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Abstract: 

Mechanical force applied by the actomyosin contractile ring plays an essential role in separating 

the daughter cells during cytokinesis, the last stage of cell division. However, it remains largely 

unknown how the dividing cell senses and adapts to this force. We discovered that fission yeast 

recruit Pkd2p, a putative force-sensing ion channel, to the cell division site in cytokinesis. Pkd2p is 

an essential protein and the homologue of a human mechanosensitive channel polycystin-2 that is 

associated with Autosomal Polycystic Kidney Disease (ADPKD). Depletion of Pkd2p resulted in 

50% faster constriction of the contractile ring, compared to the wild type cells. This led to strong 

defects in the septum assembly and the abscission of daughter cells. The pkd2 mutant also 

showed strong positive genetic interaction with the SIN signaling pathway that regulates fission 

yeast septation. Many pkd2 depleted cells deflated temporarily under mechanical stress, losing 

~30% of their volume. They activated the MAPK kinase Sty1p-mediated stress response 

pathway and suspended many essential cellular processes including mitosis and cytokinesis, 

leading up to their recovery in 30 min. We concluded that Pkd2p attenuates both the contractile 

ring constriction and the SIN pathway in cytokinesis, potentially as a putative force-sensing 

channel.  

Highlight summary for TOC: 

In studying how cells sense the mechanical force in cytokinesis, we discovered that fission yeast 

Pkd2p, a putative mechanosensitive channel, localizes to the cleavage furrow. It attenuates the 

contractile ring constriction and the septation signaling pathway. Its depletion resulted in 

cytokinesis defects, deflated cells and stress responses.  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316380doi: bioRxiv preprint 

https://doi.org/10.1101/316380
http://creativecommons.org/licenses/by-nc-nd/4.0/


    Pkd2p and cytokinesis 

3 
   

Introduction:  

Force plays a central role in separating daughter cells during cytokinesis, the last stage of cell 

division (for review see (Pollard, 2010; Srivastava et al., 2016)). Since Ray Rappaport first 

measured the force required for abscission of daughter cells in cytokinesis (Rappaport, 1967), 

many follow-up studies have demonstrated the contractile ring applies the mechanical force 

through a myosin II-driven process that slides the actin filaments against each other in the ring 

(De Lozanne and Spudich, 1987; Sanger and Sanger, 1980; Straight et al., 2003). However, few 

studies have examined how the dividing cell could sense and adapt to this mechanical force 

required for cytokinesis, except for a few that were focused on the mechanosensitivity of myosin 

II (Effler et al., 2006).  

Cytokinesis in fission yeast Schizosacchromyces pombe is largely conserved in animal 

cells (Pollard and Wu, 2010). Genetic studies have identified in it a large number of cytokinesis 

genes, most of which have homologues in human (Balasubramanian et al., 1998; Johnson et al., 

2012). The molecular numbers of these proteins have also been measured through quantitative 

fluorescence microscopy (Courtemanche et al., 2016; Wu and Pollard, 2005). Similar to animal 

cells, the force generated by the contractile ring plays an important role in fission yeast 

cytokinesis (Stachowiak et al., 2014). The septum, newly synthesized cell wall at the cell 

division site, provides additional compression force required for cytokinesis (Proctor et al., 

2012). Nevertheless, the mechanism of force-sensing in fission yeast cytokinesis remains largely 

unexplored. 

One of the most important force-sensing mechanisms is through the unique activities of 

mechanosensitive channels (Kung, 2005). These force-gated channels respond to mechanical 

cues to regulate homeostasis of intracellular ion concentration, activating the downstream 
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signaling pathways. They were first identified in bacteria as channels that sense osmotic pressure 

(Martinac et al., 1987). Since then, many more such channels have been found in multicellular 

organisms for their role in sensing touch, vibration and flow (Mochizuki et al., 1996; Nauli et al., 

2003; Walker et al., 2000). Many of them belong to the evolutionally conserved transient 

receptor potential (TRP) family of ion channels (Montell and Rubin, 1989) (for review see (Wu 

et al., 2010)), which have also been found in yeast (Palmer et al., 2005; Palmer et al., 2001).  

In this study, we examined whether any of fission yeast TRP channels plays a role in 

cytokinesis. We discovered that one of them Pkd2p is potentially a new regulator of cytokinesis. 

Pkd2p belongs to polycystin-2 subfamily of mechanosensitive channels that are conserved in 

most eukaryotes. Its founding member is human polycystin-2, a calcium-permeable non-selective 

cation channel (Gonzalez-Perrett et al., 2001; Grieben et al., 2017; Shen et al., 2016; Wilkes et 

al., 2017). Loss of function mutations in human polycystin-2 are associated with a common 

hereditary renal disorder Autosomal Polycystic Kidney Disease (ADPKD). Polycystin-2 plays 

important roles in many other developmental processes as well including cardiac development 

and left-right orientation (Pennekamp et al., 2002; Wu et al., 2000) through its mechanosensing 

ability (Nauli et al., 2003). Here we set out to determine the little studied role of Pkd2p in 

cytokinesis.  

Results: 

A putative fission yeast TRP channel Pkd2p localizes to the cell division site  

We examined the cell-cycle dependent localization of all three putative TRP channels in fission 

yeast. We tagged each one of them, Trp663p, Trp1322p and Pkd2p (Aydar and Palmer, 2009; 

Ma et al., 2011; Palmer et al., 2005) with at its C-terminus with mEGFP. Live fluorescence 

microscopy showed that only Pkd2p-mEGFP was recruited to the cell division site during 
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cytokinesis (Fig. 1A and 1B, Movie S1). Neither morphology nor viability of pkd2::pkd2-

mEGFP cells showed any difference from those of the wild type cells (Fig. 1B). Because pkd2 is 

an essential gene (Palmer et al., 2005) (Fig. 2B), we concluded that Pkd2-mEGFP is a functional 

replacement of the endogenous protein that localizes to the cleavage furrow in cytokinesis.  

