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Abstract

– Background: The temporal structure of macroscopic brain activity
displays both oscillatory and scale-free dynamics. While the functional rel-
evance of neural oscillations has been largely investigated, both the nature
and the role of scale-free dynamics in brain processing have been disputed.

-New Method: Here, we offer a novel method to rigorously enrich the
characterization of scale-free brain activity using a robust wavelet-based as-
sessment of self-similarity and multifractality. For this, we analyzed human
brain activity recorded with magnetoencephalography (MEG) while partici-
pants were at rest or performing a task.

–Results: First, we report consistent infraslow (from 0.1 to 1.5 Hz) scale-
free dynamics (i.e., self-similarity and multifractality) in resting-state and
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task data. Second, we observed a fronto-occipital gradient of self-similarity
reminiscent of the known hierarchy of temporal scales from sensory to higher-
order cortices; the anatomical gradient was more pronounced in task than
in rest. Third, we observed a significant increase of multifractality during
task as compared to rest. Additionally, the decrease in self-similarity and
the increase in multifractality from rest to task were negatively correlated
in regions involved in the task, suggesting a shift from structured global
temporal dynamics in resting-state to locally bursty and non Gaussian scale-
free structures during task.

– Comparison with Existing Method(s): We showed that the wavelet
leader based multifractal approach extends power spectrum estimation meth-
ods in the way of characterizing finely scale-free brain dynamics.

– Conclusions: Altogether, our approach provides novel fine-grained
characterizations of scale-free dynamics in human brain activity.

Keywords: 1/f power spectrum, MEG, temporal structure, oscillations,
resting-state, infra-slow activity, fractal, multifractal, wavelet.

Highlights

1. We estimated scale-free human brain dynamics using wavelet-leader
formalism.

2. High-to-low self-similarity defined a fronto-occipital gradient.

3. The gradient was enhanced in task compared to resting-state.

4. Scale-free brain dynamics showed multifractal properties.

5. Self-similarity decreased whereas multifractality increased from rest to
task.

1. Introduction

1.1. Scale-free brain activity

Macroscopic brain activity consists of a mixture of synchronized and
desynchronized activity [1, 2]. The synchronization of neural oscillations has
been hypothesized to mediate neural communication [3, 4, 5, 6], and their
coupling, to be involved in information processing [7, 8, 9, 4, 10]. However,
the existence, the properties and the functional relevance of scale-free dynam-
ics in brain processing remain an open debate. Scale-free dynamics have been
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reported in spontaneous brain activity [1] and in data collected with various
neuroimaging techniques including fMRI, magnetoencephalography (MEG),
electroencephalography (EEG) and local-field-potentials (LFP) [1, 11]. The
presence of scale-free dynamics was demonstrated in the infra-slow frequency
range (from 0.01 Hz to 1 Hz [1, 12, 13, 14]) and in the slow fluctuations of
power of narrow-band neuronal oscillations [15, 16, 17, 18]. The empirical
work in both humans and animals has revealed that scale-free dynamics of
brain activity were modulated by the levels of wakefulness (vs. sleep) [19, 1,
20, 21], consciousness (vs. anesthesia) [22, 23], aging and neurodegenerative
diseases [24] as well as task performance [25, 1, 26, 27, 17, 18, 28].
The intuition behind the scale-free concept is that the relevant information in
the temporal dynamics of a given signal is coded within the relations that tie
together temporal scales, rather than in the power of neuronal oscillations in
specific bands. Its origin remains however poorly understood. Brain activity
recorded with MEG or EEG is most comparable to LFP, and slow dynamic
fluctuations likely reflect the up and down states of cortical networks as op-
posed to spiking activity per se [29]. Hence, although fast neuronal activity
or avalanches could endogenously produce scale-free infra-slow brain dynam-
ics, a careful statistical assessment remains necessary to draw conclusions on
the nature of observed scale-free dynamics [30, 31, 32]. A temporal hierar-
chy of neural oscillators has been considered a possible source of scale-free
brain dynamics [33, 1] as well as the spatial repartition of neural sources.
Dendritic filtering [34, 35, 10] or the resistive brain milieu constitute other
tentative origins for scale-free dynamics [36]. That the structural configura-
tion of neural networks and their dynamics may be arguably topologically
intertwined [37, 35, 38] is also important to keep in mind. To better under-
stand the origins and nature of scale-free brain dynamics, we thus propose
to use a rich and robust statistical framework.

