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Abstract 

Aerobic anoxygenic phototrophic (AAP) bacteria play a relevant role in the marine microbial food 

web, but little is known about their long-term seasonal dynamics. Using Illumina amplicon 

sequencing of the pufM gene coupled with multivariate, time series and co-occurrence analyses we 35 

examined their temporal dynamics over a decade at the Blanes Bay Microbial Observatory (NW 

Mediterranean). Phylogroup K (Gammaproteobacteria) was the most abundant over all seasons, with 

phylogroups E and G (Alphaproteobacteria) being often abundant in spring. A clear seasonal trend 

was observed in diversity, with maximum values in winter. Multivariate analyses showed sample 

clustering by season, with a relevant proportion of the variance (38%) explained by day length, 40 

temperature, salinity, phototrophic nanoflagellate abundance and phosphate concentration. Time 

series analysis showed that only 42% of the Amplicon Sequence Variants (ASVs) analyzed 

presented marked seasonality but these represented most of the abundance (92%). Interestingly, 

distinct temporal dynamics were observed within the same phylogroup and even within different 

ASVs conforming the same Operational Taxonomic Unit (OTU). Likewise, co-occurrence analysis 45 

highlighted negative associations between various ASVs within the same phylogroup. Altogether 

our results picture the AAP assemblage as highly seasonal, containing ecotypes with distinctive 

niche partitioning rather than being a cohesive functional group.   
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Introduction  

The development of high-throughput sequencing (HTS) has allowed the study of marine microbial 50 

diversity at an unprecedented scale (Sogin et al., 2006). Mapping microbial communities in 

hundreds of samples from recent global expeditions has resulted in a more comprehensive picture 

of how they vary across space, which are the dominant bacterial groups and rare species, as well as 

which are the main controlling environmental parameters structuring these communities (Yooseph 

et al., 2007; Salazar et al., 2015; Sunagawa et al., 2015). Seemingly important is determining the 55 

temporal dynamics of marine microbiomes. Disentangling community seasonality is crucial to 

unveil patterns of biodiversity, stability, predictability, resource preferences, interactions between 

species and response to disturbances, including global change. Long-term microbial observatories 

are thus key to understand microbial variation over time and across environmental gradients, 

particularly in temperate zones encompassing meteorological seasons (Kane, 2004; Buttigieg et al., 60 

2018).  

To date, different seasonal studies conducted in fixed stations in the Atlantic and Pacific Oceans (i.e., the 

Western English Channel time series or the San Pedro Ocean Time Series (SPOT)) seem to concur that 

plankton turnover is related to meteorological seasons suggesting that community changes are 

driven by the environment, and that these patterns are repeatable over time (Gilbert et al., 2012; 65 

Fuhrman et al., 2015). Most of these studies have focused on determining the variation of 

phylogenetically distinct groups based on 16S or 18S rRNA gene sequencing for bacterioplankton 

and eukaryotic plankton respectively (Kim et al., 2014; Fuhrman et al., 2015; Martin-Platero et al., 

2018). However, we know that phylogenetic units based on ribosomal sequences may include 

different ecotypes given that closely related or even identical rRNA gene-identified species can 70 

possess different functional traits (Martiny et al., 2013). Processes such as horizontal gene transfer 
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(HGT) can disconnect functional from phylogenetic diversity (Louca et al., 2016). A functional group 

particularly interesting is that of the polyphyletic (i.e., derived from more than one common 

ancestor through HGT) aerobic anoxygenic phototrophic (AAP) bacteria. For example, the 

Roseobacter clade, a major group of bacteria inhabiting surface ocean waters, contains both 75 

photoheterotrophic and strictly heterotrophic members (Koblížek et al., 2013, 2015). While a 

considerable amount of information about the seasonality of microbial community structure and of 

some phylogroups (i.e. Galand et al., 2010) exist, surprisingly little is known about the seasonality of 

specific functional groups, including the AAPs. 

The AAPs have the ability of photoheterotrophy, that is, they are capable of using both organic 80 

matter and light as energy sources (Koblížek, 2015). Their discovery challenged previous simplistic 

views of the structure of ocean microbial food webs (Fenchel, 2001). AAP bacteria are relatively 

common in the euphotic zone of the oceans (Lami et al., 2007; Yutin et al., 2007; Cottrell and 

Kirchman, 2009), exhibit faster growth rates than other bacterioplankton groups (Ferrera et al., 2011, 

2017) and their cells are in general larger than most marine heterotrophic bacteria (Sieracki et al., 85 

2006). Altogether, these characteristics make them a relevant component of the microbial food web 

in processing organic matter, accounting for up to 25% of bacterial production (Hojerová et al., 

2011).  

Phylogenetically, the AAPs are classified into 12 distinct phylogroups (from A to L) based on the 

structure of the puf operon and the pufM gene phylogeny (Yutin et al., 2007), belonging to the Alpha-, 90 

Beta- and Gammaproteobacteria classes. Several studies have provided clues on their diversity and 

community structure in relation to environmental gradients across spatial scales using the pufM 

gene variability (Yutin et al., 2007; Ritchie and Johnson, 2012; Lehours et al., 2018). Contrarily, few 

studies have tackled their temporal dynamics. Ferrera et al. (2014) conducted a pioneer study in the 
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NW Mediterranean using pufM HTS. The results indicated that the AAP assemblages are highly 95 

dynamic and undergo seasonal variations. Likewise, later results from the East coast of Australia 

concurred on identifying an important community structuring role of seasonality (Bibiloni-Isaksson 

et al., 2016). Nevertheless, these studies were conducted over short time periods (1-year) but long-

term studies are needed to unveil whether the observed seasonal trends are repeatable over time, as 

it has been shown to be the case for phylogenetic units based on ribosomal genes. Moreover, these 100 

studies have used the OTU approach, but the appearance of threshold free algorithms for sequence 

variants detection currently allows the analysis of ecotypes at a more refined level (Eren et al., 2015; 

Callahan et al., 2016), allowing to surpass the similarity clustering of 94% typically used for pufM 

gene.  