The localization of Pkd2p is cell-cycle dependent. In interphase, Pkd2p-mEGFP localized 

preferentially to the two poles in addition to the intracellular vesicles (Fig. 1A and Movie S1), 

consistent with what had been found through immunofluorescence microscopy (Palmer et al., 

2005). Quantitative fluorescence microscopy showed that Pkd2p-GFP molecules started to 

accumulate at the cleavage furrow when the contractile ring started to constrict (Fig. 1B and 1C). 

A three-dimension reconstruction of the cleavage furrow showed that Pkd2p-GFP localized in a 

donut-shaped disk that constricted concomitantly with the contractile ring (Fig. 1C). The 

molecular number of Pkd2p-GFP molecules at the furrow reached a peak of ~1,200 when the 

contractile ring constricted completely (Fig. 1D), before their dispersal to the poles of two 

daughter cells (Movie S1).  

The localization of Pkd2p at the cleavage furrow depends on the actin cytoskeleton but 

not on the microtubules. Depolymerization of actin filaments with latrunculin A completely 

displaced Pkd2p-mGFP from the furrow (Fig. 1E). In the absence of the contractile ring in these 

LatA treated cells, Pkd2p localized to discreet puncta on the plasma membrane adjacent to the 

clumps marked by myosin II (Fig. S1A). On the other hand, depolymerization of the 

microtubules by MBC had no effect on the localization of Pkd2p in cytokinesis (Fig. S1B). We 

concluded that Pkd2p, a putative ion channel localized at the cleavage furrow, is likely a novel 

component of the fission yeast cytokinetic machinery.  

Pkd2 is an essential gene required for both cell growth and cell division  
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Pkd2 is the homologue of human polycystin-2, a mechanosensitive ion channel (Palmer et al., 

2005). Fission yeast Pkd2p possesses an MD-2-related lipid-recognition (ML-2) domain (Inohara 

and Nunez, 2002), a central TRP like domain and a C-terminal coiled-coil domain (Fig. 2A). Our 

analysis also showed that the first 23 amino acids of Pkd2p, the predicted signal peptide, will be 

cleaved before the protein reaches its destination.  

We first confirmed that pkd2 is an essential gene (Fig. 2B). Tetrad dissection of 

pkd2+/pkd2Δ showed that pkd2Δ cells were not viable, agreeing with a previous study that used 

random spore analysis (Palmer et al., 2005). Stabilizing cell wall through the addition of 1.2M 

sorbitol in the media did not rescue the viability of pkd2Δ cells (Fig. 2B), suggesting that the 

activity of Pkd2 is required for more than maintaining the cell wall integrity as proposed 

previously (Aydar and Palmer, 2009).  

To determine the function of Pkd2p in cytokinesis, we made three pkd2 mutants by 

replacing its endogenous promoter with one of three fission yeast inducible promoters, P3nmt1 

(strong), P41nmt1 (intermediate) or P81nmt1 (weak) respectively (Basi et al., 1993; Maundrell, 

1990). We examined both viability and morphology of three mutants under either suppressing or 

inducing condition (Fig. 2C). As we expected, pkd2::P41nmt1-pkd2 cells appeared 

indistinguishable from the wild type cells under either conditions. Surprisingly, over-expression 

of Pkd2p in pkd2::P3nmt1-pkd2 cells under the inducing condition had no apparent effect on 

either their viability or morphology (Fig. 2C). In comparison, depletion of Pkd2p under the 

suppressing condition, in pkd2::P81nmt1-pkd2 which we would refer to as pkd2-81KD from this 

point on, induced a wide range of defects.  

Depletion of Pkd2p resulted in strong defects in both cell morphology and cell growth. 

These pkd2 mutant cells are 10% wider and more irregular shaped than the wild type cells, 
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defects that were largely rescued by restoring the expression of Pkd2p (Fig. 2C). They were also 

hypersensitive to high concentration of salts (Fig. 2D). We found that the mutant was most 

sensitive to CaCl2 but it was also sensitive to KCl and MgCl2 (Fig. 2D).  

We found that depletion of Pkd2p resulted in a particularly strong defect in the separation 

of daughter cells, the last stage of cytokinesis. The fraction of pkd2-81KD cells with septum was 

about three times higher than that of the wild type cells (Fig. 3A and 3B). We compared the 

process of daughter cell separation in the wild type cells to that in the pkd2 mutant cells with 

time-lapse bright field microscopy that could readily identify the septum (Fig. 3C). After the 

septum assembled at the cell division site of a wild type cell, it gradually thinned out in 59 ± 8 

mins (average ± standard deviation), coinciding with the abscission of daughter cells (Fig. 3D). 

In comparison, the septum of the pkd2 mutant cells often persisted for a very long time (Fig. 3C). 

During this period, the likely defective septum thickened continuously and swing from side to 

side, appearing to be under pressure (Fig. 3C). Overall, it took almost twice as long, 111 ± 21 

min for the pkd2 mutant cells to assemble the septum and separate the daughter cells. Many 

mutant cells failed to abscise at all in more than 2 hrs (Fig. 3D and Movie S2). We concluded 

that Pkd2p is essential for the abscission of daughter cells in cytokinesis.  