1.2. Scale-free dynamics modeling and assessment

Scale-free dynamics recorded with neuroimaging techniques have gener-
ally been quantified using a 1/fβ power spectrum model over a large con-
tinuum of frequencies. As a result, the empirical assessment has often used
Fourier-based spectrum estimation. As an alternative, self-similarity provides
a well accepted model for scale-free dynamics that encompasses, formalizes,
and enriches the traditional Fourier 1/fβ spectrum modeling, with mod-
els such as fractional Brownian motion (fBm) or fractional Gaussian noise
(fGn) [39, 1, 27, 40]. The self-similarity, or Hurst, parameter H matches the
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spectral exponent β, as β = 2H − 1. In the context of brain activity, H
indexes how well neural activity is temporally structured (via its autocorre-
lation). Additionally, although H has been estimated using Detrended Fluc-
tuation Analysis (DFA) [16, 25, 26, 41, 18, 23], it is now well-documented
that wavelet-based estimators provide significant theoretical improvements
and practical robustness over DFA, notably by disentangling true scale-free
dynamics from non-stationary smooth trends [42, 27, 40].
Often associated with Gaussianity, self-similarity alone does not fully ac-
count for scale-free dynamics. The main reason it that self-similarity re-
stricts the description of neural activity to second-order statistics (autocor-
relation and Fourier spectrum) and, hence, to additive processes. Yet, it has
been proposed that multiplicative processes may provide more appropriate
descriptions of neural activity [12]. Independently of, and in addition to self-
similarity, multifractality provides a framework to model these non-additive
processes [43, 24, 44]. Multifractality can be conceived as the signature of
multiplicative mechanisms, or as the intricate combination of locally self-
similar processes. For instance, if a patch of cortex (i.e. the anatomical
resolution of MEG recordings) is composed of several small-networks each
characterized by a single self-similar parameter H, the multifractality pa-
rameter M constitutes an index capturing the diversity of Hs and their in-
teractions within the patch. Qualitatively, the multifractality parameter M
quantifies the occurrence of transient local burstiness or non Gaussian tem-
poral structures, not accounted for by the autocorrelation function or by the
Fourier spectrum (hence, neither by H nor β). To meaningfully and reliably
estimate M , it has been theoretically shown that the wavelet-based analysis
must be extended to wavelet-leaders [45].

1.3. Goals and contributions

The goal of the present work is to produce a rich and reliable charac-
terization of scale-free temporal dynamics in human brain activity, and to
provide the field with a robust and reliable procedure to do so. This is made
possible (i) by the combined use of self-similarity and multifractality as in-
dependent and complementary modeling paradigms, and (ii) by the recourse
to the wavelet and wavelet-leader based assessment framework yielding im-
proved performance and robustness to nonstationary trend procedures. The
present work investigates the existence and characterization of scale-free dy-
namics in human cortical activity recorded with MEG, and investigates the
modulation of H and M by resting-state and task.
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2. Material and Methods

2.1. Material

2.1.1. Participants

24 right-handed participants (10 females; mean age of 22.1±1.9 y.o.) took
part in the study. All had normal or corrected-to-normal vision and normal
hearing and provided a written informed consent prior to the experiment
in accordance with the Declaration of Helsinki (2008) and the local Ethics
Committee on Human Research at NeuroSpin (Gif-sur-Yvette, France).

2.1.2. Experimental design

The resting-state block lasted 5 minutes during which participants kept
their eyes open while staring at a black screen. Participants could mind-
wander freely. 5 minutes were selected to be sufficient for an accurate esti-
mation of scale-free properties but not long enough for participants’ cognitive
state to drastically change. Resting-state activity was recorded prior to any
exposure to task or stimuli. The task block lasted 12 minutes during which
participants performed a visual motion coherence discrimination task [46].
In each trial (2.5 s), participants decided which of two intermixed (green and
red) clouds of dots was most coherent. Responses were delivered by button
press. The experiment was conducted in a darkened soundproof magnetic-
shielded room. Participants were seated in upright position under the MEG
dewar facing a projection screen placed 90 cm away. The refresh rate of
the projector (model PT-D7700E-K, Panasonic Inc, Kadoma, Japan) was 60
Hz. Participants were explained the task and were in contact at all times
with the experimenter via a microphone and a video camera. Stimuli were
designed using Matlab (R2010a, Mathworks Inc.) with Psychtoolbox-3 [47]
on a PC (Windows XP).

