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Abstract

We propose a metric – called Multi-Scale Relevance (MSR) – to score neurons for
their prominence in encoding for the animal’s behaviour that is being observed in a
multi-electrode array recording experiment. The MSR assumes that relevant neurons
exhibit a wide variability in their dynamical state, in response to the external stimulus,
across different time scales. It is a non-parametric, fully featureless indicator, in that
it uses only the time stamps of the firing activity, without resorting to any a priori
covariate or invoking any specific tuning curve for neural activity. We test the method
on data from freely moving rodents, where we found that neurons having low MSR tend
to have low mutual information and low firing sparsity across the correlates that are
believed to be encoded by the region of the brain where the recordings were made. In
addition, neurons with high MSR contain significant information on spatial navigation
and allow to decode spatial position or head direction as efficiently as those neurons
whose firing activity has high mutual information with the covariate to be decoded.

Introduction
Next-generation techniques have allowed us to probe an increasing number of neurons in
behaving animals [1]. Yet deciphering how specific functions are implemented in the neural
code still remains a daunting task. In any case, the neurons that can be recorded are much
less than those that are involved in the encoding of the animal’s behaviour; some of the
recorded neurons may be attuned to different features of the stimuli or behaviour and some
of them may display an activity that is not related to it. Much progress has been made in
identifying those variations in the stimuli and the behaviours that correlate significantly with
the firing pattern of individual neurons. Typical examples range from the discovery of simple
and complex cells in the early visual cortices [2] to the more recent discovery of grid [3]
and speed [4] cells. This approach has its limits: First, as observed experimentally e.g. by
Sargolini et. al [3] and, more recently, using solid statistical analysis by Hardcastle et al. [5],
the same neuron may respond to a combination of different behavioural covariates, such as
position, head direction and speed in spatial navigation. Second, and most importantly,
neurons may encode a particular behaviour in ways that are unknown to the experimenter
and that are not related to covariates typically used or to a priori features. This has motivated
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a considerable amount of work in refining appropriate measures of covariates relevant for a
particular behaviour. For example, the calculation for identifying grid cells, introduced in
Ref. [3], has been refined in Ref. [6] and further in Ref. [7], in order to account for imperfect
hexagonal symmetry of grid fields [8].

Here, we propose a novel non-parametric, model-free method for selecting relevant neu-
rons that does not require knowledge of external correlates. This featureless selection is
done by identifying neurons that have broad and non-trivial distribution of spike frequencies
across a broad range of time scales. The proposed measure – called Multi-Scale Relevance
(MSR) – allows the experimenter to rank the neurons according to their relevance to the
behaviour probed in the experiment.

We illustrate the method by applying it to data on spatial navigation of freely roaming
rodents in Refs. [9] and [10], that reports the neural activities of 65 neurons simultaneously
recorded from the medial entorhinal cortex (mEC), and 746 neurons in the anterodorsal
thalamic nucleus (ADn) and post-subiculum (PoS), respectively. In all cases, we find that
neurons with low MSR also coincide with those that contain no information on covariates
involved in navigation, but that the opposite is not true. Some neurons with high MSR
also contain significant relevant information for spatial navigation, some relative to posi-
tion, some to head direction but often on both space and head direction. This corroborates
the recent conjecture that neurons in the mEC respond to a mix of features, rather than to
a single one [5]. Furthermore, we show that the neurons in mEC with highest MSR have
spike patterns that allow an upstream decoder “neuron” to discern the organism’s state in the
environment. Indeed, the top most relevant neurons, according to MSR, decode spatial po-
sition (head direction) just as well as the top most spatially (head directionally) informative
neurons.

MSR correlates to different degrees with different measures that have been introduced
to characterise spatially specific neurons. For example, the MSR correlates strongly with
spatial sparsity [11, 12] and weakly with grid score [3, 13]. Indeed, it has been proposed that
grid score alone as defined in [3] is not efficient in identifying grid cells but its performance
is improved when complemented with other measures [7]. This suggests that MSR can be
used to pave a way towards identifying the external correlate which drive the activity of
the neuron and finding those statistical features to which neurons are attuned to. Finally, a
discussion on our findings and on possible future applications shall close the paper.

Multi-Scale Relevance
We consider a population composed of N neurons in a freely behaving animal whose activi-
ties were simultaneously observed up to a time, tobs. The activity of neuron i is recorded and
stamped by the spike times {t(i)1 , . . . , t

(i)

M(i)} where t(i)1 < t
(i)
2 < . . . ≤ t

(i)

M(i) ≤ tobs and M (i)

is the total number of observed spikes of neuron i. We shall drop the superscript (i) hence-
forth when not needed, in order to simplify the notation. By discretizing the time into T bins
of duration ∆t, a spike count code, s = {k1, k2, . . . , kT}, can be constructed where ks de-
notes the number of spikes recorded from neuron i in the sth time bin Bs = [(s−1)∆t, s∆t]
(s = 1, 2, . . . , T ).

Varying ∆t allows us to probe neural activity at different time scales. Yet, rather than
using ∆t to measure time resolution, we adopt an information theoretic measure, given by

H[s] = −
T∑

s=1

ks
M

logM
ks
M
, (1)
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where logM(·) = log(·)/ logM indicates logarithm base M (in units of Mats). Considering
ks/M as the probability that neuron i fires in the bin Bs, this has the form of a Shannon
entropy [14]. This is the amount of information that one gains on the timing of a randomly
chosen spike, by knowing the index s of the bin it belongs to [15]. We argue that H[s]
provides an intrinsic measure of resolution, contrary to ∆t which refers to particular time
scales that may vary across neurons. For example, there is a value ∆t

(i)
− such that for all

∆t ≤ ∆t
(i)
− all time bins either contain a single spike or none, i.e. k(i)s = 0, 1 for all s.

All these values of ∆t correspond to the same value of the intrinsic resolution H[s] = 1.
Likewise, there may be a value ∆t

(i)
+ such that for all ∆t ≥ ∆t

(i)
+ all spikes of neuron i

fall in the same bin. All ∆t ≥ ∆t
(i)
+ then correspond to the same value H[s] = 0 of the

resolution, as defined here. In other words, H[s] captures resolution on a scale that is fixed
by the available data.