Here, we present the first long time series exploration of marine AAP assemblages using 105 

Illumina sequencing and ASV analysis of the amplified pufM gene from monthly samples over 10 

years at the coastal Blanes Bay Microbial Observatory (BBMO) in the NW Mediterranean Sea. The 

temporal patterns and predictability of the assemblage, as well as the long-term interactions 

between the different phylogroups have been explored, and the main environmental drivers acting 

upon the observed patterns identified. These analyses ultimately allow us to explore the level of 110 

ecological consistency within the different phylogenetic clades, that is, whether the different 

phylotypes of AAPs are ecologically cohesive or, contrarily, each phylogroup includes organisms 

showing niche partitioning. 

Material and Methods 

Location and sample collection  115 

Surface waters were collected monthly at the Blanes Bay Microbial Observatory (41º40’N, 2º48’E), a 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316059doi: bioRxiv preprint 

https://doi.org/10.1101/316059
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

shallow (∼20 m) coastal site about 1 km off the NW Mediterranean coast, as described elsewhere 

(Ferrera et al., 2014). A total of 120 samples, from January 2004 to December 2013 were collected, 

and several environmental parameters were measured alongside sample collection (< 200µm). The 

sample code is as follows: BL + year (2 digits) + month + day (e.g BL110607). A matrix of 120 

environmental drivers was constructed using data of the following variables: day length, 

temperature and salinity measured with a CTD probe (model SAIV A/S SD204), Secchi depth, the 

concentration of inorganic nutrients determined spectrophotometrically using an Alliance 

Evolution II autoanalyzer according to standard procedures (Grasshoff et al., 1983), chlorophyll a 

(Chl a) concentration (<200 µm fraction) measured from acetone extracts by fluorometry, and the 125 

abundances of heterotrophic prokaryotes, phototrophic prokaryotes (Prochlorococcus and 

Synechococcus) and eukaryotes measured by flow cytometry as described in Gasol and Morán (2015). 

Additionally, the abundance of Cryptomonas, Micromonas, phototrophic and heterotrophic 

nanoflagellates (PNF and HNF) was enumerated by epifluorescence microscopy from 4,6-

diamidino-2-phenylindole (DAPI) stained samples, and bacterial activity was estimated from the 130 

incorporation of tritiated leucine (Smith and Azam, 1992). A total of 21 biotic and abiotic variables 

were used for statistical analysis, including those abovementioned as well as three different 

subgroups of PNF (the total, and fractions 2-5 µm and >5 µm), two of heterotrophic prokaryotes 

(high nucleic acid content, HNA, and low nucleic-acid content, LNA), and flow cytometrically 

determined picoeukaryotes group I (Peuk1; a discrete population distinguished in the cytogram 135 

characterized by relatively low scatter and fluorescence). Methods describing these variables are 

presented in Alonso-Sáez et al. (2008) and Gasol et al. (2016). The astronomical seasons (based on 

equinoxes and solstices) were used for establishing spring, summer, autumn and winter periods.  

DNA extraction, PCR amplification, sequencing and sequence processing 
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About 10 L of 200 µm pre-filtered surface seawater were sequentially filtered through a 20 µm 140 

mesh, a 3 µm pore-size polycarbonate filter (Poretics) and a 0.2 µm Sterivex Millipore filter using a 

peristaltic pump. Sterivex units were filled with 1.8 mL of lysis buffer (50 mM Tris-HCl pH 8.3, 40 

mM EDTA pH 8.0 and 0.75 M sucrose) and kept at -80°C until extraction was performed using the 

phenol-chloroform protocol described by Massana et al. (1997). Partial amplification of the pufM 

gene (∼245 bp fragments) was done as described in Ferrera et al. (2014) using primers pufMF 145 

forward (5’-TACGGSAACCTGTWCTAC-3’, Béjà et al., 2002) and pufWAW reverse (5’-

AYNGCRAACCACCANGCCCA-3’, Yutin et al., 2005). Sequencing was performed in an Illumina 

MiSeq sequencer (2 x 250 bp, Research and Testing Laboratory; http://rtlgenomics.com/). Primers 

and spurious sequences were trimmed using cutadapt (Martin, 2011) trimming ~50 bp. DADA2 was 

used to differentiate exact sequence variants (Callahan et al., 2016). DADA2 resolves ASVs by 150 

modeling the errors in Illumina-sequenced amplicon reads. The approach is threshold free, inferring 

exact variants up to 1 nucleotide of difference using the Q scores in a probability model. For 

comparison purposes, samples were processed with an UPARSE pipeline (Logares, 2017) 

generating OTUs clustered at 94% of sequence similarity, typically used for the pufM gene (Ferrera 

et al., 2014; Bibiloni-Isaksson et al., 2016). The OTU/ASV correspondence was calculated with the 155 

number of nucleotide differences between them, considering <12 the same OTU. Each ASV 

sequence was classified taxonomically using a custom-made database of the pufM gene created 

combining previous studies  (Yutin et al., 2007; Lehours and Jeanthon, 2015) and other pufM 

sequences from the GenBank database. Assignations with identity <80% and alignment <170 bp 

were considered unclassified. Sample BL120313 (March 2012) was discarded due to low quality 160 

criteria.  
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Quantitative Polymerase Chain Reaction 

The relative abundance of AAP was estimated by quantitative polymerase chain reaction (qPCR) of 

the marker gene pufM, as described in Ferrera et al., (2017b). Reactions were performed in triplicate 

on a MyiQ™ Single-Color Real-Time PCR Detection System (Bio-Rad) using Maxima SYBR Green 165 

qPCR Master Mix (2X; Fermentas). Standard curves were generated from amplification of 

Roseobacter sp. COL2P genomic DNA (Koblížek et al., 2010). We remark that we did not conduct 

absolute but rather relative quantifications since our goal was only to test whether a seasonal trend 

existed.  

Statistical analyses 170 

All analyses were performed using the R language, with phyloseq and vegan packages (McMurdie 

and Holmes, 2013; Oksanen et al., 2013; R Core Team, 2014). Alphadiversity was analyzed using the 

Chao1, Shannon and Simpson indices. Betadiversity was analyzed using a Bray-Curtis dissimilarity 

matrix from log10 + 1 transformed data. We used distance-based Redundancy Analysis (dbRDA, 

Legendre and Legendre, 1988) to find the environmental predictors (with a previous scaling) that 175 

best explained the patterns of abundance and diversity of AAPs over time, with a previous 

multivariate non-parametric ANOVA for selecting significant variables (p<0.01). A time-decay 

analysis of the assemblage was computed excluding rare ASVs as recommended elsewhere (Faust et 

al., 2015). ASVs were considered rare when presenting always less than 1% of relative abundance, 

following the description by Alonso-Sáez et al. (2015a).  180 

Time series analysis 

Fourier time series analysis was performed to study the AAP assemblage dynamics over a decade. 