2.1.3. MEG data acquisition

Brain activity was recorded in a magnetically shielded room using a 306
MEG system (Neuromag Elekta LTD, Helsinki). MEG recordings were sam-
pled at 2 kHz and band-pass filtered between 0.03 and 600 Hz. Four head
position coils (HPI) measured participants’ head position before each block;
three fiducial markers (nasion and pre-auricular points) were used for dig-
itization and for alignment with the anatomical MRI (aMRI) acquired im-
mediately after MEG acquisition. Electrooculograms (EOG, horizontal and
vertical eye movements) and electrocardiogram (ECG) were simultaneously
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recorded. Before each experiment, 5 minutes of empty room recordings were
acquired for the computation of the noise covariance matrix used in solving
the MEG inverse problem.

2.1.4. Anatomical MRI acquisition and segmentation

The T1 weighted anatomical MRI (aMRI) was recorded using a 3-T Trio
MRI scanner (Siemens Erlangen, Germany). Parameters of the sequence
were: FOV = 256× 240× 176 mm3, voxel size: 1.0× 1.0× 1.1 mm3; acqui-
sition time: 7 min46 s; repetition time TR = 2300 ms; inversion time TI=
900 ms; flip angle= 9◦; transversal orientation, echo time TE= 2.98 ms and
partial Fourier 7/8. Cortical reconstruction and volumetric segmentation
of participants’ T1 weighted aMRI was performed with Freesurfer 1 (RRID:
nif-0000-00304). This included: motion correction, average of multiple volu-
metric T1 weighted images, removal of non-brain tissue, automated Talairach
transformation, intensity normalization, tessellation of the gray-white matter
boundary, automated topology correction, and surface deformation following
intensity gradients [48]. Once cortical models were complete, deformable pro-
cedures could be performed including surface inflation [49] and registration
to a spherical atlas [50]. These procedures were adopted using MNE ([51],
RRID: scires 000118) to morph individuals’ current source estimates onto
the Freesurfer average brain for group analysis.

2.1.5. MEG data preprocessing

Data preprocessing was done in accordance with accepted guidelines for
MEG research [52]. Signal Space Separation (SSS) was performed using
MaxFilter to remove external magnetic interferences and discard noisy sen-
sors [53]. Ocular and cardiac artifacts (eye blinks and heart beats) were
removed using Independent Component Analysis (ICA) on raw signals. ICA
was fitted to raw MEG signals, and sources matching the ECG and EOG
were automatically found and removed2. Then, for the sake of compu-
tational efficiency, we downsampled the preprocessed MEG time series at
fs = 400 Hz before applying signal reconstruction following the procedure
described in https://github.com/mne-tools/mne-python/blob/master/

1http://surfer.nmr.mgh.harvard.edu
2 https://github.com/mne-tools/mne-python/blob/master/tutorials/plot_

artifacts_correction_ica.py
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tutorials/plot_mne_dspm_source_localization.py [51], since scale-free
analysis was focused on the low frequency content.

2.1.6. Coregistration and MEG source reconstruction

The co-registration of MEG data with the individual’s aMRI was carried
out by realigning the digitized fiducial points with the multimodal mark-
ers visible in MRI slices. We used a two-step procedure to ensure reli-
able MEG-aMRI coregistration: using MRILAB (Neuromag-Elekta LTD,
Helsinki), fiducials were aligned manually with the multimodal markers on
the MRI slice; an iterative procedure realigned all digitized points (about
30 more supplementary points distributed on the scalp of the subject were
digitized) with the scalp of the participant and the MEG coordinates using
the mne analyze tools within MNE ([51], RRID:nlx 151346). Individual for-
ward solutions were computed using a 3-layer boundary element model [54]
constrained by the individual’s aMRI. Cortical surfaces were extracted with
Freesurfer (RRID: nif-0000-00304) and decimated to about 5,120 vertices per
hemisphere with 4.9 mm spacing. The forward solution, noise and source co-
variance matrices were used to compute the depth-weighted (parameter =
0.8) minimum-norm estimate [55] inverse operator. The unitless inverse op-
erator was applied using a loose orientation constraint on individuals’ brain
data [56] by setting the transverse components of the source covariance ma-
trix to 0.4. Importantly, considering that taking the norm of source dipoles
is a nonlinear transformation that may modify scale-free properties [57], we
only kept the radial components. Using the individual cortical parcellation
provided by Freesurfer, reconstructed time series in vertices belonging to the
same cortical label (138 labels in total) were grouped and collapsed into a
unique time series. In this procedure, the signs of time series within labels
were flipped according to anatomical orientation of vertices in such a way
that signed activations did not cancel out after averaging (this is a standard
label averaging used by the MNE software).