Let us now move to a characterisation of the dynamic response of neuron i, at a given
resolution H[s] (corresponding to a given ∆t). The only way in which the dynamic state of
the neuron in bin s can be distinguished from that in bin s′ is by its activity. If the number of
spikes in the two bins is the same (ks = ks′) there is no way to distinguish the dynamic state
of the neuron in the two bins, at that resolution [16]. Therefore, one way to quantify the
richness of the dynamic response of a neuron is to count the number of different dynamic
states it undergoes in the course of the experiment. A proxy of this is given by the variability
of the spike frequency ks, that again can be measured in terms of an entropy

H[K] = −
∞∑

k=1

kmk

M
logM

kmk

M
. (2)

where mk indicates the number of time bins that contain k spikes [17], so that kmk/M is
the fraction of spikes that fall in bins with ks = k. Again, rather than considering H[K]
as a Shannon entropy of an underlying distribution pk ≈ kmk/M of spike frequencies, we
takeH[K] as an information theoretic measure of the information each spike contains on the
dynamic state of the neuron at a given resolution [18]. Ref. [19] shows that H[K] measures
the complexity of the variability in the sense that H[K] correlates with the number of pa-
rameters a model would require in order to describe properly the dataset, without overfitting.
Hence, following Ref. [19], we shall call H[s] as resolution and H[K] as relevance.

In the current context, the reason for this choice can be understood as follows. In a
freely behaving animal, different neurons can have activities that are more or less related
to the behavioural states that are being probed in the experiment. Neurons that are relevant
for encoding the animal’s behaviour are expected to display variation on a wide range of
dynamical states, i.e. to have a large H[K]. On the contrary, neurons that are not involved
in the animal’s behaviour are expected to visit relatively fewer dynamical states, i.e. to have
a lower H[K].

Notice that for very small binning times ∆t ≤ ∆t
(i)
− (when each time bins contains at

most one spike, i.e. mk=1 = M and mk′ = 0, ∀ k′ > 1) we find H[K] = 0 (and H[s] = 1).
At the opposite extreme, when ∆t ≥ ∆t

(i)
+ and H[s] = 0, we have all spikes in the same

bin, i.e. mk = 0 for all k = 1, 2, . . . ,M − 1 and mM = 1. Therefore again we find
H[K] = 0. Hence, no information on the relevance of the neuron can be extracted at time
scales smaller than ∆t

(i)
− or larger than ∆t

(i)
+ . At intermediate scales ∆t ∈ [∆t

(i)
− ,∆t

(i)
+ ],

H[K] takes non-zero values [20], that we take as a measure of the relevance of neuron i for
the freely-behaving animals being studied, at time scale ∆t.
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Yet, the relevant time scale ∆t for a neuronal response to a stimulus may not be known
a priori and/or the latter may evoke a dynamic response that spans multiple time scales.
For this reason, we vary the binning time ∆t thereby inspecting multiple time scales with
which we want to see the temporal code. As we vary ∆t, we can trace a curve in the H[s]-
H[K] space for every neuron i in the sample. Neurons with broad distributions of spike
frequencies across different time scales will trace higher curves in this space and in turn,
will cover larger areas under this curve (see Fig. 1C). Henceforth, we shall call the area
under this curve as the multi-scale relevance (MSR), Rt. The relevant neurons, those with
high values ofRt, are expected to exhibit spiking behaviours that can be well-discriminated
by upstream neurons over short and long time scales and thus, are expected to be relevant to
the encoding of higher representations.

MSR is designed to capture non-trivial structures in the spike time series. As such, it is
expected to correlate with other measures characterising temporal structure, such as bursty-
ness and memory [21]. Figure S1 shows indeed that, in synthetic data with given character-
istics, MSR captures both the bursty-ness and memory of a time series. In addition, we find,
in both synthetic and real data, a negative relation between MSR and spike frequency (i.e.
M ), which is partly associated with bursty-ness. Yet, the logarithm of the spike frequency
(i.e., logM ) cannot explain all of the variations in the MSR for real data which appears to
be correlated with spatial and head directional information (see Figure S1).
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Figure 1. Proof of concept of the MSR as a relative information content measure. The smoothed firing rate
maps of a grid cell (A) and an interneuron (B) in the mEC illustrates the spatial modulation of neural activity.
Panel C shows the curves traced by the grid cell (green) and interneuron (red). Each point, (H[s], H[K]), in
this curve corresponds to a fixed binning time, ∆t, with which we see the corresponding temporal neural spike
codes.

As a proof of concept of the MSR for featureless neural selection, we considered two
neurons recorded simultaneously from the medial entorhinal cortex (mEC) in Ref. [9] – a
grid cell (T02C01) and an interneuron (T02C02) – both of which were measured from the
same tetrode and thus, are in close proximity in the brain region. The mEC and its nearby

4

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316190doi: bioRxiv preprint 

https://doi.org/10.1101/316190
http://creativecommons.org/licenses/by-nc-nd/4.0/


brain regions are notable for neurons that exhibit spatially selective firing (e.g., grid cells
and border cells) which provides the brain with a locational representation of the organism
and provides the hippocampus with its main cortical inputs. Grid cells have spatially se-
lective firing behaviours that form a hexagonal pattern which spans the environment where
the rat freely explores as in Fig. 1A. Apart from spatial information, grid cells can also
be attuned to the head direction especially in deeper layers of the mEC [3]. These cells
altogether provide the organism with an internal map which it then uses for navigation. On
the other hand, interneurons, as in Fig. 1B, are inhibitory neurons which are still important
towards the formation of grid cell patterns [22, 23, 24] but have much less spatially spe-
cific firing patterns. Intuitively, as the mEC functions as a hub for memory and navigation,
grid cells, which provide the brain with a representation of space, should be more relevant
for an upstream “neuron” (possibly the place cells in the hippocampus) in encoding higher
representations compared to interneurons. Indeed, the grid cell traces higher curves in the
Hs]−H[K] space as in Fig. 1C and thus defines a larger area compared to the interneuron.

Results
With the observations in Fig. 1, we sought to characterise the temporal firing behaviours of
the 65 neurons which were simultaneously recorded from the mEC and its nearby regions
of a male Long Evans rat as it freely explored a square arena of length 150 cm [9]. This het-
erogeneous neural ensemble, as characterised in Ref. [9], consisted of 23 grid cells, whose
spatial firing fields can be clustered into 3 functional modules, 5 interneurons, 1 putative
border cell and 36 unclassified neurons, some of which had highly spatially attuned firing
behaviour and nearly hexagonal firing patterns [9, 25, 7]. This dataset was chosen among
the multiple recording sessions performed in Ref. [9] as this contained the most grid cells to
be simultaneously recorded.

These results were then corroborated by characterising the temporal firing behaviors of
the 746 neurons which were recorded from multiple anterior thalamic nuclei areas, mainly
the anterodorsal (AD) nucleus, and subicular areas, mainly the post-subiculum (PoS) of 6
different mice from across 31 recording sessions while the mouse explored a rectangular
arena of dimensions 53 cm × 46 cm [10]. This data was chosen as these heterogeneous
neural ensemble contained a number of head direction cells which are neurons that are
highly attuned to head direction.