An interpolation of the discarded sample (BL120313) was used to maintain equidistant time points. 

Relative abundances were transformed logarithmically adding a pseudocount of 1. A Fisher G-test 
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from the R package GeneCycle was used to determine the significance of the periodic components, 185 

with a threshold of p<0.01 (Ahdesmaki et al., 2015). The time series was decomposed in three 

components - the seasonal periodicity (oscillation inside each period), the trend (evolution over 

time) and residuals -through local regression by the stl function. Additionally, the autocorrelogram 

was calculated through the acf function.  

Network construction 190 

Many methods exist to identify associations between OTUs/ASVs and environmental variables 

(Weiss et al., 2016). However, microbiome datasets present some difficulties due to the sparsity 

(presence of a large number of zeroes) and compositionality (relative abundances subedited to a 

simplex, like 100%) (Kurtz et al., 2015; Gloor et al., 2017). Since our study spans 10 years, 

codependency also exists, limiting the possible methods to use, and among those we chose Local 195 

Similarity Analysis (LSA) (Xia et al., 2011; Durno et al., 2013). Briefly, given a time series data and a 

delay limit, LSA finds the configuration of the data that yields the highest local similarity (LS) score. 

We applied the Aitchison log-centered ratio transformation, more adequate for compositional data 

(Gloor et al., 2017). Only the ASVs present in >5 samples and the environmental variables presenting 

<5% of missing values were used. The remaining missing values were replaced by imputation with 200 

the mice package (Azur et al., 2012). Only interactions with a LS >0.6, significance of p<0.001 and 1-

month delay were taken into account. The network was plotted using the ggraph package 

(Pedersen, 2017), including the nodes - ASVs and environmental variables -  and the edges 

(connections between nodes) derived from the algorithm scores.  

Reproducibility 205 

The code and details used for preprocessing and statistical analyses can be found in the Gitlab 

repository: https://gitlab.com/aauladell/AAP_time_series. Sequence data has been deposited in 
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Genbank under accession number PRJNA449272. 

Results and discussion 

Interpretations of observations that use genes as biological objects depend to a large extent on 210 

similarity thresholds that may group together an appreciable amount of phenotypic diversity. With 

the appearance of threshold free algorithms for the detection of sequence variants, the analysis of 

ecotypes can be applied to a more refined level (Eren et al., 2015; Callahan et al., 2016). In that way, 

we were able to divide the pufM OTUs and distinguish ASVs showing a divergent seasonal 

behavior potentially representing distinct ecotypes. The decadal analysis allowed determining 215 

whether the community structure trends are robust, as well as to explore if different ASVs present 

similar seasonal behavior to, ultimately, test the ecological cohesiveness of these populations, a 

result only possible through long-term time series analysis.   

Community composition and structure 

While the number of OTUs detected was of 449 (94% similarity cutoff), the number of ASVs was 220 

820. Of these, 276 present only 1 nucleotide variation between sequences. Rarefaction curves 

showed asymptotes at the sequencing depth for most samples (Figure S1), suggesting that our 

dataset covers most of the AAP diversity in Blanes Bay. In comparison with the number of OTUs 

observed in previous temporal studies (82 OTUs, Ferrera et al., 2014, and 89 Bibiloni-Isaksson et al., 

2016), our study presents a more complete picture of the pufM diversity, being the largest dataset of 225 

AAP diversity ever reported. Alphadiversity measurements showed that values were higher during 

winter (mean 51, max 126 observed ASVs), decreasing to minimum values in the spring-summer 

period, specifically during May-August (mean 35, max 77) (Figure 1). The differences between 

winter and spring/summer were statistically significant (ANOVA, p<0.05). A similar trend was 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316059doi: bioRxiv preprint 

https://doi.org/10.1101/316059
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

observed when computing Shannon and Simpson diversity indices (Figure 1).  230 

We observed a negative correlation between day length and the Shannon index (N=119, Pearson r=-

0.57, p<0.01). The diversity relationship with day length had been observed previously in long-term 

bulk bacterioplankton community studies (Gilbert et al., 2012), as well as when targeting specific 

phylogenetic groups such as the SAR11 (Salter et al., 2015). A possible explanation is that the deep 

winter mixing allows the development of high diversity assemblages in contrast to the selection of 235 

specific oligotrophic ecotypes occurring during the stratified summer season (Salter et al., 2015). Our 

results confirm that the trend observed for 16S rRNA-defined taxa is comparable to that of the AAP 

functional assemblage. Interestingly, the trend in alphadiversity is contrary to that of AAP 

abundance (Figure S2). An abundance increase during summer as compared to winter and fall 

(p<0.01) was measured by qPCR. These results support the observations from other studies that also 240 

presented the AAPs to be more abundant during summer (Ferrera et al., 2014; Bibiloni-Isaksson et 

al., 2016).  

Regarding community composition and structure across the decadal period (Figure 2, Figure 

S3), phylogroup K (Gammaproteobacteria) was the most ubiquitous and abundant over the years (83.4 ± 

SE 2.2, mean relative abundance). Contrarily to observations for other oceanographic regions (Yutin et 245 

al., 2007), gammaproteobacterial AAPs appear to be the most abundant in the Mediterranean Sea 

(Lehours et al., 2010; Ferrera et al., 2014). Yet, February and March showed a decrease in their 

contribution (59.6% and 52% mean respectively). During these months, phylogroups E and G 

(Rhodobacter and Roseobacter-like, respectively) increased in their relative contribution albeit with a high 

variation over the decade (~ ±14% and ±25% SD respectively). As an example, the contribution of 250 

phylogroup E in 2006 reached ~47% of the total community sequences from February to April. 