2.2. Methods

2.2.1. Scale-free modeling: From Fourier spectrum to selfsimilarity and mul-
tifractality

Scale-free dynamics are classically modeled by a power-law decrease of the
Fourier power spectrum Γ(f) with respect to frequencies f : Γ(f) ' C|f |−β.
Such power laws can be understood as the signatures of the more general
and better theoretically framed concept of self-similarity [58]. In essence,
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self-similarity amounts to modeling scale-free dynamics in data as fractional
Gaussian noise (fGn), a Gaussian stationary stochastic process, consisting of
the fractional integration (with parameter H − 1/2) of a white (i.e., delta-
correlated) Gaussian process. The sole parameter H, theoretically related to
β as β = 2H − 1, governs the entire covariance structure and thus, together
with Gaussianity, completely defines temporal dynamics. More precisely, the
self-similar parameter H quantifies the algebraic decrease of the autocorre-
lation function: H = 1/2 indicates the absence of correlation, H < 1/2
betrays negative correlation and H > 1/2 marks long range positive corre-
lation. While the classical definition of fGn implies 0 < H < 1, it can be
theoretically extended to H > 1 (with the recourse to the notion of general-
ized processes and tempered distributions [58]), while preserving the original
intuition beyond fGn: the larger |H − 1/2|, the more structured the tem-
poral dynamics of data (as illustrated in Supplementary Movie 1). Beyond
the global control of temporal dynamics via the covariance function, Gaus-
sian self-similarity also implies the absence of fluctuations in the regularity
of local temporal dynamics. Such local regularity is often quantified via the
Hölder exponent h(t) > 0 [45]. For Gaussian self-similar processes, such as
fGn, ∀t, h(t) ≡ H.

The multifractal paradigm extends self-similarity by preserving a control
of the global temporal dynamics via the covariance function, driven by H,
while enriching it with possible fluctuations along time of the local regularity
h(t) [45]. Multifractal models, such as multifractal random walk (MRW), are
thus essentially stationary non Gaussian processes, defined as the fractional
integration (of parameter H − 1/2) of a white (i.e., delta-correlated) Gaus-
sian process, whose amplitude is modulated by another independent process,
whose covariance decreases logarithmically slowly, with an amplitude con-
trolled by the multifractality parameter M > 0 [59]. Self-similarity parame-
ter H preserves the intuitive interpretation of global and overall dependence
and structure in the temporal dynamics of data, while the additional multi-
fractal parameter M allows local and transient departures from Gaussianity,
hence burstiness in temporal dynamics, via fluctuations along time of the
local regularity (as illustrated in Supplementary Movie 2).

More technically, multifractal temporal dynamics imply that the fluctua-
tions along time of local regularity are erratic, i.e., the function h(t) is itself a
very irregular function. Therefore, temporal dynamics are not well-described
by the local function h(t), but rather by a global function, the so-called mul-
tifractal spectrum 0 6 D(h) < 1. The multifractal spectrum, which consists
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of the fractal dimension of the set of points on the real line sharing the same
regularity h(t) = h (cf. [45] for a technical definition), thus conveys a global
information on the geometrical structure of h(t), hence on temporal dynam-
ics beyond the mere covariance function. These notions are pedagogically,
hence qualitatively, illustrated on synthetic data in Fig. 1.

While the multifractal spectrum D(h) can theoretically consist of any
shape, it is often efficiently approximated, for practical use, as a parabola
controlled by H and M : D(h) ' 1− (h−H)2/2M . For Gaussian self-similar
processes, M ≡ 0 and D(h) = δ(h − H), with δ the Dirac-delta function.
Parameters H and M thus provide independent and complementary charac-
terization of scale-free dynamics in data [45], with M adding the possibility
to model burstiness in temporal dynamics by local departures from Gaus-
sianity, while the global structure of temporal dynamics remains controlled
by H.