Before showing the results on these data sets, we note that the the MSR is a robust
measure. To establish this, we compared the MSRs computed using only the first half of the
data to that computed from the second half. As seen in Figure S2, we obtained very similar
results, confirming that the MSR is a reliable measure that can be used to score neurons.

MSR captures functionally relevant external correlates.
As the mEC is crucial to spatial navigation, we expected that neurons with a high MSR
score would contribute towards a representation of the animal’s spatial organization, in one
way or another. Different measures relating the spatial position, x, with neural activity had
been employed in the literature to characterise spatially specific neural discharges, like the
Skaggs-McNaughton spatial information, I(s,x) defined in Eq. (7) and in Ref. [26], spatial
sparsity measure, spx defined in Eq. (9) and in Ref. [11, 12] and grid score, g, defined in
Eq. (10) and in Refs. [3, 13, 6, 7].
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Figure 2. The multi-scale relevance identified neurons that are spatially and head directionally infor-
mative. A scatter plot of the MSR vs. the bias-corrected spatial (head direction) information is shown in A
(D). The sizes of the scatter points reflect the spatial sparsity (head directional sparsity) of the neural activity
while the shapes of the scatter points indicate the identity of the neuron according to Ref. [9]. The linearity and
monotonicity of the multi-scale relevance and the information measures was assessed by the Pearson’s corre-
lation, ρp, and the Spearman’s correlation, ρs, respectively. Information bias was measured by bootstrapping
method, i.e., calculating the average of the spatial or head directional information of 1000 randomised spike
trains. The spatial firing rate maps (head directional tuning curves) of the 10 most relevant neurons and the 10
most irrelevant neurons are shown together in panels B (E) and C (F) respectively with the calculated spatial
sparsity, spx, (head directional sparsity, spθ) and mean firing rate, λ̄. Note that the mean firing rate, λ̄, was
calculated using Eq. (8).

6

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316190doi: bioRxiv preprint 

https://doi.org/10.1101/316190
http://creativecommons.org/licenses/by-nc-nd/4.0/


Apart from spatial location, head direction also plays a crucial role in spatial navigation.
The mean vector length, R (Eq. (11) in Materials and methods) is commonly used as a
measure of head directional selectivity of the activity of neurons. However, this measure
assumes that there is only one preferred head direction in which a given neuron is tuned
to. To this end, we calculated two measures – the head directional information, I(s, θ),
and head directional sparsity, spθ – inspired by the spatial information and spatial sparsity
to quantify the information and selectivity of neural firing to head direction respectively.
These measures ought to detect non-trivial and multimodal head directional tuning which
may also be important in representing head direction in the brain [5].

In order to see whether spatially modulated firing behaviour can be captured solely from
the spike times, as encoded in the MSR, Fig. 2 reports the Skaggs-McNaughton spatial
information (A) and the analogous head directional information (D) as a function of the
MSR for each neuron in the mEC data. Figs. 2B (C) and E (F) report the spatial firing rate
maps and head direction tuning curves for the top ten (bottom ten) neurons by MSR score,
respectively. This shows that neurons having a low MSR have very non-specific spatial and
head directional discharges as indicated by their sparsity scores (Figs. 2C and F) whereas
neurons having a high MSR have a broader range of spatial and head directional sparsity
(Figs. 2B and E).

We found that (i) Neurons with high spatial information or high head direction infor-
mation also had high MSR, but the converse was not true. While there are highly relevant
neurons that responded exquisitely to space (grid cells 7 and 40) or head direction (neurons
45 and 56) alone, the majority (e.g. neurons 35 and 47) encoded significantly both spatial
and head direction information. Secondly, we found that ii) Neurons with low MSR had
both low spatial and low head direction information (Figs. 2C and F). Again, the converse
was not true (e.g. neurons 4 and 34). Finally iii) we find that some neurons, for example,
neurons 3 and 6, in spite of the fact that their rate maps (Figs. 2B and E) indicated some spa-
tial and head directional sparsity, had relatively low spatial and head direction information
but were both identified to be highly relevant neurons by MSR. This high MSR suggests that
perhaps these neurons respond to different correlates involved in spatial navigation different
from spatial location or head direction.

Many of the grid cells were spotted as highly relevant, but not all. For example, grid
cells 41, 42 and 61, that had a significant grid score, had a low MSR (and low spatial
information). This indicated that different measures correlate differently with MSR. Fig.
3 reports the distribution of the other four measures analysed in this study conditional to
different levels of MSR. Fig. 3A shows that grid score maintains a large variation across
all scales of the MSR, with a moderate increase in its average. A similar behaviour was
observed in Fig. 3A for the mean vector length.

Spatial sparsity and head directional sparsity, instead, showed a significant correlation
with the MSR as seen in Fig. 3B. The observation that relevant neurons with high head di-
rectional sparsity may have low mean vector length was an indication that head directionally
specific firing behaviour is not necessarily unimodal.

The ADn and PoS areas are known brain regions to contain head direction cells which
robustly fires when the animal’s head is facing a specific direction [27, 28]. This network
of head direction cells form part of the animal’s navigational system and is believed to
be crucial to the formation of grid cells in the mEC [3, 29, 6]. Thus, we expected that
head directionally attuned cells will be relevant to a freely behaving and navigating rodent.
Indeed, as seen in Fig. 4, we observed that, in all of the 6 mice that were analysed, the
head direction cells, i.e., neurons having high head direction sparsity and high mean vector
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Figure 3. The MSR identified neurons with spatially and head directionally selective discharges. Bar
plots depict the mean (height of the bar) along with the standard deviation (black error bars) of the grid
score (red) and Rayleigh mean vector length (yellow) in panel A, and the spatial sparsity (orange) and head
directional sparsity (purple) in panel B for each neuron in the mEC within the relevance range as indicated.
The relevance range was determined by equally dividing the range of the calculated MSR into 5 equal parts.
The number of neurons whose MSRs fall within a relevance range is indicated below each bar. The linearity
and monotonicity between the multi-scale relevance and the different spatial and head directional quantities
were quantified using the Pearson’s correlation, ρp, and the Spearman’s correlation, ρs, respectively.

lengths, had high MSRs. Focusing on a subset of neurons of Mouse 12 in Figs. 4A,B
that were simultaneously recorded in a single session (Session 120806), we observed, as
seen in Figs. 5A,B, that head directionally attuned neurons had high MSRs. However, the
head direction alone may not explain the structure of the spike frequencies of these neurons.
Hence, we also sought to find out whether some of these neurons are spatially tuned. As
seen in Fig. 5E, we found that some of the relevant neurons were also modulated by the
spatial location of the mouse.