Pkd2p modulates the constriction of the contractile ring in cytokinesis 

To understand the molecular role of Pkd2p in cytokinesis, we first analyzed the assembly, the 

maturation and the constriction of the contractile ring in pkd2-81KD cells. The abscission in 

fission yeast cytokinesis depends on the septum, whose placement and expansion are tightly 

coupled to the contractile ring. The contractile ring is assembled ~10 min after the separation of 

the spindle pole bodies (SPB) (Wu et al., 2003), a process that requires the activity of Myo2p, 

Cdc12p and cofilin (Balasubramanian et al., 1998; Chang et al., 1997; Chen and Pollard, 2011). 
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During the maturation, the contractile ring continues to add actin filaments (Courtemanche et al., 

2016) and recruits many other cytokinesis proteins (Wu et al., 2003). This is followed by the 

Myo2p-driven constriction of the contractile ring which lasts ~30 min (Laplante et al., 2015; 

Mishra et al., 2013). To facilitate the quantitative analysis, we used the separation of SPBs, 

marked by Sad1p-mEGFP, as the reference point (time zero, (Wu et al., 2003)) and myosin light 

chain, Rlc1p, tagged with tdTomato, as a marker for the contractile ring (Fig. 4A). 

We found no significant defect in the contractile ring assembly and maturation in pkd2-

81KD cells (Fig. 4A and 4B, Movie S3 and S4). The assembly of the contractile ring was slightly 

slower in the mutant cells, compared to that of the wild type cells while the maturation remained 

largely unchanged (Fig. 4A). Combined, these two processes only took slighter longer time in 

the mutant than they did in the wild type cells (29 ± 4 vs. 25 ± 4 mins, average ± standard 

deviation, P < 0.001) (Fig. 4B).  

In contrast, we found that the contractile ring constricted much faster in the pkd2 mutants, 

than it did in the wild type cells. The rate of the ring constriction in the wild type cells was 0.30 

± 0.04 µm/min (Fig. 4C-4E), in line with previously published results (Chen and Pollard, 2011; 

Laplante et al., 2015). Depletion of Pkd2p increased the constriction rate by more than 50% to 

0.47 ± 0.07 µm/min (Fig. 4C-4E, P < 0.0001). Conversely, the duration of the ring constriction 

was reduced significantly in these cells (Fig. 4C). We concluded that a key function of Pkd2p in 

cytokinesis is to attenuate the contractile ring constriction, but how this is linked to the defect in 

the separation of daughter cells in pkd2-81KD remained unexplained.  

To answer this question, we examined the septum assembly during the abscission in these 

pkd2 mutant cells. Fission yeast cytokinesis requires the septum which expands in sync with the 

contractile ring constriction. Its assembly at the cell division site requires at least four glucan 
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synthases, including Bgs1p for the primary septum and Bgs4p for the secondary septum 

respectively (Cortes et al., 2012; Liu et al., 1999; Munoz et al., 2013). Both GFP-Bgs1p and 

GFP-Bgs1p localized to the cell division site in the mutant cells, similar to how they localized in 

the wild type cells (Fig. 5A). However, we found with quantitative fluorescence microscopy that 

the number of GFP-Bgs1p molecules decreased by ~20% but the number of GFP-Bgs4p 

molecules increased by ~50% at the cell division site of the pkd2 mutant, compared to the wild 

type cells (Fig. 5B-5E). The decrease of GFP-Bgs1p molecules in the septum of the mutant cells 

was expected, given these cells had less time to recruit them to the cell division site because of 

the faster ring constriction compared to the wild type cells (Fig. 5B ad 5D). The increase of GFP-

Bgs4p in the septum was surprising, which may be a compensating mechanism by the cells.  As 

a result, the ratio of the peak number of GFP-Bgs4p to GFP-Bgs1p molecules (Fig. 5D and 5E), 

two glucan synthases required for the synthesis of the primary and secondary septum 

respectively, increased by ~80% in the pkd2 mutant cells (Fig. 5F). This potentially altered the 

structure of the septum in these pkd2 mutant cells significantly. We concluded that Pkd2p, 

through attenuating the speed of the contractile ring constriction, regulates the septum assembly 

in cytokinesis.  

Pkd2p modulates the signaling pathway of septation in cytokinesis 

In fission yeast cytokinesis, the abscission of daughter cells also requires the septation initiation 

network (SIN), a fission yeast Hppo-like kinase cascade (Balasubramanian et al., 1998; Johnson 

et al., 2012; Simanis, 2015). To understand the role of Pkd2p in the abscission, we determined 

whether the pkd2 mutant has any genetic interaction with temperature mutants of the SIN 

pathway.  
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We identified strong genetic interactions between pkd2 and the SIN pathway. pkd2-81KD 

had positive genetic interaction with two mutants of the SIN pathway, sid2-250 and mob1-R4, 

the temperature sensitive mutants of Sid2p kinase and its activator Mob1p respectively 

(Balasubramanian et al., 1998; Hou et al., 2000) (Fig. 6A). Both genes sit at the bottom of the 

SIN pathway hierarchy and the proteins are only SIN pathway components localized to the 

cleavage furrow during cytokinesis (Sparks et al., 1999; Wu et al., 2003). Consistent with the 

genetic interactions, we found that the depletion of Pkd2p strongly rescued both lysis and 

septation defects of the two SIN mutants at either semi-restrictive (33°C) or restrictive 

temperature (36°C) (Fig. 6B and 6C). We conclude that Pkd2p also attenuates activities of the 

SIN pathway in cytokinesis.   

Pkd2 mutant cells are under acute stress  

Besides their cytokinesis defects, many pkd2-81KD mutant cells oscillated between “deflated” 

and “inflated” states. Among the pkd2-81KD mutant cells that we followed for up to 3 hrs, 22% 

of them shrank temporarily, losing both length and width during this “deflated” state (Fig. 7A 

and Movie S5). These cells lost close to 30% of their volume within a few minutes. Surprisingly, 

most of them (74%, n = 103) recovered their volume within 30 min, back to the “inflated” state. 

The mutant cells behaved similarly to the wild type cells did under osmotic stress, even though 

the mutant cells were cultured in an isotonic environment. We proceeded to examine whether 

these pkd2 depleted cells displayed hallmarks of cellular stress in the “deflated” state.  