2.2.2. Scale-free analysis: From spectral estimation to wavelet and wavelet-
leader analysis

The scaling exponent β has classically been evaluated by means of spec-
trum estimation, i.e., by linear regressions in a log-log plot of estimated
power spectrum versus frequency (as sketched in Fig. 2). In the present
work, all Fourier spectra are estimated using the Welch periodogram proce-
dure. Alternatively, time domain approaches such as detrended fluctuation
analysis(DFA) [16], also based on linear regressions, rely on quantifying the
power of fluctuations in data increments computed at different lags (acting
as scales). It is however now well-documented that multiscale representa-
tions, such as wavelet transforms, are well-suited for the analysis of scale-
free dynamics and achieve optimal and robust estimation performance cf.
e.g., [60, 42].Let ψ0(t) denote a reference pattern, referred to as the mother
wavelet, the discrete wavelet coefficients dX(j, k) are defined on a dyadic
grid (scale a = 2j and time t = k2j) as: dX(j, k) =

∫
X(t)2−jψ0(2

−jt− k)dt.
Under mild conditions on the choice of ψ0(t), it has been shown that for
self-similar processes [60]:

SdX(j, q) ≡ 1

nj

nj∑
k=1

|dX(j, k)|q ' Kq2
jζ(q), ∀a = 2j > 0, ∀q > 0 (1)

with ζ(q) = qH, thus permitting a robust and efficient estimation of H
by linear regressions [60]. It can further be shown that, with the particular
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Figure 1: Schematic introduction to Multifractality. (A): Multifractal signals ob-
served at three different time scales from coarse (top) to fine (bottom). Local temporal
dynamics can be quantified by the Hölder exponent h(t), a local regularity index. In this
pedagogical example, h(t) can only take three values: red, green and yellow. For multifrac-
tal signals, h(t) is per se a very irregular function along time, with all possible h existing
in any small subpart of the data. (B): For monofractal signals (with the same covariance
function as the multifractal signals, hence same H), no fluctuations of local regularity
are observed and the local h and the global H are everywhere identical. In these three
examples of monofractal signals, the global regularity H of each signal increases from top
to bottom. (C): The multifractality illustrated in (A) can be captured by a multifractal
spectrum D(h), quantifying by means of fractal (Hausdorff) dimension of the geometrical
structure of time points that share the same local regularity h(t) = h. The most frequent
Hölder exponent h, indicated in red, is closely related to the global self-similarity index
H whereas multifractality M encompasses all local regularities h by reflecting the width
of D(h). Importantly, D(h) remains the same for the whole signal and any subpart, it is
hence scale invariant.
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choice q = 2, SdX(j, q = 2), referred to as the wavelet spectrum, can be read as
an estimator of the Fourier spectrum Γ(f) [42]. Therefore, under elementary
transformations, the Fourier and wavelet spectra can be mapped one onto the
other, as Γ(f) ' SdX(j = log 2(f0/f), q = 2), with f0 a constant that depends
on the choice of ψ0 (and that can be well approximated for a large class of
wavelets as f0 ' 3/4 × fs, with fs the sampling frequency) [60, 42]. This
is quantitatively illustrated in Fig. 2. While both spectra yield equivalent
information on the global temporal dynamics, it has been documented that
the wavelet spectrum yields a more robust and more reliable estimate of
H than Fourier spectrum does for β [42]. Notably, it was shown that the
wavelet spectrum is less prone to bias induced by smooth trends or smooth
non stationarity effects, than the classical Fourier spectrum, hence yielding
robust estimates of the scale-free exponents.

For multifractal processes, when M > 0, the scaling exponents ζ(q) no
longer follow the linear form qH, but rather consist of a concave function,
which in first approximation and for practical purposes can be written as
ζ(q) = qH −Mq2/2. The scaling exponents ζ(q) are further related to the
multifractal spectrum D(h) via a Legendre transform [45].

