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ABSTRACT The heterogeneity of stochastic gene expression, which refers to the temporal fluctuation of the gene product
and its cell-to-cell variation, has attracted considerable interest from biologists, physicists, and mathematicians. The dynamics
of protein production and degradation were modeled as random processes with transition probabilities. However, there is a gap
between theory and phenomena, particularly in terms of analytical formulation and parameter estimation. In this study, we pro-
pose a theoretical framework in which we present a basic model of a gene regulatory system, derive a steady-state solution, and
provide a Bayesian approach for estimating the model parameters from single-cell experimental data. The proposed framework
is demonstrated to be applicable for various scales of single-cell experiments at both the mRNA and protein levels, and it is
useful for comparing kinetic parameters across species, genomes, and cell strains.

INTRODUCTION
Gene expression in prokaryotes and eukaryotes is exposed to various molecular noises. Modern single-cell gene expression
analyses have revealed that gene expression levels fluctuate in each cell (1–3) and differ from cell to cell even within a clonal
population in an identical environment (4–7). Meanwhile, ordered dynamics—ranging from microscopic to macroscopic
levels, such as nearly perfect DNA replications (8), cell polarization (9), and mammalian embryogenesis (10)—have also
been observed. These discoveries reveal that cells integrate both noisy and accurate molecular processes to make them well
organized overall, demonstrating the difference between organisms and machinery. However, the question of how do cells
achieve orchestration through stochastic expression kinetics arises.

It has been proposed that stochastic expression kinetics is related to its cell-to-cell variation (5), cellular memory (11),
cell differentiation (12, 13), and evolution (14). Accordingly, heterogeneous cellular responses to environmental changes have
been thoroughly studied. For example, the lac operon in Escherichia coli (15–17) and GAL genes in Saccharomyces cerevisiae
(18–20) produce discriminative unimodal and bimodal distributions of the protein concentration. Another study on population
survival suggested that increasing expression noise, rather than the mean expression level, could provide cells with a selective
advantage under stress conditions (21, 22). These observations indicate that cells utilize the protein distribution to adapt to
the environmental changes. Nevertheless, many previous studies have focused on the mean and variance, not on the benefits
gained from the distribution.

To address the aforementioned issue, theoreticians have developed analytical procedures to derive mRNA and protein
distributions (23–34). The dynamics of protein production and degradation have been modeled by a discrete stochastic model,
whereas the dynamics of transition probability have been modeled by a master equation. However, the connection between
stochastic processes and probability distribution is less studied. This point indicates a gap between theory and phenomena
because the master equation does not always represent the stochastic dynamics. Moreover, in practice, many previous studies
are based on a discrete model that counts mRNA and protein copy numbers because they are discrete in nature. Meanwhile, in
most experiments, the single-cell gene expressions are indirectly observed through the measurement of fluorescence intensity,
thus indicating that we need a continuous model.

In the present article, we begin with the biophysical modeling of a simple gene regulatory system. First, we formulate
the stochastic process of protein production and degradation coupled with an active-or-inactive genetic switch. Second, we
introduce a system of master equations and derive an important steady-state solution expressing protein distribution. We
show that the solution can be fit to experimental data with an arbitrary measurement scale. Finally, we apply the proposed
theory to the thiomethylgalactoside (TMG)-induced system of lacZYA expression in E. coli, estimate the model parameters
from published experimental data (15) with Markov chain Monte Carlo (MCMC) methods, and investigate the heterogeneous
responses of the lac genes to extracellular TMG concentrations. Consequently, the results of this study demonstrate that the
proposed theoretical framework is widely applicable to various types of single-cell experiments at both the mRNA and protein
levels, such as reporter assays (35–37), MS2-GFP system (2, 3), fluorescent in situ hybridization (7, 36), and flow cytometry
(20, 22).

METHODS
Model
Starting with a simplified gene regulatory system, as shown in Fig. 1(a), we assume the following three phases: phase I, i.e.,
the extracellular phase, is a molecular reservoir in which concentrations remain constant; phase II, i.e., the cytoplasmic phase,
contains a vast amount of protein molecules, and the system size is large enough to keep the condition dilute and well stirred (to
benefit from the deterministic chemical reaction rate equation (38)); and phase III, i.e., the gene-mRNA phase, is a small-size
subsystem in which non-negligible molecular noises exist. We further assume that the system consists of three variables, x, y,
and z, and a gene-protein interaction, f , where x = 1 and x = 0 denote the active and inactive states of the gene, respectively,
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and y and z are the amounts of the synthesized protein Y and a certain effector protein Z, respectively. For the gene-protein
interaction, we assume that the probability of x switching between 0 and 1 per unit time dt is described by x + f (x)dt, where

f (x) = kon(z)(1 − x) − koff(z)x. (1)

Here, kon(z) and koff(z) are the transition rates. Assume that the influx and efflux of Z through the cytoplasmic membrane are
always in equilibrium (17, 39), and let z always be constant. Henceforth, let kon(z) = kon, and let koff(z) = koff .
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Figure 1: (a) Schematic representation of the simplified gene regulatory system. (b) and (c) (left) Typical sample paths of
10X(t) (gray line) and Y (t) (black line), and (right) p(y), i.e., the probability density of Y (t), plotted in log10 scale. The
common parameters are biologically relevant: λ− = 0.5 (this is slightly larger than the presumable value), λ+ = 15, β = 0.074,
and γ = 0.01; and the control parameters (b) kon = koff = 10γ, and (c) kon = koff = γ/10.