 First, we determined whether the MAPK stress response pathway is activated in these 

pkd2 mutant cells. In fission yeast, stress activates the mitogen-associated protein kinase 

(MAPK) Sty1p-mediated signaling cascade (Degols et al., 1996; Millar et al., 1995; Shiozaki and 

Russell, 1995). In response to the stress such as 1 M KCl, Sty1p, is shuttled into nucleus to 
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activate various transcription factors to ensure adaptation (Fig. S2A), as reported (Gaits et al., 

1998). Not surprisingly, the MAPK Sty1p mediated stress response pathway was hyper-activated 

in pkd2-81KD cells. Although the total number of Sty1p-mEGFP molecules remained 

unchanged, the fraction of the mutant cells with elevated nuclear localization of Sty1p-GFP 

increased significantly compared to that of the wild type cells (Fig. 7B). Sty1p-mEGFP started to 

shuttle into the nucleus when the pkd2 mutant cells started to deflate (Fig. 7C-7D and Movie S6). 

The accumulation of Sty1p-GFP in the nucleus continue for more than ten minutes, reaching a 

three-fold increase compared to the pre-deflated state (Fig. 7D). As the mutant cells slowly 

recovered their original volume, the number of Sty1p-GFP molecules in the nucleus of the 

mutant cells gradually decreased to that in the pre-deflated cells (Fig. 7C). The whole process 

took around 40 mins (Movie S6).  

Similar to other stressed cells, the pkd2 mutant cells suspended most cellular processes 

including mitosis, cytokinesis and endocytosis when they entered the “deflated” state.  In 

mitosis, we found that mitotic progression paused in these mutant cells (Fig. 8A), another sign of 

cells under stress (Shiozaki and Russell, 1995). In cytokinesis, these “deflated” mutant cells 

stopped the contractile ring constriction temporarily in cytokinesis (Fig. 7B and Movie S7). This 

pause usually lasted about 10-20 mins, during which the contractile rings appeared buckled 

under mechanical force (Fig. 7B). In endocytosis, the patch of deflated pkd2-81KD cells 

underwent turnover much more slowly (Fig. S2B), compared to the actin patch of the wild type 

cells with a lifetime of ~20 seconds (Chen and Pollard, 2013; Sirotkin et al., 2010). Lastly, we 

found that turnover of the interphase microtubules slowed down dramatically in the deflated 

mutant cells (Movie S8). We concluded that depletion of Pkd2p led to the mutant cells under 

strong mechanical stress. 
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In summary, we discovered Pkd2p as a novel regulator of cytokinesis in fission yeast. 

Pkd2p, a putative mechanosensitive channel, localizes to the cleavage furrow. It modulates both 

the constriction of the contractile ring and the signaling pathway of septation in cytokinesis. In 

its absence, the mutant cells face severe mechanical stress that activates the MAPK pathway and 

arrests the turnover of cellular cytoskeleton. We proposed that Pkd2p, activated by the force in 

cytokinesis, functions as a force-sensitive channel in a negative feedback loop to attenuate 

ingression of the cleavage furrow and prevent mechanical damage to the dividing cell (Fig. 9).  

Discussion: 

Despite of the importance of mechanical force in cytokinesis, the molecular mechanism of force-

sensing in cell division remains largely unknown. We discovered in this study that the fission 

yeast Pkd2p, a putative mechanosensitive channel, may play an essential role in force-sensing in 

cytokinesis.  

Pkd2p likely functions as a “brake” in cytokinesis 

We propose that Pkd2p functions as a “brake” in cytokinesis to attenuate the force that drives the 

constriction of the contractile ring. It is supported by our observation the in the pkd2 mutant 

cells, the contractile ring constricts significantly more quickly than normal. It is also consistent 

with our finding that the primary septum, marked by GFP-Bgs1p, expanded more quickly in the 

pkd2 mutant, compared to the wild type cells.  

We expect two potential defects, as a result of the accelerated ring constriction when the 

“brake” is compromised. First, it may lead to a mechanical damage to the plasma membrane at 

the cell division site, because of the faster than normal ingression of the cleavage furrow. 

Secondly, it may prevent the assembly of a fully functional primary septum whose expansion is 

coupled to the ring constriction. Either scenario may explain frequent failure in the abscission of 
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daughter cells and the severe stress in the Pkd2p depleted cells. We found that ratio of two 

glucan synthases, Bgs1p and Bgs4p, in the septum is substantially changed in the septum of the 

pkd2 mutant cells. This suggested that a defect in the septum assembly may partially explain the 

abscission defect of the pkd2 mutant. 

The ion channel activities of Pkd2p in cytokinesis 

We propose that Pkd2p likely functions as an ion channel at the cleavage furrow in cytokinesis. 

Pkd2p belongs to the polycystin-2 family of nonselective cation channels (Gonzalez-Perrett et 

al., 2002; Liu et al., 2018; Shen et al., 2016). Two earlier studies showed that fission yeast Pkd2p 

likely function as an ion channel as well (Aydar and Palmer, 2009; Palmer et al., 2005). Our data 

also supported this hypothesis in showing that the pkd2 depleted cells are hypersensitive to 

calcium, potassium and sodium. Lastly, two of the four budding yeast pkd2 orthologues, Flc1p 

and Flc2p, regulate the intracellular calcium homeostasis (Protchenko et al., 2006; Rigamonti et 

al., 2015; Vazquez et al., 2016).  

Fission yeast Pkd2p is likely a constitutively inactive channel. This is supported by our 

data showing that over-expression of Pkd2p did not lead to any defects in cytokinesis, cell 

morphology or cell growth. Human polycystin-2, a homologue of Pkd2p, is a cation channel 

activated by mechanical cues (Nauli et al., 2003; Shen et al., 2016). We propose that both the 

contractile ring and the septum might generate the mechanical force required to activate Pkd2p in 

fission yeast cytokinesis.  