For more than one decade [61] it has been proved that a relevant estimate
of parameter M requires to replace the wavelet coefficients with wavelet-
leaders, defined as local suprema of the wavelet coefficients dX(j′, k′), across
a local neighborhood λj,k = [(k−2)2j+1, (k+1)2j], for all finer scales 2j

′
6 2j

[45]:

LX(j, k) = sup
j′6j, 2j′k′∈λj,k

|dX(j′, k′)|. (2)

Under mild restrictions, it has been shown that [45]:

C1(j) ≡
1

nj

nj∑
k=1

log2 LX(j, k) = H0 +Hj, (3)

C2(j) ≡
1

nj

nj∑
k=1

(log2 LX(j, k))2 − C1(j)
2 = M0 −Mj. (4)

These two fundamental relations show that parameters H and M can be
estimated as linear regressions in diagrams C1(j) vs. j and C2(j) vs. j,
respectively. This is illustrated in Fig. 3. To ease exposition, the functions
C1(j) and C2(j) will hereafter be referred to as the wavelet-leader spectra.
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Figure 2: Scale-free brain dynamics: Fourier vs. wavelet-based power spectra
at rest and during task. (A): Group-average Fourier (thin lines) and wavelet (thick
lines) power spectra computed in an occipital sensor (inset) for empty room (grey), resting-
state (brown) and task (green) recordings. In both Fourier and wavelet log-power spec-
tra, the linear fit indicates scale-free dynamics, and delineates the implicated range of
scales (j ∈ (8, 12)) corresponding roughly from 0.1 Hz (i.e. j = 12) to 1.5 Hz (i.e.
j = 8). The slopes quantify the scaling exponents β (of power spectra 1/fβ) and the
self-similarity index H. Human brain activity is characterized by a pink noise (β ' 1)
regime whereas empty room recordings correspond to brown noise (β ' 2): hence, and
importantly, this graph clearly shows that instrumental noise is a not a spurious cause
for observing scale-free dynamics in brain activity. (B-C): Group-average Fourier (thin
lines) and wavelet-based (thick lines) power spectra computed in two frontal (red) and
occipital (blue) cortical labels at rest (B) and during task (C). Larger β values corre-
spond to steeper slopes, as shown in the frontal region (front, red label) compared to the
occipital (occ, blue label). All plots clearly show that wavelet and Fourier spectra can be
formally mapped one onto the other.
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3. Results: self-similarity and multifractality in human brain ac-
tivity recorded with MEG

3.1. A case study for assessing self-similarity in MEG data: range of fre-
quencies, Fourier vs. wavelet power spectra

Fig. 2 reports the group-average Fourier and wavelet spectra in sensors
and in cortical source estimations of the entire MEG data time series. As
theoretically expected (cf. Section 2.2.2), the Fourier (thin lines) and the
wavelet spectra (thick lines) superimposed very well, yielding consistent pat-
terns across methods. Fig. 2 also shows that both spectra displayed power law
behaviors over a broad range of frequencies ranging from roughly 0.1 Hz to
1.5 Hz. Importantly, Fig. 2A compares Fourier and wavelet spectra of human
brain MEG data to those of empty-room MEG recordings. This formal com-
parison unambiguously showed that the spectra differed both in amplitude
and in shape: the spectral exponent of human brain recordings was in the
so-called pink noise regime (1 6 β 6 2) while empty-room recordings rather
displayed brown noise temporal dynamics (β > 2). Thus, scale-free dynamics
observed in MEG recordings through power spectrum analysis (both Fourier
and wavelet) was not caused by instrumental or sensor noise, but rather re-
sulted from macroscopic human brain activity.
Thus, and overall, Figs. 2A-C thus revealed that power law behaviors could
be consistently observed during resting-stae and during task, in the range
of octaves (j1, j2) = (8, 12). This range is associated with frequencies '
(0.1, 1.5) Hz or, equivalently, with time scales (2j1=8/fs, 2

j2=12/fs) ' (0.66, 10) s.
To further provide an intuitive understanding of scale-free dynamics, we
compared the Fourier and wavelet spectra of normalized MEG time courses
(Fig. 3) recorded from two different sensors in one participant at rest (Fig. 3A-
C) and during task (Fig. 3D-F). In Fig. 3A, the occipital sensor time se-
ries (red) appeared visually less structured over time than the frontal sen-
sor time series (black). This visual appreciation was quantified using a
classic Fourier analysis showing a power law behavior at low frequencies
(P (f) ' 1/fβ), with a scaling exponent β that was smaller for the oc-
cipital sensor (red trace) (Fig. 3B). Conversely, we found that the frontal
sensor (black) showed a larger scaling exponent, hence a steeper slope, or
equivalently, a stronger temporal autocorrelation, and was quantified by a
stronger long-range dependency (Fig. 3B). The same analysis held when con-
ducted from the wavelet spectrum (Fig. 3C), with very satisfactory matches
for the estimated scaling exponents H and β according to β = 2H − 1.
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3.2. A case study to go beyond self-similarity in MEG data by assessing
multifractality