Based on the concept of fast-slow dynamics (27, 40), we assume that the unit time is considerably larger and smaller than
the lifetimes of the mRNA and protein, respectively, and Ys are produced through a bursting manner from their mRNA in the
genetic phase, whereas they are degraded in a continuous manner in the cytoplasmic phase. We also define the following: λ−
and λ+ are the burst frequencies, β is the mean burst size per burst, and γ is the decay constant. Here, λ− represents the basal
transcription rate from the inactive promoter, which is referred to as “promoter leakage” (34). Based on these assumptions, we
formulate the time evolutions of X ∈ {0, 1} and Y ∈ R>0 by the following mixed random process:

X(t + dt) ∼ Ber(X(t) + f (X(t))dt), (2)
dY (t) = −γY (t)dt + dC−(t; λ−, β) + X(t)dC+(t; λ+, β), (3)

where “∼” denotes random sampling, and Ber(p) is the Bernoulli distribution, whose random variable takes 1 with the
probability of p; otherwise, it is 0. Here, dCi(t) (i ∈ {+,−}) is the compound Poisson white noise (41, 42) defined by

Ci(t; λi , β) =
Mi (t)∑
j=1

RjU(t − tj), (4)

where {Mi(t)} denotes a homogeneous Poisson counting process with the occurrence rate λi , U(t) is the unit step function, tj is
the jth arrival time, and {Rj} is a sequence of independent identically distributed random burst sizes with a mean β. Based on
experimental observations (43) and theoretical assumptions (24, 26, 27), we assume that Rj follows an exponential distribution
with the assigned probability density q(r) = (1/β)e−r/β . The typical sample paths of X(t) and Y (t) for different values of kon
and koff are shown in Figs. 1(b) and (c). Note that directly predicting the values of kon and koff may be possible from Fig. 1(c),
but such a prediction is difficult from Fig. 1(b). Hence, we need a theoretical procedure to estimate these parameters in any
case.
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Analysis
Next, we investigate the probability density functions (PDFs) of X(t) and Y (t). Since dC−(t) and dC+(t) are independent
random processes, we can analyze the following systems individually:

dY−(t) = −γY−(t)dt + dC−(t; λ−, β), (5)
dY+(t) = −γY+(t)dt + X(t)dC+(t; λ+, β), (6)

where Y (t) = Y−(t) + Y+(t). Let p(t, y), p−(t, y), and p+(t, x, y) be the transition PDFs of Y (t), Y−(t), and Y+(t), respectively,
and let p+(t, y) =

∑1
x=0 p+(t, x, y). According to the procedure in references (41, 42), we obtain the following system of

integro-differential equations along with the normalization condition:

∂p−(τ, y)
∂τ

=
∂

∂y
(yp−(τ, y)) + Λ−

(∫ y

0
q(y′)p−(τ, y − y′)dy′ − p−(τ, y)

)
, (7)

∂p+(τ, 0, y)
∂τ

=
∂

∂y
(yp+(τ, 0, y)) − Konp+(τ, 0, y) + Koff p+(τ, 1, y), (8)

∂p+(τ, 1, y)
∂τ

=
∂

∂y
(yp+(τ, 1, y)) + Konp+(τ, 0, y) − Koff p+(τ, 1, y) + Λ+

(∫ y

0
q(y′)p+(τ, 1, y − y′)dy′ − p+(τ, 1, y)

)
, (9)∫ ∞

0
p+(τ, y)dy ≡ 1, (10)

where τ = γt, Kon = kon/γ, Koff = koff/γ, and Λi = λi/γ (i ∈ {+,−}). Note that Eq. (7) is the so-called Kolmogorov-Feller
equation (44) introduced by Friedman and his coworkers as a model of constitutive gene expression (26).

