki.df$inhibitor==inhibitor.conc[i]), 
subset(ki.df$inv.rate, ki.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i], pch=1) 
} 
for (i in 1:length(inhibitor.conc)) { 
  lines(subset(fit.data$inv.x, fit.data$inhib==inhibitor.conc[i]), 
subset(fit.data$inv.kic.y, fit.data$inhib==inhibitor.conc[i]), 
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col=inhib.color[i]) 
} 
 
# plot lines of best fit - mixed 
# generate a blank plot and then plot the raw data 
plot(ki.df$inv.conc,ki.df$inv.rate, pch="", main="Lineweaver Burk - 
Mixed") 
for (i in 1:length(inhibitor.conc)) { 
  points(subset(ki.df$inv.conc, ki.df$inhibitor==inhibitor.conc[i]), 
subset(ki.df$inv.rate, ki.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i], pch=1) 
} 
for (i in 1:length(inhibitor.conc)) { 
  lines(subset(fit.data$inv.x, fit.data$inhib==inhibitor.conc[i]), 
subset(fit.data$inv.mixed.y, fit.data$inhib==inhibitor.conc[i]), 
col=inhib.color[i]) 
} 
 
# plot lines of best fit - uncompetitive 
# generate a blank plot and then plot the raw data 
plot(ki.df$inv.conc,ki.df$inv.rate, pch="", main="Lineweaver Burk - 
Uncompetitive") 
for (i in 1:length(inhibitor.conc)) { 
  points(subset(ki.df$inv.conc, ki.df$inhibitor==inhibitor.conc[i]), 
subset(ki.df$inv.rate, ki.df$inhibitor==inhibitor.conc[i]), 
col=inhib.color[i], pch=1) 
} 
for (i in 1:length(inhibitor.conc)) { 
  lines(subset(fit.data$inv.x, fit.data$inhib==inhibitor.conc[i]), 
subset(fit.data$inv.kiu.y, fit.data$inhib==inhibitor.conc[i]), 
col=inhib.color[i]) 

} 
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