To demonstrate the interest of a multifractal description in brain activity,
we proceeded with multifractal analysis using case study time series. First,
using the same example of time series recorded during resting-state as before
(Fig. 3A), multifractal analysis yielded negative estimates of the multifrac-
tality parameter (Fig. 3C): M 6 0 indicating no multifractality at rest. This
can be vizualized by the δ-shape of the multifractal spectra D(h), which only
differed by their location on the h-axis, reflecting different self-similarity ex-
ponents H. In other words, for these time series, there was no additional
information provided by using multifractal analysis.
We then repeated the same analysis on two MEG time-series collected during
task (Fig. 3D). These case study time-series where chosen on purpose because
they showed very similar Fourier spectra (Fig. 3E), hence displaying the same
βs, and predictably, the same held true for the wavelet spectra (Fig. 3F) show-
ing the same Hs. Interestingly however, the frontal signal (red) appeared far
more irregular and locally bursty than the central one (black). This was
again quantified using multifractal analysis (Fig. 3F), which revealed that
although H (top left) was identical in both frontal and central time series,
the frontal time series was characterized by a positive M = 0.045 > 0 (hence,
displayed multifractality), while the central sensor did not (M < 0). The
multifractal spectra for both time series thus summarized the two case study
observations: whereas the location of their peaks coincided (same H), only
one spectrum (red) showed a large parabola shape (M > 0).
These examples were chosen as pedagogical illustrations of the potential rich-
ness of scale-free temporal dynamics found in brain time series. Specifically,
while the typical power spectrum analysis would conclude that these differ-
ent time series share the same scale-free characteristics, multifractal analysis
clearly showed differences in their temporal dynamics by quantifying the exis-
tence of transient and local irregularities observed in the frontal sensor (red)
that did not exist in the central sensor data (black). Multifractality thus com-
plements self-similarity in the characterization of scale-free dynamics in time
series by quantifying local transient dynamics that are not well accounted
for by the autocorrelation or by the Fourier spectrum.

3.3. Group-level analysis of scale-free brain dynamics

Having extended the framework for the assessment of scale-free brain
dynamics to self-similarity H and multifractality M , we then proceeded
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Figure 3: Self-similarity and multifractality in spontaneous infraslow brain ac-
tivity at rest. Normalized time series representing an individual’s brain activity recorded
in two different pairs of MEG sensors at rest (A-C) and during task (D-F). In (A-C), the
two signals show a difference in self-similarity. In (D-F), the two signals show differences
in multifractality but no differences in self-similarity. The regression analysis was per-
formed over the scaling range (j1, j2) = (8, 12) which matched the (0.1, 1.5) Hz frequency
range (as a reminder, j = 8 corresponds to 1.5 Hz and j = 12 corresponds to 0.1 Hz).

with a comprehensive analysis of scale-free brain activity across all individu-
als (n = 24). For this, we assessed scale free activity in source reconstructed
time series averaged within each cortical regions (see Section 2.1.6). The
estimation of parameters H and M relied on the wavelet-leader multifractal
formalism described in Section 2.2.2: i.e., MEG wavelet-leader spectra C1(j)
and C2(j) were systematically computed on resting-state and task recordings
separately for each cortical label and on a per individual basis. Results were
then averaged across individuals to form C̄1(j) and C̄2(j), respectively. Im-
portantly, since linear regression and group-level averaging were both linear
after taking log in Eqs. (3)-(4), we could interchange them without impact-
ing the results. For this reason, in what follows, we illustrated group-level
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values of C̄1(j) and C̄2(j) in log-scale diagrams from which we deduced the
respective group-level H and M . The latter actually matched the group-level
averages of subject-specific values of H and M , shown in the cortical maps
of Figs. 4- 5.