Let us consider the steady-state problem by setting the left-hand sides of Eqs. (7)–(9) to zero. Let p(y), p−(y), and p+(x, y)
be the PDFs under the steady state, and let p+(y) =

∑1
x=0 p+(x, y). The Laplace transforms of Eqs. (7)–(9) yield

p−(y) =
yΛ−−1e−y/β

Γ(Λ−)βΛ−
, (11)

p+(x, y) = x + (1 − 2x)C0

∫ 1

0

ya−1e−y/(βw)

Γ(a)(βw)a · w
b−1(1 − w)c−b

B(b, c − b + 1) dw, (12)

p+(y) =
∫ 1

0

ya−1e−y/(βw)

Γ(a)(βw)a · w
b−1(1 − w)c−b−1

B(b, c − b) dw, (13)

p(y) =
∫ y

0
p−(y′)p+(y − y′)dy′, (14)

where C0 = Koff/(Kon + Koff), a + b = Kon + Koff + Λ+, ab = KonΛ+, and c = Kon + Koff (see the Supplemental Material for
the derivation). Here, Eq. (13) is the PDF of the weighted gamma distribution, whose scale parameter βw is averaged over
w ∈ (0, 1) with the assigned beta distribution as a weight function. Assuming that Kon, Koff ≪ 1, Eq. (13) can be approximated
as follows:

p+(y) ≈
∫ 1

0

yΛ+−1e−y/(βw)

Γ(Λ+)(βw)Λ+
· w

Kon−1(1 − w)Koff−1

B(Kon, Koff)
dw (Kon, Koff ≪ 1), (15)

where Λ+, Kon, and Koff serve as the shape parameters of the protein distribution, and β is the scale parameter. In fact, as shown
in Eqs. (11)–(13), changing the value of β only results in the scaling of pi(y) (i ∈ {+,−}). In other words, for any k > 0, the
following identity holds:

pi(ky; θi)(kdy) = pi(y; θ̃i)dy, (16)

where θi = (kon, koff , λi , β, γ) and θ̃i = (kon, koff , λi , β/k, γ) (i ∈ {+,−}). This result indicates that Eqs. (11)–(14) can be fit to
various experimental data with an arbitrary measurement scale of y. In addition, we found that the protein distribution defined
by Eq. (13) is analogous to the “Poisson-Beta distribution”, which is the solution of the discrete model for the birth-and-death
process of the mRNA copy number with an all-or-none genetic switch (45, 46). Through the analysis, we can also calculate
any order of moment (see the Supplemental Material for the calculation).

4 Manuscript submitted to Biophysical Journal

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/316166doi: bioRxiv preprint 

https://doi.org/10.1101/316166


Biophysical Journal Template

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

τon [min]

τoff [min]

3 μM

30 μM

3 μM

(c)(a)

Extracellular TMG [μM]

kon [min-1]

10
0

10
-1

10
-2

10
-3

30 μM

Bimodal

Unimodal

koff [min-1]

(b)

0 10 20 30

0 10 20 30

Pre-uninduced population

Pre-induced population

10
0

10
-1

10
-2

10
-3

Figure 2: The estimated mean values of our model parameters kon and koff for the preuninduced (unfilled circles) and preinduced
(filled circles) populations toward the various extracellular TMG concentrations. (a) and (b) The rate parameters kon and koff
versus TMG levels. (c) The average durations of X(t) = 1 and X(t) = 0 defined by τon (= k−1

off ) and τoff (= k−1
on ), respectively,

for the different TMG concentrations: 3–30 µM with 3 increments for unfilled circles, and 3–9 with 1 increment having 12, 15,
and 30 µM for filled circles. The shaded region at the right top corner indicates the bimodality of p(y). The solid and dashed
lines connecting the points are simply visual guides.

RESULTS

Finally, we apply our theory to the TMG-induced system of lacZYA expression in E. coli, as reported in 2004 (15). In the study,
cells with well-defined initial states, either uninduced or fully induced, were used, and the fluorescence intensity of the green
fluorescent protein (GFP) in each cell toward the various TMG concentrations was measured. The remaining definitions and
assumptions in this study are as follows: (i) x, y, and z denote the activity of the lac promoter and the intracellular levels of the
GFP and TMG, respectively; (ii) z is constant for the system, which is assumed to be in a steady state (15); (iii) p(y) denotes
the cell-to-cell variation of y at the steady state; (iv) kon ≫ koff is defined with respect to the fully induced population; (v)
λ− = 0 by assuming that the genetic switch is all-or-none; (vi) λ− + λ+, β, and γ are the maximum transcription rate constant
defined for the fully induced population, the average scaled number of protein molecules being produced during the lac mRNA
lifetime, and the decay constant of GFP, respectively; and (vii) (kon, koff) and (λ+, β) are dependent on and independent of the
extracellular TMG, respectively. Based on assumptions (i)–(vii), we estimate λ+ and β from the experimental data with the
fully induced population (15, 43, 47–49). Here, the estimated values are λ+ = 15 min−1, β = 0.074, and γ = 0.01 min−1 (see
the Supplemental Material for the parameter estimation).