To assess whether the spike frequencies, as characterised by the MSR, indeed contain
information about external stimuli relevant to navigation, we resampled the spike count
code of the neurons in the mEC such that only spatial information or only spatial and head
directional information was incorporated. This resampling of the neural spiking was done by
generating synthetic spikes assuming a non-homogeneous Poisson spiking with rates taken
from the computed spatial firing rate maps and head directional tuning curves (See Materials
and methods). These assumptions were able to recover the original rate maps as seen in Figs.
6C and D. Here, we focused our attention on mEC Neuron 47 in the mEC data which had
the highest MSR and also had both high spatial and high head directional information.

Indeed, by resampling only the spatial firing rate map as in Fig. 6E, we saw a decrease
in the MSR despite having as much spatial information as the original spike count code.
When head directional information was incorporated into the resampled spike frequencies,
assuming the factorization of the firing probabilities due to position and head direction, more
structure would be added onto the spiking activity of the resampled neuron. Hence, we
expected to see an increase in the MSR as observed for Neuron 47 which increased almost
up to the MSR for the original spike frequencies. These findings support the idea that the
temporal structure of the spike counts of the neuron, as measured by the MSR, come from
its tuning profiles for both spatial position and head direction.
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Figure 4. MSR of neurons from the anterodorsal thalamic nucleus (ADn) and post-subicular (PoS)
regions of 6 freely-behaving mice pooled from multiple recording sessions. For each mice, the MSR of the
recorded neurons which had more than 100 recorded spikes in a session were calculated. The corresponding the
head directional information and sparsity (in bits per spike, see Materials and methods) were also calculated.
ADn neurons are depicted in red circles while PoS neurons in blue circles. The size of each point reflect the
mean vector lengths of the neurons wherein larger points indicate a unimodal distribution in the resulting head
direction tuning curves.

Furthermore, we also assessed which cells among the neurons in the mEC have MSRs
that could be explained well by the spatial information and thus, were highly spatially at-
tuned. We resampled the spatial firing rate maps of each of the cells in the mEC data (See
Materials and methods). The absolute difference between the original and resampled MSR,
|Roriginal

t −Rresampled
t |, was then computed from the resampled spikes. When the variations

in the spike frequencies could be explained by the spatial firing fields, we expected this dif-
ference to be close to zero. Indeed, as seen in Figs. 6F-G, we found that neurons having
either high Skaggs-McNaughton spatial information or high spatial sparsity tended to have
differential MSRs close to zero. Furthermore, we observed that most of the neurons having
low differential MSRs were grid cells which have highly selective discharges with respect
to the rat’s position.

Taken altogether, these analyses suggest that the MSR can be used to identify the inter-
esting neurons in a heterogeneous ensemble. The proposed measure captures the non-trivial
spike frequency distribution across multiple scales whose structure is highly influenced by
external correlates that modulate the neural activity. Indeed, these analyses show that the
MSR is able to capture information content of the neural spike code.
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Figure 5. MSR of neurons from the anterodorsal thalamic nucleus (ADn) of Mouse 12 from a single
recording session (Session 120806). A scatter plot of the multi-scale relevance vs. the bias-corrected head
directional (spatial) information is shown in A (E). This plot is supplemented by a scatter plot between the
multi-scale relevance and head directional (spatial) sparsity shown in B (F). The sizes of the scatter points
reflect the mean vector length (head directional sparsity) of the neural activity where the larger scatter points
correspond to putative head direction cells. The head directional tuning curves (spatial firing rate maps) of the
10 most relevant neurons and the 10 most irrelevant neurons are shown together in panels C (G) and D (H)
respectively with the calculated head directional sparsity, spθ, (spatial sparsity, spx) and mean firing rate, λ̄).
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Figure 6. The MSR is a measure of information content of the neural activity. (A) Resampling the
firing rate map using spatial position only (orange scatter points) or in combination with head direction (green
scatter points) resulted to a firing activity that closely resembled the actual firing pattern (blue scatter points)
of mEC Neuron 47. The blue lines indicate the real trajectory of the rat which was used when resampling the
neural spiking. Compared to the original firing rate maps in B, the spatial (left panels) and head directional
(right panels) firing rate maps were recovered by the resampling procedure in C-D. The result for a single
realization of the resampling procedure is shown. (E) Bar plots show the multi-scale relevance calculated
from the original spiking activity of the neuron and the resampled rate maps. The mean and standard deviation
of 100 realizations of the resampling procedure is reported. Scatter plots between the difference of the multi-
scale relevance of the synthetic spikes and of the original spikes for each neuron and the spatial information
(F), and the spatial sparsity (G) are also shown.
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Relevant neurons decode the positions as efficiently as spatially informa-
tive neurons.
We found in the previous section that neurons with low MSR have low spatial or head
directional information while higher MSR can indicate low or high values of spatial or head
directional information. In this section, we show that despite this, high MSR can still be
used to select neurons that decode position or head direction well. In other words, although
high MSR can imply low spatial or head directional information, in terms of population
decoding the set of high MSR neurons (selected based on only spike frequencies) performs
equally well compared to the population of highly informative neurons (selected using the
knowledge of the external covariate).

In order to understand whether MSR could identify neurons in mEC whose firing activity
allows the animal to identify its position, we compared the decoding efficiency of the 20 neu-
rons with the highest MSR with that of the 20 neurons with the highest Skaggs-McNaughton
spatial information [26] (the two sets overlap on 14 neurons; see Fig. 2).

To this end, we employed a Bayesian approach to positional decoding wherein the esti-
mated position at the j th time bin, x̂j , is determined by the position, xj , which maximises an
a posteriori distribution, p(xj|sj), conditioned on the spike pattern, sj , of a neural ensemble
within the j th time bin i.e.,

x̂j = arg max
xj

p(xj|sj) = arg max
xj

p(sj|xj)p(xj) (3)

where the last term is due to Bayes rule, p(sj|xj) is the likelihood of a spike pattern, sj ,
given the position, xj , which depends on a given neuron model and p(xj) is the positional
occupation probability which can be estimated directly from the data. Fig. 7A shows that
a neural ensemble composed of relevant neurons decoded just as efficient as an ensemble
composed of spatially informative neurons. It can also be observed that the relevant neurons
decode the positions better than the ensemble composed solely of grid cells.