Fission yeast Pkd2p channel may regulate the local calcium concentration at the cell 

division site during cytokinesis. In many organisms, calcium concentration at the cleavage 

furrow spikes during cytokinesis (Fluck et al., 1991; Miller et al., 1993) but the mechanism and 

its importance remains unclear (Noguchi and Mabuchi, 2002). It remains unknown whether there 
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is a similar increase of calcium concentration at the cell division site in fission yeast. It is worth 

noting that the calcium dependent phosphatase calcineurin does localize to the cleavage furrow 

(McDonald et al., 2017).  

Localization of Pkd2p channel during cell division 

Our study demonstrated surprisingly that a putative ion channel localizes to the cleavage furrow 

during fission yeast cytokinesis. Although it has been shown that Pkd2p localizes to both the 

intracellular organelles and the plasma membrane in interphase (Aydar and Palmer, 2009; 

Palmer et al., 2005), its localization in cell division has never been examined. We only found in a 

fission yeast proteomics study showing that Pkd2-YFP, expressed from a plasmid, localize to the 

cell division site (Riken S. pombe Postgenome Database). To our knowledge, few studies have 

characterized the localization of the other Pkd2p homologues in cell division either. This is likely 

due to their well-documented localization in cilia (Barr et al., 2001; Barr and Sternberg, 1999; 

Gao et al., 2003; Watnick et al., 2003) which disassemble in mitosis. Among few studies that 

examined the localization of ion channels in cell division, one showed that TRPC1, a TRP 

channel like Pkd2p, localizes at the cleavage furrow of dividing zebrafish embryos (Chan et al., 

2016; Chan et al., 2015). More studies are required to explore the role of ion channels, 

particularly those calcium permeable channels, in cell division.  

Pkd2 and the underlying molecular mechanism of ADPKD 

Although Pkd2p plays an essential role in many biological processes, the underlying molecular 

mechanism remains obscure. Pkd2p homologues are required for male fertility in both fruit fly 

and worm (Barr and Sternberg, 1999; Gao et al., 2003; Watnick et al., 2003). On the other hand, 

the human homologue polycystin-2 plays an essential role in the kidney epithelial cells (Wu et 

al., 1998). Loss of function mutations in polycystin-2 accounts for 15% of Autosomal Dominant 
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Polycystic Kidney Disease (ADPKD) cases (Mochizuki et al., 1996). Mutations in polycystin-1, 

a binding partner of polycystin-2 (Qian et al., 1997; Tsiokas et al., 1997), accounts for the other 

85% (Hughes et al., 1995). The hallmark of ADPKD is development of liquid-filled cyst in the 

patient’s kidney. The symptom will get progressively worse until daily dialysis is needed for the 

end-stage patients. There are some similarities between the defects found in the kidney epithelial 

cells of ADPKD patients and the yeast pkd2 mutant despite these two homologues are separated 

by millions of years of evolution. Both mutant cells increase their sizes significantly and are 

under chronical stress. We expect that the study of the molecular function of Pkd2p will provide 

us novel insights into how mutations in human polycystin-2 contribute to the prognosis of 

ADPKD. (949 words) 

Materials and Methods: 

Yeast genetics  

Yeast cells were cultured according to the standard methods. We constructed trp663::trp663-

GFP, trp1322::trp1322-GFP,  pkd2::pkd2-GFP and pkd2::pkd2(1-576)-GFP by integrating the 

sequence of mEGFP at the endogenous locus through PCR based homologous recombination. 

(Bahler et al., 1998). To examine the viability of pkd2Δ, we constructed pkd2+/pkd2Δ diploid 

strain by deleting the endogenous ORF through homologous recombination in a wild type 

diploid strain. The pkd2+/pkd2Δ cells were sporulated on SPA5s plates and dissected into more 

than 20 tetrads. The pkd2::kanMX6 spores were selected with 100 µg/ml G418. To replace the 

endogenous pkd2 promoter, we integrated the inducible nmt1 promoters to precede the start 

codon (ATG) of the pkd2 ORF at its endogenous locus. The resulting yeast strains were 

confirmed by PCR and the Sanger sequencing method. Tetrad dissection was carried out with a 

SporePlay+ dissection microscope (Singer, England). To image the temperature-sensitive 
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mutants, they were inoculated at the permissive temperature for 2 days before being shifted to 

the restrictive temperature for 4 hrs before experiments.  

Fluorescence microscopy 

For microscopy, we grew yeast cells in liquid YE5s medium for two days before harvesting the 

exponentially growing culture at a density between 5.0*106 cells/ml to 1.0*107 cells/ml by 

centrifugation at 4,000 rpm for 1 min.  The cells were re-suspended in YE5s before being 

applyin to a 25% gelatin + YE5s pad, sealed under the coverslip with VALEP (a mix of equal 

amount of Vaselin, lanolin and paraffin). Live microscopy was carried out on an Olympus IX71 

microscope equipped with a 100x (NA = 1.41) objective lens, a confocal spinning disk unit 

(CSU-X1, Yokogawa, Japan), a motorized XY stage and a Piezo Z Top plate (ASI, USA). The 

images were acquired with an Ixon-897 EMCCD camera controlled by iQ3.0 (Andor, Ireland). 

Two lines, 488 nm and 561 nm, of solid state laser were used in the confocal fluorescence 

microscopy, at power of less than 5 mW. Unless specified, we acquired 15 slices at a step-size of 

0.5 µm for Z-series. Live microscopy was carried out in a room where the temperature was 

maintained at around 23°C. To minimize variations, we usually imaged the wild type and the 

mutant cells on the same day. For visualizing cell wall, we stained the yeast cells with 10 µg/ml 

of calcofluor (Sigma) and used an Olympus IX81 microscope equipped with a CCD camera and 

a mercury lamp for the epifluorescence microscopy.  