As shown in the previous study, most of the GFP distributions are far from Gaussian, which indicates that such distributions
are poorly characterized by the mean and variance. Hence, we adopt a Bayesian approach utilizing the Metropolis algorithm
(50), and we estimate the posterior distributions of kon and koff from the published single-cell data (15). Note that each posterior
had a single peak over our searched parameter range. Figs. 2(a) and (b) show the estimated mean values of kon and koff as
functions of the extracellular TMG levels, and Fig. 2(c) shows the values of τon (=k−1

off ) and τoff (=k−1
on ), which are the average

durations of X(t) = 1 and X(t) = 0, respectively, for both preuninduced and preinduced populations. Consequently, we found
that the preuninduced and preinduced populations mainly modulate koff for 3–21 and 3–5 µM TMG, respectively, the values
of which are necessary for their half-induction, i.e., the bimodal distribution (see the shaded region in Fig. 2(c)). This result is
comparable with those found at the mRNA level (47). In addition, we found that the preuninduced and preinduced cells mainly
modulate kon for 24–30 and 6–30 µM TMG, respectively, the values of which are necessary for their further induction.
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DISCUSSION
We have shown that our theoretical framework can estimate the biological parameters from single-cell data measured as
fluorescence intensity. Fig. 2(c) shows that τon ≈ 2.78 and τoff ≈ 164.82 min at 3 µM TMG for the preuninduced population.
The experimental study with direct measurement using another E. coli strain under the control of a repressed lac promoter
reported that gene expression burst lasts ∼3 to 15 min and that the average time between two adjacent expressions is 46 min
(43). Hence, careful tuning of the parameters λi (i ∈ {+,−}), β, and γ in accordance with given experimental data may help
researchers accurately quantify the kinetic parameters kon and koff .

Interestingly, Figs. 2(a) and (b) show that kon(z) and koff(z) are nonlinear functions of TMG levels. In this case, if z is
a random variable that obeys a distribution with nonzero variance, then the mean output value of y may deviate from that
predicted from deterministic reaction kinetics. This situation occurs at any time when considering a random molecular flux
across the cell membrane, a genetic circuit with feedback loops, and so forth. Mathematically, Jensen’s inequality may help us
predict such derivation provided that kon(z) and koff(z) are convex functions. However, Figs. 2(a) and (b) indicate that kon and
koff are nonconvex, which leads to a notorious mixed convex problem (51).

Within the next decade, single-cell experiments with quantitative mathematical biology will enable comparing biologically
important parameters such as τon and τoff across species, genomes, and strains as functions of various environmental conditions,
part of which were briefly reviewed by Lionnet and Singer (52). Gnugge et al. reported that E. coli and S. cerevisiae have a
similar core network in the lactose and galactose utilizing systems, respectively (53), but the functional role of the network
complexity has yet to be determined. Our results show that the transition behaviors of the system can be compared on the (τon,
τoff)-plane along with the probability distributions (Fig .2(c)), which may provide a better understanding of the quantitative
differences across species. Dar, Razooky et al. proposed an ingenious method for estimating their model parameters from
three statistics (i.e., the coefficient of variation, expression level, and autocorrelation time) and mapped the kinetic features of
human gene expression into their parameter space through a genome-wide experiment (54). However, their method is based on
a finite number of statistics, which can estimate a smaller number of parameters, and the experiment requires a high-resolution
real-time monitoring, which is costly. To overcome these issues, a Bayesian or maximum likelihood approach is suitable, as
Shahrezaei et al. mentioned in their report (27). In this respect, our framework including MCMC performed well without any
concern for the number of statistics. Choi, Cai et al. experimentally examined various E. coli strains with different genetic
constructions and found that the binding affinity of the effector protein to its target loci significantly changes the protein
distribution (17). Linking DNA structure, such as looping, chemical modification, and DNA-protein complex formation, to its
expression pattern is an important future work.

CONCLUSION
We have proposed a fairly general model of a gene regulatory system along with the clear biophysical assumptions, and we
formulated it by both stochastic differential equations (Eqs. (2) and (3)) and the corresponding master equations (Eqs. (7)–
(10)). We subsequently derived the steady-state solution while avoiding complicated forms such as intricate combinations
of hypergeometric functions, which allows one to understand the parameters that affect the shape and scale of the protein
distribution (Eq. (15)). We also demonstrated that the solution can be fit to experimental data with an arbitrary measurement
scale.

As an application, we investigated the TMG-induced system of lacZYA expression in E. coli. Accordingly, we found that
the system mainly modulates koff for the lower or intermediate levels of induction and kon for the higher level, which can be
predicted on the (τon, τoff)-plane (Fig. 2(c)). Finally, we conclude that our theoretical framework is widely applicable to various
types of single-cell experiments at both the mRNA and protein levels, and it is expected to be useful for predicting the kinetic
behaviors of a given biological network, including genetic oscillations (1, 55), cell differentiations (13), and evolution (22).
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