Furthermore, we also took the 30 relevant and 30 head directionally informative ADn
neurons from Mouse 12 (Session 120806) in Fig. 5 to decode for head direction. Mouse 12
was chosen as this animal had the most head direction cells recorded among the mice that
only had recordings in the ADn [30]. In particular, we looked at the head direction decoding
at longer time scales (in this case, ∆t = 100 ms), where we could model the neural activity
using a Poisson distribution, p(nj|θj) similar to that in Eq. (15). Bayesian decoding adopts
an equation

θ̂j = arg max
θj

p(θj|nj) = arg max
θj

p(nj|θj)p(θj) (4)

similar to Eq. (3) to estimate the decoded head direction, θ̂j , where p(θj) is the head direc-
tional occupation as estimated from the data. We compared the decoding efficiency of the
relevant neurons with the 30 ADn neurons with high head directional information which had
22 neurons that are relevant. We also compared the decoding efficiency of the 30 relevant or
informative ADn neurons with 30 randomly selected ADn neurons (n = 1000 realizations).
As seen in Fig. 7B, the 30 relevant neurons decoded just as well as the neural population
composed of head directionally informative cells. Furthermore, the decoding efficiency of
the relevant neurons were observed to be far better than the decoding efficiency of a random
selection of neurons in the ensemble.

We also compared the decoding efficiency of the ADn and PoS neurons from Mouse 28
(Session 140313) which had the most head direction cells recorded among the mice that had
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Figure 7. Positional decoding of relevant and informative neurons in the mEC and head directional
decoding of the relevant and informative neurons in the ADn of Mouse 12 and the ADn and PoS of
Mouse 28 under a single recording session. Panel A shows the cumulative distribution of the decoding
error, ‖X̂ − Xtrue‖, for the relevant (solid violet) and spatially informative (solid yellow) neurons as well
as for the irrelevant (dashed violet) and uninformative (dashed yellow) neurons. The low positional decoding
efficiency at some time points can be traced to the posterior distribution, p(x|s), of the rat’s position given
the neural responses which exhibited multiple peaks as shown in the inset surface plot. For this particular
example, the true position was found close to the maximal point of the surface plot as indicated by the arrows
although such was not always the case. Panel B depicts the cumulative distribution of the decoding errors of
the 30 relevant (violet squares) and 30 head directionally informative (yellow stars) ADn neurons of Mouse
12 in Session 120806. The mean and standard errors of the cumulative distribution of decoding errors of 30
randomly selected ADn neuron (n = 1000 realizations) are shown in grey. On the other hand, panel C depicts
the cumulative decoding error distribution of the 30 relevant (violet) and 30 head directionally informative
(yellow) neurons in the ADn (crosses) and PoS (circles) of Mouse 28 in Session 140313. The mean and
standard errors of the cumulative distribution of decoding errors of 30 randomly selected ADn or PoS neuron
(n = 1000 realizations) are shown in grey. As the random selection included neurons from the ADn, which
contain a pure head directional information and can decode the positions better than the neurons in the PoS, the
decoding errors from the 30 randomly selected neurons were, on average, comparable to that of the relevant or
head directionally informative PoS neurons. In all the decoding procedures, time points where all the neurons
in the ensemble was silent were discarded in the decoding process.

recordings in both ADn and PoS [30]. As seen in Fig. 7C, neurons in the ADn decoded
the head direction more efficiently than the neurons in the PoS. These results are consistent
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with the notion that the ADn contains pure head directional modulation which allow for head
direction cells in the ADn to better predict the head direction compared to the head direction
cells in the PoS which contain true spatial information [10, 31]. For the neurons in Mouse
28 (Session 140313), it had to be noted that the 30 relevant ADn neurons also happened to
be the 30 head directionally informative ADn neurons. On the other hand, among the 30
relevant PoS neurons, 23 of which were head directionally informative. We observed that
the relevant PoS neurons decode just as efficient as the informative neurons consistent with
the findings for Mouse 12 (Session 120806).

Taken altogether, despite being blind to the rat’s position and of the mouse’s head di-
rection, the MSR is able to capture neurons that can decode the position and head direction
just as well as the spatially informative neurons and as the head directionally informative
neurons.

Discussion
In the present work, we introduced a novel, parameter-free and fully featureless method –
which we called multi-scale relevance (MSR) – to select relevant neurons within a hetero-
geneous population of neurons which are supposed to respond to some external stimuli or
to encode the behaviour of an animal that is being observed in an experiment. In the task of
learning from the temporal code, we have shown that the information provided by the MSR
can be compared to different correlates and allows one to disentangle the responses across
stimuli or behaviours, some of which may also be unknown to the experimenter a priori.

In this paper, we assumed that the information carried by the activity of a given neuron is
encapsulated in the long-ranged statistical patterns of the spike activity. In order to quantify
this information, we used the ideas in Refs. [19] and [32] to hypothesise that neurons hav-
ing such non-trivial temporal structures, as manifested by broad distributions of the neural
firing behaviour, are important to the representations that the brain region encodes. At a
given resolution, as defined in Eq. (1), we estimate the complexity of the temporal code by
the relevance defined in Eq. (2). The latter captures the broadness of the spike frequency
distribution at that resolution. Since naturalistic and dynamic stimuli and behaviours often
operate on multiple time scales, the MSR integrates over different resolution scales, thus al-
lowing us to spot neurons exhibiting persistent non-trivial spike codes across a broad range
of time scales.

Here, we have shown that the neurons showing persistently broad spike frequency dis-
tributions across a wide range of time scales usually carry information about the external
correlates related to the behaviour of the observed animal. By analysing the neurons in the
mEC and nearby brain regions and the neurons in the ADn and PoS – brain structures that are
pertinent to spatial navigation – we showed that the relevant neurons in these regions have
firing behaviours that are selective to spatial location and head direction. Here, we found
that in many cases, the neurons that display broad spike distributions tend to have conju-
gated representations in that they exhibit high mutual information with multiple behavioural
features. These findings are consistent with those observed experimentally by Sargolini et.
al [3] and statistically by Hardcastle et al. [5].

Broad distributions of spike frequencies, characterised by a high MSR, exhibit a stochas-
tic variablility that requires richer parametric models, as shown in Ref. [19]. In a decoding
perspective, these non-trivial distributions afford a higher degree of distinguishability of
neural responses to a given stimuli or behaviour. Indeed, by decoding for either spatial po-
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sition or for head direction using statistical approaches, we found that the responses of high
MSR neurons allow upstream processing units to efficiently decode the external correlates
just as well as the neurons whose resulting tuning maps contain information about those
external correlates.

Finally, we observed that the population of relevant neurons, as identified by the MSR,
is not homogeneous, e.g., the relevant neurons in the mEC data are not composed solely
by grid cells and the relevant neurons in the ADn and PoS are not necessarily composed
solely of head directional cells. Noteworthy, the decoding efficiency of the relevant neurons
was observed to be better compared to the ensemble comprising solely the grid cells. When
taken altogether, these observations support the idea that population heterogeneity may play
a role towards efficient encoding of stimuli [33, 34].