Conversely, in the same period of 2005 the contribution of this group was really low (2%). Overall, 
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phylogroups F (Rhodobacterales-like), H (uncultured), J (Rhodospirillales-like) and the unclassified ASVs 

presented a mean relative contribution below 1%. However, these groups presented occasional peaks 

(>1% relative abundance) with no clear periodic trend. For example, phylogroup J showed a 255 

contribution of 14% in February 2012 (Figure S3). When analyzing the structure of the assemblage, we 

observed that most reads corresponded to very few sequence variants (Figure S3). Thus, the structure 

of AAPs follows a comparable pattern to the whole microbial communities, i.e., they are dominated by 

a few species while containing a large number of species represented by only a few individuals 

(Pedrós-Alió, 2012).  260 

Within the Gammaproteobacteria, the high abundance values of phylogroup K (represented by 

sequences affiliated to the type strain Congregibacter litoralis of the NOR5/OM60 clade) were related 

only to a few sequence variants (10-15 depending on the year). The most abundant sequence variant 

was ASV1, which corresponded to 18% of the total read abundance, followed by ASV2 (8.2%), ASV5 

(6.6%) and ASV6 (6.2%). A similar trend was observed for phylogroups E (ASV8, 5.6%) and G (ASV14, 265 

3.7%), both Rhodobacterales-like. The results were even more pronounced at the OTU level: a single 

OTU corresponded to 35% of the total read abundance. A previous study on 16S rRNA gene diversity 

in the same location suggested that Alphaproteobacteria dominates the bacterial assemblages during the 

spring bloom that occurs in that study site (Alonso-Sáez et al., 2007). Likewise, in the 1-year study of 

AAP diversity conducted by Ferrera et al. (2014), alphaproteobacterial members of the AAP were more 270 

abundant during this season. In our long-term analysis, despite we also observed that in some years 

phylogroups G, E and F were more abundant during March-May (Figure 2), taking into account the 

entire decade, phylogroup K was overall the most abundant during these months (65% mean relative 

abundance).  

Betadiversity analysis 275 
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To determine similarities between samples, betadiversity was compared using Bray-Curtis 

dissimilarity and non-metric multidimensional scaling (nMDS). The nMDS indicated a clear 

separation of the samples at different temporal scales: by month (PERMANOVA R2=0.39, p<0.001) 

and by season (PERMANOVA R2=0.25, p<0.001). This structure was maintained using alternative 

distance measurements (Figure S4). Spring and winter samples presented higher dissimilarity 280 

within their values in comparison with summer and autumn (Fig S4). The reasons for this pattern 

are uncertain but it could be related to higher environmental variability or to the mixing of the 

water column that occurs during winter (Gasol et al., 2016). Noteworthy, despite the monthly 

assemblages seemed to be recurrent over time there was a remarkable exception. In November 2006, 

the ASV distribution was completely different to that found during that month in other years. In 285 

that particular sample, betaproteobacterial phylogroup I (33%), and alphaproteobacterial 

phylogroups F (26%) and G (19%) dominated the composition of the community (Figure S5). When 

observing all the environmental variables for that sample, we found that particularly the 

abundances of picoeukaryotes and phototrophic nanoflagellates were above seasonal averages 

(Figure S6). This observation is a clear example on how members typically found in the rare 290 

biosphere can eventually become abundant (Pedrós-Alió, 2012).  

 Community structure distribution was significantly linked to day length, temperature, 

salinity, PO43- concentration and the abundance of phototrophic nanoflagellates as revealed by 

distance-based redundancy analysis (Figure 3, PERMANOVA p<0.01). With these 5 variables, the 

dbRDA explained 38.1% of the variation, with the 2 first axis explaining the 32.9%. Interestingly, a 295 

group of samples, mainly from winter and spring, appeared to be related to the phototrophic 

nanoflagellate abundances (Figure 3), and to ASVs belonging to phylogroups E and G 

(Rhodobacterales-like) (Figure S7). This biotic parameter could be related to the phytoplankton spring 
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bloom that typically occurs in February-March in Blanes (Gasol et al., 2016). Late spring and early 

summer samples were mostly influenced by day length and temperature, with autumn samples 300 

partially influenced by salinity. Day length has previously been shown to explain the seasonal 

variability of the whole bacterioplankton (Gilbert et al., 2012) and AAP community structure 

(Ferrera et al., 2014), but the mechanisms underlying this relationship are unclear. Summing up, the 

dissimilarity measurements with the environmental variables as explanatory variables 

distinguished 3 groups: the summer samples, related to the high abundance of 305 

gammaproteobacterial ASV1 and temperature, the fall/early-winter cluster, with more diverse 

communities related to other gammaproteobacterial ASVs and salinity, and the winter-spring 

samples, highly variable due to the effect of diverse ASVs related to alphaproteobacterial 

phylogroups G and E and to the phototrophic nanoflagellate abundance.   

Finally, to study the evolution of the community over the decade, a comparison of the Bray-310 

Curtis similarity between samples was plotted against the time lag, commonly known as the time-

decay curve (Shade et al., 2013; Fuhrman et al., 2015). In our study, the assemblage was maintained 

with a median similarity of 0.45, with oscillations with the maxima every 12 months (~0.55) and the 

minimum every 6 months (~0.39). The similarity oscillates with one-year apart peaks, indicating a 

high seasonal behavior, with a slight negative slope in the global linear regression (Figure 4). To our 315 

knowledge, this approach had not yet been applied to a functional group defined by a marker gene. 

Comparing the results to the 16S rRNA data from the SPOT and the Western Channel time series 

results (see Hatosy et al., 2013 for details) we observe that in SPOT, the seasonal turnover is less 

clear than in our location, and an initial decay of similarity is observed, reaching a plateau of 

similarity after 4 years (Fuhrman et al., 2015). In the Western Channel, the seasonality is equally 320 

marked but the decay is more pronounced. A possible explanation for the differences is that our 
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comparison accounts only for a highly seasonal sub-community while the overall 

bacterial/prokaryotic community varies more. Further analyses with other functional genes would 

help understand how the different functional groups distribution varies over time.  