Image processing  

We used Image J (NIH) to process all the images, with either freely available or customized 

macros/plug-ins. For quantitative analysis, the fluorescence micrographs were corrected for 

drifting by StackReg plug-in (Thevenaz et al., 1998) and for photo-bleaching by EMBLTools 

plug-in (Rietdorf, EMBL Heidelberg). The sums of all Z-slices were used for quantification. The 
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contractile ring localization of Pkd2p-GFP was analyzed by quantifying the fluorescence in a 3.6 

µm by 0.8 µm (36 by 8 pixels) rectangle centering on the cell division site, corrected with 

background subtraction. The molecular numbers of GFP-Bgs1p and GFP-Bgs4p were quantified 

similarly. The ring constriction rate is calculated as π*D/T. D represents the diameter of the 

contractile ring, measured before it starts to constrict. T presents the duration of the ring 

constriction. It is measured by examining a fluorescence micrograph constructed from the time-

lapse videos to determine both the start and the end of the constriction. The nuclear localization 

of Sty1p-GFP was analyzed by quantifying its fluorescence intensities in the nucleus. To 

simplify the analysis, we assume the nucleus as a circle of 2µm diameter determined by the 

nucleus localization of Sty1p-GFP. The quantification was corrected with background 

subtraction by measuring the fluorescence intensities of Sty1p-GFP in the cytoplasm around the 

nucleus. To measure total area of the cells expressing Sty1p-GFP, we segmented the cells based 

upon the cytoplasmic fluorescence of Styp1-GFP. Our confocal microscope was calibrated using 

a previously published method (Wu and Pollard, 2005). Briefly, we imaged seven GFP tagged 

fission yeast strains and made a calibration curve of fluorescence vs. molecular number (R2 > 

0.95). The slope of the calibration curve was used to convert the value of the fluorescence 

intensities to the number of molecules. The figures were made with Canvas X (ACDsee systems, 

Canada). The domain structure of Pkd2p is based on the prediction by Pfam and NCBI.  
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Figure legends: 

Fig. 1 Pkd2 localizes to the site of cell division during cytokinesis. (A) Fluorescence 

micrographs of fission yeast cells expressing Trp663p-GFP and Trp1322p-GFP respectively. (B-

C) Pkd2p-GFP (green) and Rlc1p-tdTomoato (red). Maxim intensity projections are shown. (B) 

The merged image is shown on the right. (C)  The merged time-lapse fluorescence micrographs 

of the cleavage furrow in a dividing cell. Head-on views, reconstructed from the Z-series, are 

shown. Numbers represent minutes. (D) Average time course of the number of Pkd2p-mEGFP 

molecules at the cell division site. Error bars represent standard deviations. Time zero coincides 

with the starts of the contractile ring constriction. (E) Fluorescence micrographs of the cells 

expressing Pkd2p-mEGFP, treated with either control (DMSO, left) or 10 µM latrunculin A 

(LatA, right) Depolymerization of actin filaments with LatA displaced Pkd2p-GFP from the 

contractile ring (red arrow heads) to the cortex clumps at the cell-division site (red brackets). 

Bars represent 5 µm.  

Figure 2 Pkd2p is an essential gene and its depletion led to shrinkage during cell division. 

(A) The predicted domain structure by Pfam (top) of fission yeast Pkd2p. ML-like domain: MD-

2-related lipid recognition domain. CC: coiled-coil domain. (B) Dissected tetrads from 

sporulated pkd2+/pkd2Δ cells on either YE5s (top) or YE5s supplemented with 1.2 M sorbitol 

(bottom) plates. Red circles: where the pkd2Δ colonies shall have been. (C) Bright field 

micrographs of pkd2::P81nmt1-pkd2 (left),  pkd2::P41nmt1-pkd2 and pkd2::P3nmt1-pkd2 
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(right) cells incubated in either YE5s (suppressing) or EMM5s (inducing) medium. Depletion of 

Pkd2p led to strong morphological defects but the over-expression did not. Arrow head points to 

multi-septated cells and arrow points to “deflated” cell. Bar represent 5 µm.  (D) Ten-fold 

dilution series of the wild type and pkd2::P81nmt1-pkd2 cells grown on YE5s plates 

supplemented with 0.2M MgCl2, 1M KCl or 50mM CaCl2. The plates were incubated at 30°C for 

2 days.  

Figure 3. Pkd2p is required for abscission of daughter cells in fission yeast cytokinesis. (A) 

Fluorescence micrographs of calcofluor stained wild type (pkd2+) and pkd2-81KD cells. Arrow 

heads: bended septum in the pkd2 mutants. (B) A bar graph showing the septation index of the 

wild type (gray) and pkd2-81KD (red) mutants (n > 500). Error bars show standard deviations. 

(C) The pkd2 mutant failed to abscise. Top: a cartoon representation of the typical septation 

process in either the wild type or pkd2-18KD cells. Bottom: time lapse micrographs of a wild 

type (top) and a pkd2-81KD (bottom) imaged with bright field microscopy. After appearance of 

the septum (green) in the wild type cell, it thickened gradually before the abscission (red asterisk, 

44 mins). In comparison, the septum in pkd2-81KD cells appeared bend under pressure and 

thickened continuously for an extended period of time (> 100 mins). Number represent time in 

minutes. (D) A histogram showing the duration of septation in either the wild type or pkd2-81KD 

mutants. Bars represent 5 µm.  