The insistence on broad distributions, on which the MSR relies on, tails with the fact that
biological systems such as the one under study, hardly ever generates well sampled datasets
of their complex behaviour. The dynamical range which the experimenter can probe is lim-
ited by the size of the dataset and its often far from saturating biological dynamical ranges.
The MSR takes advantage of this feature and identifies those variables that exhibit a richer
variability. This intuition, discussed theoretically in Refs. [19] and [32], has also been used
to identify biologically and evolutionary relevant amino acid sites in protein sequences [35].
Indeed, in spite of all advances in sequencing techniques, the genomes from which we can
learn are only those left to us by evolution. Hence, Ref. [35] shows that subsequences that
exhibit a wider response in frequency – as measured by Eq. (2) – to evolutionary dynamics
contain a wealth of biologically relevant information. This same strategy can be used to
identify relevant and hidden (latent) variables in statistical learning (see e.g. [36, 37]).

In principle, multi-scale relevance can be extended to measure the information carried
by the spike time series with respect to known external correlates or features, such as spatial
location and head direction. This requires discretising the feature space (e.g. space) in
bins and computing the number of time with which a neuron fires in each bin. From the
distribution of these counts, one can derive a measure of resolution and relevance, as in
Eqs. (1,2), and draw a curve as in Fig. 1 upon changing the bin size. Like the MSR discussed
here, this multi-scale relevance would be designed to spot neurons having spike frequencies
with non-trivial distributions when projected onto the feature space. Indeed, Refs. [7] and
[41] has shown that grid cells have field-to-field variability which is robust and is not an
artifact of having finite data nor of the non-uniform spatial sampling and which has multiple
implications including the capacity of grid cells to contain contextual information contrary
to the findings in Refs. [38, 39, 40] as well as the remapping of place cells without the need
for changing grid cell phases [41]. Although the application of MSR adapted to space to
characterise spatial inhomogeneity of firing behaviour is an interesting avenue of further
research, here we limited our analysis to temporal binning precisely because it is defined in
terms of the sole spike activity – the only information available to upstream neurons – to
decode a representation of the feature space.

The fact that the MSR captures these functional information from the temporal code
is a remarkable feat of this measure. This method can then be used as a pre-processing
tool to impose a less stringent criteria compared to those widely used in many studies (e.g.,
mean vector length, spatial sparsity and grid scores) thereby directing further investigation
to interesting neurons. The MSR is expected to be particularly useful in detecting relevant
neurons in high-throughput studies where the activity of thousands of neurons are measured
and where the function of these neural ensemble are not known a priori. Whether this
measure can also be used to identify functionally relevant neuronal units recorded through
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calcium imaging or through fMRI is also an exciting direction for future studies.

Materials and methods

Data Collection
The data used in this study are recordings from rodents with multisite tetrode implants.
These neurons are of particular interest because they are involved in spatial navigation.

Data from medial entorhinal cortex (mEC)

The spike times of 65 neurons recorded across the mEC area of a male Long Evans rat (Rat
14147) were taken from Ref. [9]. The rat was allowed to freely explore a box of dimension
150× 150 cm2 for a duration of around 20 mins. The positions were tracked using a platform
attached to the head with red and green diodes fixed at both ends. Additional details about
the data acquisition can be found in Ref. [9].

Data from the anterodorsal thalamic nucleus (ADn) and post-subiculum (PoS)

The spike times of 746 neurons recorded from multiple areas in the ADn and PoS across
multiple sessions in six free moving mice (Mouse 12, Mouse 17, Mouse 20, Mouse 24,
Mouse 25 and Mouse 28) while they freely foraged for food across an open environment
with dimensions 53 × 46 cm2 and in their home cages during sleep were taken from
Ref. [30]. Mouse 12, Mouse 17 and Mouse 20 only had recordings in the ADn while Mouse
24, Mouse 25 and Mouse 28 had simultaneous recordings from ADn and PoS. The positions
were tracked using a platform attached to the heads of the mice with red and blue diodes
fixed at both ends. Only the recorded spike times during awake sessions and the neural units
with at least 100 observed spikes were considered in this study. Additional information
regarding the data acquisition can be found in Refs. [10] and [30].

Position and speed filtering
The position time series for the mEC data were smoothed to reduce jitter using a low-pass
Hann window FIR filter with cutoff frequency of 2.0 Hz and kernel support of 13 taps
(approximately 0.5 s) and were then renormalised to fill missing bins within the kernel
duration as done in Ref. [7]. The rat’s position was taken to be the average of the recorded
and filtered positions of the two tracked diodes. The head direction was calculated as the
angle of the perpendicular bisector of the line connecting the two diodes using the filtered
positions. The speed at each time point was computed by dividing the trajectory length with
the elapsed time within a 13-time point window. When calculating for spatial firing rate
maps and spatial information (see below), only time points where the rat was running faster
than 5 cm/s were considered. No speed filters were imposed when calculating for head
directional tuning curves and head directional information. On the other hand, no position
smoothing nor speed filtering were performed when calculating for the spatial firing rate
maps and spatial information for the ADn and PoS data.
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Rate maps

The spike location, ξ(i)j , of neuron i at a spike time t(i)j was calculated by linearly interpo-
lating the filtered position time series at the spike time. As in Ref. [7], the spatial firing rate
map at position x = (x, y) was calculated as the ratio of the kernel density estimates of the
spatial spike frequency and the spatial occupancy, both binned using 3 cm square bins, as

f(x) =

∑M
j=1K(x|ξj)∑M

j=1 ∆tjK(x|xj)
(5)

where a triweight kernel

K(x|ξ) =
4

9πσ2
K

[
1− ‖x− ξ‖

2

9σ2
K

]3
, ‖x− ξ‖ < 3σK (6)

with bandwidth σK = 4.2 cm was used. In place of a triweight kernel, a Gaussian smoothing
kernel with σG = 4.0 truncated at 4σG was also used to estimate the rate maps which gave
qualitatively similar results. For better visualization, a Gaussian smoothing kernel with
σG = 8.0 was used to filter the spatial firing rate map.

On the other hand, for head direction tuning curves, the angles were binned using 9◦ bins.
The tuning curve was then calculated as the ratio of the head direction spike frequency and
the head direction occupancy without any smoothing kernels as the head direction bins are
sampled well-enough. For better visualization, a Gaussian kernel with smoothing window
of 20◦ was used to filter the tuning curves.