Time series analysis  325 

Through long-term analysis we approached the seasonality of each ASV by evaluating if their 

relative abundance distribution presented a significant periodicity (Fisher G-test), and if so, 

compared them at different levels: across closely related sequences (ASVs) and across sequence 

clusters (OTUs and phylogroups). Seasonal patterns were present in 58 (p<0.01) out of 127 ASVs 

analyzed (those present in >5 samples), predominantly affiliated with phylogroups K (39 ASVs), E 330 

(5) and G (3) and the unclassified group (7) (Table 1, Table S1). These seasonal ASVs corresponded 

to 92% of the total read counts, and 81% of the counts corresponded to phylogroup K 

(Gammaproteobacteria). All periodicities found were of 1 year, with the exception of ASV152 

(Gammaproteobacteria), presenting a periodicity of 2 years. Some of these ASVs were always 

abundant (>1%) regardless of season (all from phylogroup K), some presented values above 1% in a 335 

specific season (seasonally abundant), and other ASVs peaked in abundance (>1%) only 

occasionally (i.e. opportunistic; see examples in Figure S8, S9, S10, S11). In fact, most ASVs were 

opportunistic, with low abundance during the decade and peaking only occasionally. Various 

studies of the whole bacterioplankton community have presented these variety of strategies 

coexisting within a given clade (Shade et al., 2014; Alonso-Sáez et al., 2015; Fuhrman et al., 2015). Our 340 

results reveal that this trend is maintained for a specific functional assemblage, with few generalist 

ecotypes and a larger pool of specialized ASVs within each phylum. While the previous AAP 

temporal studies provided insights of the inter-annual community structure, only long-term 

analyses can differentiate tendencies from occasional peaks of rare specialized ecotypes.  
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 Comparing among the seasonal ASVs, we distinguished different behaviors. For example, 345 

ASVs divergent enough to form distinct OTUs but belonging to the same phylogroup (Figure 5A) 

did not always follow the same distribution; e.g. for phylogroup K, the annual maxima of ASV1 

occurred during June and July with a minimum in February/March, whereas ASV10 presents the 

opposite distribution. Other phylogroup K ASVs, like ASV5, presented a less marked seasonality, 

with a maximum in September. Contrarily, most ASVs belonging to phylogroups G and E followed 350 

a similar trend among them, with their maxima in March, being an exception ASV86, presenting a 

maximum in September.  

 Further, comparing the seasonality of closely related ASVs (that would form the same OTU) 

we observed that, in general, these displayed similar temporal patterns but some notable exceptions 

exist. An example is represented in Figure 5B in which the seasonal periodicities of 5 closely related 355 

ASVs – all corresponding to OTU1, clustering at 94% - are plotted together. In this figure, a slight 

succession of the summer month maxima can be observed (ASV2 peaking slightly before ASVs 33 

and 1, with ASV57 afterwards), being all these only 1 nucleotide different among them. Yet, ASV128 

(distance of 4 nucleotides) presents a completely different distribution, with peaks during winter. 

The existence of divergent distributions of ASVs composing the same OTU demonstrates the need 360 

to break apart the clusters of related sequences, since these can hide interesting ecological patterns.   

When establishing seasonality at the phylogroup level, we found that group K 

(Gammaproteobacteria) and J (Rhodospirillales-like, Alphaproteobacteria) did not present significant 

seasonal patterns (Figure S12, S13). Phylogroup J only presented 1 seasonal ASV but in the case of 

phylogroup K, the disparity of distributions of the various sequences results in the loss of a specific 365 

signal differentiable when computing seasonality at the group level. Contrarily, the 

autocorrelograms showed phylogroup G presenting a high value (max.0.38 over a year), followed 
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by phylogroups E and I (Figure S12B). These results could indicate a higher degree of ecotype 

differentiation in gammaproteobacterial phylogroup K as compared to alphaproteobacterial 

phylogroups E and G in the NW Mediterranean.  370 

Ferrera et al. (2014) suggested that the high abundance of Gammaproteobacteria-like AAPs in 

summer together with the relationship with day length could be an indication of phototrophy 

serving as auxiliary energy source to use the refractory dissolved organic carbon that accumulates 

in summer in this coastal station (Vila-Reixach et al., 2012; Romera-Castillo et al., 2013). Our results 

point out that this hypothesis may not be true for the whole community and rather only for certain 375 

ecotypes, such as ASV1, 2 and 5. Contrarily, ASV5, 11 and 21 possibly have preference for a more 

eutrophic environment like that of spring blooms, or are associated to specific phytoplankton 

species, presenting a high fluctuation likely because of the relationship with these events. 

 Lehours et al. (2018) recently tested the ecological consistency of the AAP across different 

oceanic regions and, interestingly, identified clades with good ecological and phylogenetic 380 

coherence. Our temporal analyses complement their spatial study and adds a new level of 

complexity by showing that, in some cases, even the ASVs from the same phylogroup and even 

those contained within the same OTU can present different distributions that could translate into 

different ecology. These analyses could be expanded adding genomic context with the assignation 

of sequence variants with Metagenome Assembled Genomes (MAGs) containing pufM genes with 385 

an exact match. Additionally, experimental work with cultures of these ASVs could shed light on 

the reasons for their high prevalence in the environment. 

Co-occurrence analysis of the assemblage 

Out of the 127 ASVs present in >5 samples and 14 environmental variables, the final network 

presented 49 nodes and 54 edges, separated in 12 components (that is, 12 subnetworks without 390 
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connections among them) with 6 of them presenting more than 3 nodes (Figure 6). Of these 

subclusters, some were composed by closely related ASVs (that would form the same OTU) and 

presented the same ecological distribution, like ASV1, 2 and 15 (all OTU1, group K). Others, like 

ASV33 and 63 (also OTU1), were dissociated, with differences in their distribution. The network 

revealed that temperature plays an important role on the distribution of some ASVs, with a lagged 395 

negative correlation with ASV11, 18 and 10 and a positive one with ASV27. We also observed that 

phylogroups G and E (both Alphaproteobacteria) are positively related between them while 

presenting negative associations with ASV30 and 35 (phylogroup K). The negative association of 

phylogroup K and phylogroup G OTUs highlighted in this study was previously spotted by Ferrera 

et al. (2014) as well as by Bibiloni-Isaksson et al. (2016). Genome sequencing and strain 400 

characterization of AAP isolates have revealed differences in the metabolic capabilities and 

physiological properties of different strains (Koblížek et al., 2003; Fuchs et al., 2007). The lack of 

seasonality at a higher taxonomic level for some phylogroups, as well as the network negative 

associations, may suggest that intergroup competition between different AAPs exists or that 

different AAPs possess diverse strategies to adapt to a changing environment.  405 