Figure 4: The constriction of the contractile ring accelerated in cytokinesis of the pkd2 

mutant. (A) Merged time lapse fluorescence micrographs of either a wild type (top, pkd2+) or a 

pkd2-81KD cell expressing both a contractile ring marker Rlc1p-Tdmato (Red) and a spindle 

pole body (SPB) marker Sad1p-GFP (Green). Time zero: when two SPBs (arrow heads) 

separated. Asterisk indicates when the contractile ring is assembled. Number represents time in 
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minutes. (B) Box plots of duration of the contractile ring assembly plus maturation in either the 

wild type (grey) or pkd2-81KD cells (red). The horizontal line represents the average. It take 

slightly longer time for the ring to assemble and mature the contractile in the mutant, compared 

to the wild type cells (P < 0.001). (C) Time lapse fluorescence micrographs of the ring 

constriction in either a wild type (top) or a pkd2-81KD cell (bottom) expressing Rlc1p-tdTomato. 

Only the median plane of a dividing cell is shown. Number represents time in minutes. (D) 

Fluorescence kymographs of the ring constriction in either a wild type (top) or a pkd2-81KD cell 

(bottom) expressing Rlc1p-tdTomato. (E) Box plots of rates of the contractile ring constriction in 

either the wild type (grey) or pkd2-81KD cells (red). The horizontal line represents the average. 

Bars represent 5 µm.  

Figure 5. Pkd2p is required for proper assembly of the septum. (A) Fluorescence 

micrographs of the wild type (pkd2+, top) and pkd2-81KD cells expressing either GFP-Bgs1p or 

GFP-Bgs4p. (B-C) Time lapse fluorescence micrographs of either a wild type (top) or a pkd2-

81KD (bottom) cell expressing either GFP-Bgs1p (B) or GFP-Bgs4p (C). Interval between each 

frame is 2 min. Only the cell division site is shown. Asterisk represents completion of the 

primary septum expansion. (D) Average time course of the number of either GFP-Bgs1p 

molecules at the cell division site of either the wild type (blue line, n = 5) or pkd2-81KD (red 

line, n = 6) cells in cytokinesis. (E) Average time course of the number of either GFP-Bgs4p 

molecules at the cell division site of either the wild type (blue line, n = 6) or pkd2-81KD (red 

line, n = 6) cells in cytokinesis. Error bars represent standard deviations. (F) A bar graph 

showing the ratio of the molecular number of GFP-Bgs4p to that of GFP-Bgs4p when they 

reached the peak (time zero) at the cell division site in cytokinesis. Bars represent 5 µm.  
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Figure 6. Pkd2p modulates activities of the SIN pathway in cytokinesis. (A) Ten-fold 

dilution series of the wild type (WT) and the indicated mutant cells grown on YE5s plates. The 

plates were incubated at the indicated temperature for 2 days. We found strong positive genetic 

interactions between pkd2-81KD and either mob1-R4 or sid2-250. (B-C) Bright field 

micrographs of mob1-R4 (top left), sid2-250 (top right), pkd2-81KD mob1-R4 (bottom left) and 

pkd-81KD sid2-250 (bottom right) cells inoculated at either 33°C (B) or 36°C (C) for 4 hrs. The 

depletion of pkd2 largely rescued both the lysis (arrow head) and the septation defects (arrow) of 

the two SIN mutants at either semi-restrictive or restrictive temperature.  

Figure 7. The Pkd2p depleted cells are under chronicle stress. (A) Time lapse micrographs of 

pkd2-81KD cells in YE5s medium, acquired with bright-field microscopy. Cell 1: a lysed cell. 

Cell 2 and 3: two cells that deflated before recovering. Numbers represents times in minutes. (B) 

Fluorescence micrographs of the wild type (pkd2+, left) and pkd2-81KD mutant cells (right) 

expressing Sty1p-GFP. Sty1p-GFP accumulated in the nuclei of many pkd2 mutants (arrow 

heads). Maxim intensity projections of Z-series are shown. (C) Time lapse micrographs of a 

pkd2-81KD cell expressing Sty1p-GFP when it deflated. Both bright field (top) and fluorescence 

images (bottom) of the cell are shown. Number represents time in minutes. (D) Average time 

course of relative sizes (red circles and red line) and fluorescence intensities of nuclear Sty1p-

GFP (Blue squares and blue line) of pkd2-81KD cells (n = 7) during their deflation and recovery. 

Error bars are standard deviation. Time zero is defined as the start of deflation. Bars represent 5 

µm.  

Figure 8. Stress interrupted both mitosis and cytokinesis in pkd2-81KD cells. (A) Time lapse 

fluorescence micrographs of a wild type (pkd2+, top) and a pkd2-81KD cell (middle) expressing 

Atb2p-mCherry in mitosis. Bottom: the bright field micrographs of the pkd2 mutant cell. Mitosis 
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paused in the pkd2-81KD cell when it deflated (red underline). Numbers represent times in min. 

(B) Time lapse fluorescence micrographs of cytokinesis in two pkd2-81KD cells expressing 

Rlc1p-tdTomato. The contractile rings were compressed (red underline) during either the 

maturation (top) or the constriction (bottom). Only the cell division sites are shown. The interval 

between each frame is 2 min. Bars are 5 µm.  

Figure 9. A model for the function of Pkd2p in cytokinesis. Cartoon representation of a model 

of recruitment and activation of Pkd2p as a mechanosensitive channel at the cleavage furrow in 

fission yeast cytokinesis. The contractile ring (blue) recruits inactive Pkd2p channel (yellow) to 

the cleavage furrow. When the contractile ring starts to constrict, Pkd2p is activated by the 

mechanical force (red arrows) that is applied by both the ring and the septum. Activated Pkd2p 

channels (red) attenuate the contractile ring constriction and the SIN pathway in cytokinesis, 

potentially through regulating the intracellular concentration of Ca2+.   