Information, Sparsity and other Scores
Given a feature, φ (e.g., spatial position, x, head direction, θ or speed, v), the information
between the neural spiking s and the feature can be calculated á la Skaggs-McNaughton [26].
In particular, under the assumption of a non-homogeneous Poisson process with feature
dependent rates, λ(φ), under small time intervals ∆t, the amount of information, in bits per
second, that can be decoded from the rate maps is given by

I(s, φ) =
∑

φ

p(φ)
λ(φ)

λ̄
log

λ(φ)

λ̄
(7)

where λ(φ) is the firing rate at φ, p(φ) is the probability of occupying φ and

λ̄ ≡
∑

φ

λ(φ)p(φ) (8)

is the average firing rate. To account for the bias due to finite samples, the information
of a randomised spike frequency was calculated using a bootstrapping procedure. To this
end, the spikes were randomly shuffled 1000 times and the information for each shuffled
spikes was calculated. The average randomised information was then subtracted from the
non-randomised information.

Apart from the information, one of the measures that are used to quantify selectivity of
neural firing to a given feature is the firing sparsity [12] which can be calculated using

spφ = 1−

(∑
φ λ(φ)p(φ)

)2
∑

φ λ(φ)2p(φ)
. (9)
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Apart from the measures of information and sparsity, we also calculated the grid scores,
g, for the neurons in the mEC data. The grid score is designed to quantify the hexagonality
of the spatial firing rate maps through the spatial autocorrelation maps (or autocorrelograms)
and was first used in Ref. [3] to identify putative grid cells. In brief, the grid score is com-
puted from the spatial autocorrelogram where each element ρij is the Pearson’s correlation
of overlapping regions between the spatial firing rate map shifted i bins in the horizontal
axis and j bins in the vertical axis and the unshifted rate map. The angular Pearson auto-
correlation, acorr(u), of the spatial autocorrelogram was then calculated using spatial bins
within a radius u from the center at lags (or rotations) of 30◦, 60◦, 90◦, 120◦ and 150◦, as
well as the ±3◦ and ±6◦ offsets from these angles to account for sheared grid fields [8]. As
done in Ref. [7], the grid score, g(u), for a fixed radius of u, is computed as

g(u) =
1

2
[max{acorr(u) at 60◦ ± (0◦, 3◦, 6◦)+

max{acorr(u) at 120◦ ± (0◦, 3◦, 6◦)]

− 1

3
[min{acorr(u) at 30◦ ± (0◦, 3◦, 6◦)+

min{acorr(u) at 90◦ ± (0◦, 3◦, 6◦)+

min{acorr(u) at 150◦ ± (0◦, 3◦, 6◦)] . (10)

The final grid score, g, is then taken as the maximal grid score, g(u), within the interval
u ∈ [12 cm, 75 cm] in intervals of 3 cm.

Another quantity that was calculated in this paper is the Rayleigh mean vector length,
R. Given the angles {θ1, . . . , θM} where a neuronal spike was recorded, the mean vector
length can be calculated as

R =

√√√√
(

1

M

M∑

i=1

cos θi

)2

+

(
1

M

M∑

i=1

sin θi

)2

. (11)

Note that for head direction cells where the neuron fires at a specific head direction, the
angles will be mostly concentrated along the preferred head direction, θc, and hence, R ≈ 1
whereas for neurons with no preferred direction, R ≈ 0.

Resampling the firing rate map
The calculated rate maps and the real animal trajectory were used to resample the neural ac-
tivity assuming non-homogeneous Poisson spiking statistics with rates taken from the rate
maps. To this end, the real trajectory of the rat was divided into ∆t = 1 ms bins. The
position and head direction were linearly interpolated from the filtered positions described
above. The target firing rate, fj in bin j was then calculated by evaluating the tuning profile
at the interpolated position or head direction. Whenever the target firing rate was modulated
by both the position and head direction, we assumed that the contribution due to each feature
was multiplicative and thus, fj is calculated as the product of the tuning profiles at the inter-
polated position and the interpolated head direction. A Bernoulli trial was then performed
in each bin with a success probability given by fj∆t.

Statistical decoding
For positional decoding, we divided the space in a grid of 20× 20 cells of 7.5 cm × 7.5 cm
spatial resolution, which was comparable to the rat’s body length. Time was also discretised
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into 20 ms bins which ensured that for most of the time (i.e. in 92% of the cases), the rat
was located within a single spatial cell. Under these time scales, the responses of a neuron
can be regarded as being drawn from a binomial distribution, i.e., either the neuron i is
active (s(i)j = 1) or not (s(i)j = 0) between (j − 1)∆t and j∆t. The likelihood of the neural
responses, sj = (s

(1)
j , . . . , s

(N)
j ) of N independent neurons at a given time conditioned on

the position, xj is then given by

p(sj|xj) =
N∏

i=1

(λ(i)(xj)∆t)
s
(i)
j (1− λ(i)(xj)∆t)1−s

(i)
j (12)

where λ(i)(xj) is the firing rate of neuron i at xj . Given the prior distribution on the position,
p(xj), which is estimated from the data, the posterior distribution of the position, xj , given
the neural responses, sj at time t is given by

p(xj|sj) =
p(sj|xj)p(xj)

p(sj)
. (13)

The decoded position, as in the Bayesian 1-step decoding in Ref. [42], was calculated as

x̂j = arg max
xj

p(sj|xj)p(xj). (14)

For head directional decoding, on the other hand, we divided the angles, θ ∈ [0, 2π) in 9◦

bins. For this case, time was instead discretised into 100 ms bins. Under these time scales,
the neurons could not be regarded simply as either active or not. Hence, it was natural to
switch towards the analysis of population vectors, nj , a vector which represents the number
of spikes, n(i)

j , recorded from each neuron within the j th time bin, to decode for the head
direction. In this case, the number of spikes, n(i)

j , that neuron i discharges between (j−1)∆t
and j∆t can be modeled as a non-homogeneous Poisson distribution

p(n
(i)
j |θj) =

λ(i)(θj)
n
(i)
j

n
(i)
j !

exp(−λ(i)(θj)) (15)

and thus, under the independent neuron assumption, p(nj|θj) =
∏N

i=1 p(n
(i)
j |θj). The de-

coded head direction can then be calculated as

θ̂j = arg max
θj

p(nj|θj)p(θj). (16)

where p(θj) is the head directional prior distribution which is estimated from the data. Note
that in all of the decoding procedures, we only decoded for time points with which at least
one neuron was active.