Concluding remarks 

Our study shows the advantages of long-term time series for describing the microbial seasonal 

periodicities of a specific functional group. The results confirm that the AAPs present the peak of 

diversity during winter, opposite to their abundance, and that gammaproteobacterial AAPs are the 

most abundant in the Mediterranean Sea year-round. Moreover, the study shows that the 410 

assemblages have recurrent seasonality over the years. Yet, despite the most abundant ASVs were 

clearly seasonal, phylogroup K as a group did not present a stable seasonality. Contrarily to the 

recent spatial study of Lehours et al. (2018) in which they reported ecological cohesiveness when 
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comparing contrasting biomes, we found that the AAP do not appear as coherent when studying 

their temporal dynamics at a high-resolution level and seem to be instead formed by different 415 

ecotypes with distinctive niche partitioning. Overall, these results show that the analysis of a long 

time series allows exploring in-depth patterns of a highly dynamic microbial group and provides a 

framework for modeling their ecological role in relation to seasonality of the marine carbon cycling.  

Acknowledgements 

We thank the many people involved in maintaining the BBMO and those taking care of sampling, 420 

particularly Clara Cardelús and Vanessa Balagué. We would also like to thank Ramon Massana and 

Irene Forn for providing microscopy counts. We thank the Marbits bioinformatics platform at ICM-

CSIC, particularly Ramiro Logares, and Anders Kristian Krabberød (University of Oslo) for help 

with computing analyses. qPCR analysis was done at the Institute of Evolutionary Biology 

(Barcelona) thanks to José Luís Maestro. This research was funded by grants MALASPINA2010 425 

(CSD2008-00077) from the former Spanish Ministry of Science and Innovation and REMEI 

(CTM2015-70340-R) from the Spanish Ministry of Economy, Industry and Competitiveness.  

References 

Ahdesmaki M, Fokianos K, Strimmer K. (2015). Package ‘ GeneCycle ’. 

http://www.cs.tut.fi/~ahdesmak/robustperiodic/index.html. 430 

Alonso-Sáez L, Balagué V, Sà EL, Sánchez O, González JM, Pinhassi J, et al. (2007). Seasonality in 

bacterial diversity in north-west Mediterranean coastal waters: Assessment through clone libraries, 

fingerprinting and FISH. FEMS Microbiol Ecol 60: 98–112. 

Alonso-Sáez L, Díaz-Pérez L, Morán XAG. (2015). The hidden seasonality of the rare biosphere in 

coastal marine bacterioplankton. Environ Microbiol 17: 3766–3780. 435 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316059doi: bioRxiv preprint 

https://doi.org/10.1101/316059
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Azur MJ, Stuart EA, Frangakis C, Leaf PJ. (2012). Multiple Imputation by Chained Equations: What 

is it and how does it work? Int J Methods Psychiatr Res 20: 40–49. 

Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, et al. (2002). Unsuspected 

diversity among marine aerobic anoxygenic phototrophs. Nature 415: 630–633. 

Bibiloni-Isaksson J, Seymour JR, Ingleton T, van de Kamp J, Bodrossy L, Brown M V. (2016). Spatial 440 

and temporal variability of aerobic anoxygenic photoheterotrophic bacteria along the east coast of 

Australia. Environ Microbiol 18: 4485–4500. 

Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. (2018). Marine microbes in 4D 

— using time series observation to assess the dynamics of the ocean microbiome and its links to 

ocean health. Curr Opin Microbiol 43: 169–185. 445 

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. (2016). DADA2: High-

resolution sample inference from Illumina amplicon data. Nat Methods 13: 581. 

Cottrell MT, Kirchman DL. (2009). Photoheterotrophic microbes in the arctic ocean in summer and 

winter. Appl Environ Microbiol 75: 4958–4966. 

Durno WE, Hanson NW, Konwar KM, Hallam SJ. (2013). Expanding the boundaries of local 450 

similarity analysis. BMC Genomics 14: 1–14. 

Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. (2015). Minimum entropy 

decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker 

gene sequences. ISME J 9: 968–979. 

Faust K, Lahti L, Gonze D, de Vos WM, Raes J. (2015). Metagenomics meets time series analysis: 455 

Unraveling microbial community dynamics. Curr Opin Microbiol 25: 56–66. 

Fenchel T. (2001). Marine bugs and carbon flow. Science (80- ) 292: 2444 LP-2445. 

Ferrera I, Borrego CM, Salazar G, Gasol JM. (2014). Marked seasonality of aerobic anoxygenic 

phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment 

concentration and pyrosequencing of pufM gene. Environ Microbiol 16: 2953–2965. 460 

Ferrera I, Gasol JM, Sebastián M, Hojerová E, Kobížek M. (2011). Comparison of growth rates of 

aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal 

mediterranean waters. Appl Environ Microbiol 77: 7451–7458. 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316059doi: bioRxiv preprint 

https://doi.org/10.1101/316059
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Ferrera I, Sanchez O, Kolarova E, Koblížek M, Gasol JM. (2017a). Light enhances the growth rates of 

natural populations of aerobic anoxygenic phototrophic bacteria. ISME J 11: 2391–2393. 465 

Ferrera I, Sarmento H, Priscu J, Chiuchiolo A, Gonzalez JM, Grossart H-P. (2017b). Diversity and 

distribution of freshwater aerobic anoxygenic phototrophic bacteria across a wide latitudinal 

gradient. Front Microbiol 8: 175. 

Fuhrman JA, Cram JA, Needham DM. (2015). Marine microbial community dynamics and their 

ecological interpretation. Nat Rev Microbiol 13: 133–146. 470 

Galand PE, Gutiérrez-Provecho C, Massana R, Gasol JM, Casamayor EO. (2010). Inter-annual 

recurrence of archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial 

Observatory). Limnol Oceanogr 55: 2117–2125. 

Gasol JM, Cardelús C, Morán XAG, Balagué V, Forn I, Marrasé C, et al. (2016). Seasonal patterns in 

phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean 475 

site. Sci Mar 80S1: 63–77. 