Figure S1. Pkd2p-GFP is an essential fission yeast TRP protein localized to the cleavage 

furrow, related to Fig. 1 and 2. . (A) Fluorescence micrographs of fission yeast cells expressing 

Pkd2p-GFP (green) and Rlc1p-tdTomato (red) treated with LatA, an actin filament 

depolymerizing drug. Pkd2p-GFP was displaced from its localization at the cleavage furrow in 

cytokinesis after being treated with 10 µM LatA for 30 mins. It localized to punta in the cortex 

adjacent to the clumps labeled by Rlc1p-tdTomato. (B) Fluorescence micrographs of fission 

yeast cells expressing Pkd2p-GFP treated with MBC, a microtubule depolymerizing drug. 

Pkd2p-GFP maintains its localization at the cleavage furrow (red arrow heads) in cytokinesis 

after being treated with 50 µM MBC for 30 mins.  

Figure S2. The pkd2 mutant, pkd2-81KD, has defect in both cytokinesis and septation. (A) 

Fluorescence micrographs of the wild type cells expressing Sty1p-mEGFP in either YE5s (left) 
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or YE5s plus 1M KCl (right). (B) Left: a fluorescence micrograph of three linked pkd2-81KD 

cells expressing GFP-Lifeact. Right: a fluorescence kymograph of the three cells, based on a 60s 

time-lapse video with 1s interval. Turnover of actin patches stopped temporarily in the deflated 

pkd2-81KD cell (top). Among the three cells, actin patches underwent quick turnover, shown as 

numerous short tracks in the kymograph, in the two inflated cells while those in the deflated cell 

did not.  
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Supplemental materials: 

Movie S1: A fluorescence time-lapse video of pkd2-81KD cells expressing Pkd2p-mEGFP 

(green) and Rlc1p-tdTomato (red). Maxim intensity projections of Z-series are shown.  

Movie S2: A bright field time-lapse video of pkd2-81KD cells in the abscission stage of 

cytokinesis.  

Movie S3: A fluorescence time-lapse video of the wild type cells expressing Sad1-mGFP (green) 

and Rlc1p-tdTomato (red). Maxim intensity projections of Z-series are shown. 

Movie S4: A fluorescence time-lapse video of a pkd2-81KD cell expressing Sad1-mGFP (green) 

and Rlc1p-tdTomato (red). Maxim intensity projections of Z-series are shown.  

Movie S5: A bright-field time-lapse video of pkd2-81KD cells oscillating between “deflated” 

and “inflated” states.  

Movie S6: A fluorescence time-lapse video of pkd2-81KD cells expressing Sty1p-mEGFP, 

acquired with fluorescence microscopy. Maxim intensity projections of Z-series are shown.  

Movie S7: A time-lapse video of a pkd2-81KD mutant cells expressing Rlc1p-tdTomato when it 

deflated, acquired with fluorescence microscopy. Maxim intensity projections of Z-series are 

shown. 

Movie S8: A time-lapse video of a pkd2-81KD mutant cells expressing mCherry-Atb2p during 

its deflation, acquired with fluorescence microscopy. Maxim intensity projections of Z-series are 

shown. 

Table S1: Yeast strains used in this study. 
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Table S1: Yeast strains used in this study 

Name Genotype Source 

QC-Y690 h- pkd2-mEGFP-kanMX6 This study 
QC-Y679 h- trp663-mEGFP-KanMX6 This study 
QC-Y680 h- trp1322-mEGFP-kanMX6 This study 
QC-Y693 h? pkd2-mGFP-kanMX6 rlc1-tdTomato-NatMX6 This study 
QC-Y712 h-/h+ pkd2::kanMX6/pkd2+ This study 
QC-Y802 h- kanMX6-P3nmt1-pkd2 This study 
QC-Y740 h- kanMX6-41nmt1-pkd2 This study 
QC-Y810 h- KanMX6-P81nmt1-pkd2 This study 
QC-Y817 h+ KanMX6-P81nmt1-pkd2 This study 
QC-Y274 h- rlc1-tdTomato-NatMX6 sad1-GFP-KanMX6 Lab stock 
JW1341 h- rlc1-tdTomato-NatMX6 Lab stock 
QC-Y813  h? kanMX6-81xnmt1-Pkd2 rlc1-tdTomato-NatMX6 Lab stock 
QC-Y814 h? kanMX6-81xnmt1-Pkd2 rlc1-tdTomato-NatMX6 sad1-mEGFP-KanMX6 This study 
QC-Y277 h- leu1-32 ura4-D18 his-D1 bgs1::ura4+ Pbgs1:: GFP-bgs1:leu1 Juan Carlos 
QC-Y816 kanMX6-81xnmt1-Pkd2 bgs1::ura4+ Pbgs1:: GFP-bgs1:leu1 This study 
QC-Y276 h+ leu1-32 ura4-18 his3-1 bgs4::ura4+ Pbgs4+::GFP-bgs4+:leu1+ Juan Carlos 
QC-Y828 h? kanMX6-81xnmt1-pkd2  bgs4::ura4+ Pbgs4+::GFP-bgs4+:leu1+ This study 
YDM3044 h- mob1-R4 Lab stock 
QC-Y826 h? kanMX6-81xnmt1-Pkd2 mob1-R4 This study 
YDM429 h+ sid2-250 Lab stock 
QC-Y825 h? kanMX6-81xnmt1-Pkd2 sid2-250 This study 
QC-Y871 h- sty1-mEGFP-KanMX6 This study 
QC-Y877 h? sty1-mEGFP-KanMX6 kanMX6-81xnmt1-Pkd2 This study 
QC-Y841 h? kanMX6-81xnmt1-Pkd2 Kan-Padf1-mEGFP-Lifeact This study 
DM4762 h- leu1-32 ura4-∆18 mCherry-ATB2::HphR Lab stock 
QC-Y857 h? kanMX6-81xnmt1-Pkd2 mcherry-atb2::HghR This study 
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