Source codes
All the calculations in this manuscript were done using personalised scripts written in Python
3. The source codes for calculating multi-scale relevance (which is also compatible with
Python 2) and for reproducing the figures in the main text are accessible online at https:
//github.com/rcubero/MSR.
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Supporting information
Figure S1 Relationship between the MSR and the bursty-ness and memory coeffi-
cients for synthetic data and neural data. Interevent times were drawn from a stretched
exponential distribution to simulate random events up to 100,000 time units where short-
term memory effects were introduced through a shuffling procedure and the number of ran-
dom events, M , were varied by modifying the characteristic time constant, τ0 (See Text S1
for details). Scatter plots show how the multi-scale relevance (MSR) scales with the bursty-
ness coefficient, b (panel A), the memory coefficient, m (panel B), and logM (panel C). In
panel B, random events were drawn from a stretched exponential distribution with u = 1.0
while in panel C, the parameter u was set to 0.3. The results for 100 realizations of such
random events are shown. For the neurons in the mEC dataset, the MSR was linearly re-
gressed with logM (panel D). The residuals, defined as the deviation of the MSR from the
black dashed line, were then correlated against spatial (panel E) and head directional (panel
F) information.

Figure S2 The multi-scale relevance is robust and it remains consistent even when
using partial data. For each neuron, the multi-scale relevance was calculated using only
the first half and only the second half of the data. The scatter plot reports the two results.
The linearity of the relationship between the two sets of partial data is quantified by the
Pearson correlation ρp along with its P -value. The black dashed line indicates the linear fit.

Text S1 Probes the relation between MSR and other measures of temporal structure using
synthetic neural spiking.
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Text S1: Relation between MSR and other measures
of temporal structure

Supplementary Material to Finding informative neurons in the brain using
Multi-Scale Relevance

Characterising the neural spiking can be done by studying the distribution of the time
intervals between two succeeding spikes, known in literature as the interspike interval (ISI)
distribution which allows us to see whether a neuron fires in bursts [1, 2]. Note that given the
time stamps of neural activity {t1, . . . , tM}, the interspike interval is given by {τ1, . . . , τM−1}
where τi = ti+1 − ti. Because the MSR is built to separate relevant neurons from the irrel-
evant ones through their temporal structures in the neural spiking, we wanted to assess how
the proposed measure scales with the characteristics that give structure to temporal events.
In the context of the temporal activity of a neuron, a feature of the relevance measure, H[K]
is that highly regular, equally-spaced interspike intervals are attributed with a low measure.
On the other hand, interspike intervals that follow broad, non-trivial distributions are at-
tributed with a high relevance measure. Hence, we expected that the relevance measure, and
therefore the multi-scale relevance, captures non-trivial bursty patterns of neurons.

To study how MSR behaves with respect to the characteristics of interspike intervals, we
considered a stretched exponential distribution

P u
SE(τ) =

u

τ0

[
τ

τ0

]u−1

exp

[
−
(
τ

τ0

)u]
(S1)

with which the parameter u allows us to define the broadness of underlying distribution
and τ0 is the characteristic time constant of the random event. For Poisson processes, the
interspike intervals follow an exponential distribution corresponding to u = 1 in Eq. (S1).
For u < 1, the interspike interval distribution becomes broad and tends to a power law
distribution with an exponent of −1 in the limit when u→ 0. On the other hand, for u > 1,
the distribution becomes narrower and tends to a Dirac delta function in the limit when
u→∞.

Upon fixing the parameters u and τ0 which fixes the stretched exponential distribution in
Eq. (S1), random interspike intervals τi could then be sampled independently from Eq. (S1)
so as to generate a time series of 100,000 time units. The MSRs of each time series could
then be calculated using the methods described in the main text.

To characterise the temporal structures of both the simulated data and neural data, we
adapted the measures of bursty-ness and memory of Goh and Barabasi [3]. While the bursty-
ness coefficient, b defined as

b =
στ − µτ
στ + µτ

, (S2)

measures the broadness of the underlying ISI distribution with µτ and στ as the mean
and standard deviations of the interspike intervals respectively, the memory coefficient, m
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defined as

m =
1

M − 2

M−2∑

j=1

(τj − µτ )(τj+1 − µτ )
σ2
τ

, (S3)

measures the short-time correlation between events.
For the stretched exponential distribution in Eq. (S1), the mean and standard deviations

could be computed as

µτ = τ0Γ

(
u+ 1

u

)
(S4)

and

στ = τ0

√
Γ

(
u+ 2

u

)
− Γ

(
u+ 1

u

)2

(S5)

where Γ(x) ≡ (x − 1)! is the gamma function. With these closed-form relationships,
we could now study the limiting properties of the burstiness and memory coefficients. For
Poisson processes, the mean, µτ , and standard deviation, στ , coincide, i.e. µτ = στ = τ0,
and thus with Eq. (S2), give b = 0. For broad distributions, u < 1 in Eq. (S1), στ > µτ
which gives b > 0 and tends to approach b → 1 in the limit u → 0. On the other hand, for
narrow distributions, u > 1 in Eq. (S1), στ < µτ resulting to b < 0 and tends to b → −1
in the limit u → ∞. Hence, the bursty-ness parameter, b, is a bounded parameter, i.e.,
b ∈ [−1, 1].

For the synthetic datasets, note that fixing the parameter u automatically fixes the bursty-
ness coefficient, b. However, because the synthetic interspike intervals are sampled indepen-
dently, the memory coefficient, m, is approximately zero. Short-term memory can then be
introduced by first sorting the interspike interval in decreasing (or increasing) order which
results to m ≈ 1. Randomly shuffling the ordered interspike intervals of a subset of inter-
spike intervals (100 events at a time in this case) results to a monotonic decrease ofm. In the
limit of infinite data, the memory coefficient is bounded by [−1, 1]. These bounds may no
longer hold in the case of limited data. Despite this, a positive memory coefficient indicates
that a short interspike (long) interval between events tends to be followed by another short
(long) interval and a negative memory coefficient indicates that a short (long) interspike
interval between events tends to be followed by a long (short) interval.

With this, we found that the MSR increased with bursty-ness and memory for the syn-
thetically generated dataset as seen in Figure S1A and B. We also sought to characterise
the relationship between the number of events, M , with the MSR which can be addressed
by changing the characteristic time constant, τ0, in Eq. (S1) wherein decreasing τ0 leads
to more events and thus, increased logM . We found that MSR decreased with logM as
seen in Figure S1C. This result is indicative that MSR of randomly generated events can be
explained by logM .

Following the results on synthetic data, we also analysed temporal characteristics in real
neural dataset. In the case of neurons in the mEC data, we also found that MSR decreased
with the logarithm of the number of observed spikes, logM , as shown in Figure S1D. To
determine how much of the calculated MSRs can be explained by the number of observed
spikes, M , we linearly regressed MSR with logM shown as the dashed line in Figure S1D.
Residuals were then calculated as the deviation of the calculated MSR from the regression
line and thus, captures the amount of MSR that cannot be explained by logM alone. We
showed in Figure S1E and F that the MSR for real dataset still contained information going
beyond logM as the residual MSRs (with respect to logM ) still retain the dependence with
spatial and head directional information as already observed in Fig 2.
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