Gasol JM, Morán XAG. (2015). Flow cytometric determination of microbial abundances and its use 

to obtain indices of community structure and relative activity. Hydrocarb Lipid Microbiol Protoc - 

Springer Protoc Handbooks 1–29. 

Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al. (2012). Defining 480 

seasonal marine microbial community dynamics. ISME J 6: 298–308. 

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. (2017). Microbiome datasets are 

compositional: And this is not optional. Front Microbiol 8: 1–6. 

Grasshoff K, Ehrhardt M, Kremling K. (1983). Methods of seawater analysis. 2nd ed. Verlag Chemie, 

Weinheim. 485 

Hatosy SM, Martiny JBH, Sachdeva R, STeele J, Fuhrman JA. (2013). Beta diversity of marine 

bacteria depends on temporal scale. Ecology 94: 1898–1904. 

Hojerová E, Mašín M, Brunet C, Ferrera I, Gasol JM, Koblížek M. (2011). Distribution and growth of 

aerobic anoxygenic phototrophs in the Mediterranean Sea. Environ Microbiol 13: 2717–2725. 

Kane MD. (2004). Microbial observatories: exploring and discovering microbial diversity in the 21st 490 

century. Microb Ecol 48: 447–448. 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316059doi: bioRxiv preprint 

https://doi.org/10.1101/316059
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Kim DY, Countway PD, Jones AC, Schnetzer A, Yamashita W, Tung C, et al. (2014). Monthly to 

interannual variability of microbial eukaryote assemblages at four depths in the eastern North 

Pacific. ISME J 8: 515–530. 

Koblížek M. (2015). Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS 495 

Microbiol Rev 39: 854–870. 

Koblížek M, Mlčoušková J, Kolber Z, Kopecký J. (2010). On the photosynthetic properties of marine 

bacterium COL2P belonging to Roseobacter clade. Arch Microbiol 192: 41–49. 

Koblížek M, Moulisová V, Muroňová M, Oborník M. (2015). Horizontal transfers of two types of puf 

operons among phototrophic members of the Roseobacter clade. Folia Microbiol (Praha) 60: 37–43. 500 

Koblížek M, Zeng Y, Horák A, Oborník M. (2013). Regressive evolution of photosynthesis in the 

Roseobacter clade. In: Vol. 66. Advances in Botanical Research. Elsevier, pp 385–405. 

Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. (2015). Sparse and 

compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11: 1–25. 

Lami R, Cottrell MT, Ras J, Ulloa O, Obernosterer I, Claustre H, et al. (2007). High abundances of 505 

aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean. Appl Environ Microbiol 73: 

4198–4205. 

Legendre P, Legendre L. (1988). Numerical Ecology, Volume 24. Developments Environ Model 24: 870. 

Lehours AC, Cottrell MT, Dahan O, Kirchman DL, Jeanthon C. (2010). Summer distribution and 

diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to 510 

environmental variables. FEMS Microbiol Ecol 74: 397–409. 

Lehours AC, Enault F, Boeuf D, Jeanthon C. (2018). Biogeographic patterns of aerobic anoxygenic 

phototrophic bacteria reveal an ecological consistency of phylogenetic clades in different oceanic 

biomes. Sci Rep 8: 4105. 

Lehours AC, Jeanthon C. (2015). The hydrological context determines the beta-diversity of aerobic 515 

anoxygenic phototrophic bacteria in European Arctic seas but does not favor endemism. Front 

Microbiol 6: 1–9. 

Logares R. (2017). Workflow for analysing MiSeq amplicons based on UPARSE v1.5. 

Louca S, Parfrey LW, Doebeli M. (2016). Decoupling function and taxonomy in the global ocean 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316059doi: bioRxiv preprint 

https://doi.org/10.1101/316059
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

microbiome. Science 353: 1272–1277. 520 

Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. (2014). Swarm: robust and fast clustering 

method for amplicon-based studies. PeerJ 2: e593. 

Martin-Platero AM, Cleary B, Kauffman K, Preheim SP, McGillicuddy DJ, Alm EJ, et al. (2018). High 

resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat 

Commun 9: 266. 525 

Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. 

EMBnet.journal 17: 10. 

Martiny AC, Treseder K, Pusch G. (2013). Phylogenetic conservatism of functional traits in 

microorganisms. ISME J 7: 830–838. 

Massana R, Murray AE, Preston CM, Delong EF, Massana R, Murray AE, et al. (1997). Vertical 530 

distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara 

Channel. Appl Environ Microbiol 63: 50–56. 

McMurdie PJ, Holmes S. (2013). Phyloseq: An R package for reproducible interactive analysis and 

graphics of microbiome census data. PLoS One 8: e61217. 

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. (2013). Package ‘vegan’. 535 

Community Ecol Packag version 2. doi: 10.4135/9781412971874.n145. 

Pedersen TL. (2017). ggraph: An implementation of grammar of graphics for graphs and networks. 

https://cran.r-project.org/package=ggraph. 

Pedrós-Alió C. (2012). The rare bacterial biosphere. Ann Rev Mar Sci 4: 449–466. 

R Core Team. (2014). R: A language and environment for statistical computing. https://www.r-540 

project.org/. 

Ritchie AE, Johnson ZI. (2012). Abundance and genetic diversity of aerobic anoxygenic 

phototrophic bacteria of coastal regions of the pacific ocean. Appl Environ Microbiol 78: 2858–2866. 

Romera-Castillo C, Álvarez-Salgado XA, Galí M, Gasol JM, Marrasé C. (2013). Combined effect of 

light exposure and microbial activity on distinct dissolved organic matter pools. A seasonal field 545 

study in an oligotrophic coastal system (Blanes Bay, NW Mediterranean). Mar Chem 148: 44–51. 

Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM, 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316059doi: bioRxiv preprint 

https://doi.org/10.1101/316059
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

et al. (2015). Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J 1–13. 

Salter I, Galand PE, Fagervold SK, Lebaron P, Obernosterer I, Oliver MJ, et al. (2015). Seasonal 

dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J 9: 550 

347–360. 

Shade A, Caporaso JG, Handelsman J, Knight R, Fierer N. (2013). A meta-analysis of changes in 

bacterial and archaeal communities with time. ISME J 754: 1493–1506. 

Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. (2014). Conditionally rare 

taxa disproportionately contribute to temporal changes in microbial diversity. MBio 5: 1–9. 555 

Sieracki ME, Gilg IC, Thier EC, Poulton NJ, Goericke R. (2006). Distribution of planktonic aerobic 

anoxygenic photoheterotrophic bacteria in the northwest Atlantic. Limnol Oceanogr 51: 38–46. 

Smith DC, Azam F. (1992). A simple, economical method for measuring bacterial protein synthesis 

rates in seawater using tritiated-leucine. Mar Microb Food Webs 6: 107–114. 

Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. (2006). Microbial diversity 560 

in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci 103: 12115 LP-12120. 

Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. (2015). Ocean plankton. 

Structure and function of the global ocean microbiome. Science 348: 1261359. 

Vila-Reixach G, Gasol JM, Cardelús C, Vidal M. (2012). Seasonal dynamics and net production of 

dissolved organic carbon in an oligotrophic coastal environment. Mar Ecol Prog Ser 456: 7–19. 565 

Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. (2016). Correlation 

detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J 10: 1–13. 

Xia LC, Steele JA, Cram JA, Cardon ZG, Simmons SL, Vallino JJ, et al. (2011). Extended local 

similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC 

Syst Biol 5: S15. 570 

Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, et al. (2007). The Sorcerer 

II global ocean sampling expedition: Expanding the universe of protein families. PLoS Biol 5: 0432–

0466. 

Yutin N, Suzuki MT, Béjà O. (2005). Novel primers reveal wider diversity among marine aerobic 

anoxygenic phototrophs. Appl Environ Microbiol 71: 8958–8962. 575 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316059doi: bioRxiv preprint 

https://doi.org/10.1101/316059
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, et al. (2007). Assessing diversity 

and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and 

Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol 9: 

1464–1475.  

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 9, 2018. ; https://doi.org/10.1101/316059doi: bioRxiv preprint 

https://doi.org/10.1101/316059
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

Tables 580 

Table 1. Summary information for the top 20 ASVs (based on abundance). The following columns 

are listed: ASV name, phylogroup correspondence, taxonomy based on Blastx against the NCBI 

RefSeq (release 87) database, occurrence (number of samples in which they were present being the 

maximum number 119), mean relative abundance, seasonality behavior, and month of maximum 

mean relative abundance. 585 

ASV Phylogroup Taxonomic assingment Best match Accession Number Occurrence Total relative abundance (%) Seasonality 

asv1 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 114 16.37 yes 

asv2 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 112 7.45 yes 

asv6 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 119 6.9 yes 

asv5 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 117 6.75 yes 

asv8 Group_E 
Alphaproteobacteria; Rhodobacterales; 
Rhodobacteraceae; Thalassobium sp. R2A62 WP_009159933 81 5.83 yes 

asv10 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 84 4.89 yes 

asv11 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 108 4.58 yes 

asv18 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 99 3.71 yes 

asv15 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 107 3.28 yes 

asv17 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 78 3.13 yes 

asv21 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 108 2.93 yes 

asv23 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 113 2.41 yes 

asv13 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 97 2.27 yes 

asv27 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 71 1.19 yes 

asv30 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 71 1.08 yes 

asv34 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 84 1.06 yes 

asv37 Group_F 

Alphaproteobacteria; 
Rhodobacterales;Rhodobacteraceae; 
Loktanella maricola WP_100368402 81 1.05 no 

asv35 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 67 0.89 yes 

asv53 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 88 0.62 no 

asv129 Group_K 
Gammaproteobacteria; Cellvibrionales; 
Halieaceae WP_009470400 72 0.2 yes 

 

Supplementary tables  

Supplementary Table 1. Summary information of the 820 amplicon sequence variants. The 

following columns are listed: ASV, sequence, phylogroup, OTU correspondence, nucleotide 

differences, occurrence (number of samples present), total relative abundance (%), seasonality, 590 
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month of maximum relative abundance, median (% for the specific maximum of relative 

abundance) and standard error (SE).  

Figure legends 

 

Figure 1. Alphadiversity distribution of the AAP community for each month over the studied 595 

decade (2004-2013). Number of observed ASVs, Shannon and Simpson indexes are shown colored 

by season in the top, middle and bottom panels respectively. Each boxplot presents the average and 

the 25% and 75% limits with the distribution of 10 data points in grey (with the exception of March, 

with 9 data points).  
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 600 

 

Figure 2. Variation in the relative abundances of phylogroups K (top panel), G, E (middle panel) 

and phylogroups F, H, J and the unclassified group (bottom panel) for each month over the studied 

decade (2004-2013). Each boxplot presents the average and the 25% and 75% limits with the 

distribution of 10 data points in grey (with the exception of March, with 9 data points).  605 
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Figure 3. Distance based redundancy analysis of the samples (dots) with the 5 explanatory variables 

influencing the distribution (PERMANOVA p<0.01; day length, temperature, salinity, phosphate 

concentration (PO4-3) and phototrophic nanoflagellate abundance (PNF)) shown in arrows. The 

ordination was performed on the Bray-Curtis dissimilarity of log10 transformed data (with a 610 

pseudocount of 1) matrix. Each sample is colored by season.  
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Figure 4. Bray-Curtis similarity between samples plotted against the time lag between each of them 620 

(time-decay plot). Mean similarity values for each lag are plotted in an empty black dot with 

confidence interval bars (background grey filled dots show each comparison). A linear regression is 

plotted in blue, with the standard error around the prediction.  
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 625 

Figure 5. Seasonal component of the relative abundance distribution (log10 +1 transformed) for some 

remarked ASVs fitted with a polynomial function. (A) Various ASVs with distant nucleotide 

similarity, colored by phylogroup assignation. (B) Various ASVs belonging to the same OTU 

(nucleotide differences <12). The patterns were defined based on the relative abundance dynamics 

of 10 years (2004-2013) by time series analysis.  630 
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 635 

Figure 6. Network created with fast local similarity analysis. The network contains 37 nodes and 48 

edges. Node shape is related to the type of variable, with the color specifying the phylogroup 

correspondence and size the total relative abundance. Edges can be lagged (discontinuous line) or 

direct and have negative (i.e., anticorrelation) or positive local scores (LS). The label on the nodes 

indicates the ASV number.  640 
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