3.4. A fronto-occipital gradient of self-similarity

Fig. 4A reports the grand average C̄1(j) for resting-state obtained in two
cortical labels (one frontal in red, one occipital in blue). The self-similarity
exponent H was found to be larger in the frontal label as compared to the
occipital label. To systematically quantify this effect, the calculation of C̄1(j)
was conducted over the whole cortical surface. Using T-statistics, the null
hypothesis H = 0.5 was tested at the group level. To account for multiple
comparisons across the 138 labels covering the whole cortical surface, a cor-
rection was implemented using the false discovery rate (FDR) detection at
α = 0.05: pcorrected < 0.05. Fig. 4C reports the spatial distribution of statis-
tically significant mean values of H (H > 0.5), yielding a key finding: the
spatial distribution of estimated Hs during rest revealed a fronto-occipital
gradient, in which H significantly decreased from frontal (H ' 1.2) to oc-
cipital regions (H ' 0.8 − 0.9). This gradient was consistent with prior ob-
servations of scale-free activity observed in MEG and EEG recordings [36]:
larger H in frontal regions (i.e., steeper slopes for the spectra) would indi-
cate stronger and longer temporal correlations,i.e. more-structured temporal
dynamics, compared to occipital regions.

3.5. During task, an overall decrease of self-similarity accentuates the fronto-
occipital gradient

In Fig. 4D, the spatial distribution of H significantly departed away from
0.5 during task yielding, by comparison to rest, another key finding: the de-
crease of H during task appeared to be global and almost significant every-
where over the cortical surface. Interestingly, the anatomical fronto-occipital
gradient at rest appeared to be further strengthened during perceptual task
completion (cf. lateral views in Fig. 4D). We contrasted theH parameter esti-
mates between rest and task using paired t-tests. FDR was applied to correct
for multiple comparisons across cortical labels at α = 0.05. In Fig. 4E, the
statistical assessment of changes in H between rest and task confirmed our
qualitative appreciation. Specifically, H was significantly diminished during
task in numerous cortical regions including occipital, parietal, and primary
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Figure 4: Fronto-occipital gradient of self-similarity. For comparison with Fig. 2,
we show group-average wavelet-leader structure functions C̄1(j) in the same frontal (red)
and occipital (blue) cortical labels during rest (A) and task (B) blocks. The linear fits
were computed over the scaling range 8 6 j 6 12 and matched the (0.1, 1.5) Hz frequency
range used before for linear regression in the power spectra. The associated slopes provides
estimates of group-level Hurst exponents H. (C-D): Group-average cortical maps (lateral
and medial views on top and bottom, respectively, left hemisphere on the left) of Hurst
exponents H at rest and during task, respectively. In both rest and task, a fronto-occipital
gradient of self-similarity could be observed going from higher H in frontal regions to lower
H in parieto-occipital regions). (E): Cortical maps contrasting H in task and resting-state
testing the null hypothess that HTASK = HREST. The statistical significance was assessed
on a per label basis by computing a paired Student t-test and correcting for multiple
comparisons with FDR at α = 0.05. Estimates of H were smaller in task than in rest
as shown by negative differences (∆H = HTASK −HREST < 0). This contrast indicated
that, globally, self-similarity significantly decreased when participants performed a task as
compared to when they rested. 17
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motor cortices as well as right supplementary area (SMA) and ventrolat-
eral prefrontal cortex (vlPFC) bilaterally. All these regions were previously
shown to be essential in the perceptual task participants were engaged in [46].
Conversely, cortical regions belonging to the default mode network or DMN
(e.g., the right medial prefrontal cortex) showed a smaller decrease of H by
less than 10 % (decrease from 1.2 to 1.12) during task. This may indicate
that DMN regions implicated in monitoring resting-state may show reduced
to opposite trends than regions implicated in task performance.

3.6. Weak multifractality in resting-state and default mode network (DMN)

The group-average C̄2(j) at rest for two cortical labels is illustrated in
Fig. 5A. We found no multifractality (M < 0) in the frontal label (red) but
found multifractality (M = 0.017) in the occipital label (blue). As previously
done for estimates of H, we performed the analysis of multifractality at rest
over the whole cortical surface. Using T-statistics, the null hypothesis M = 0
was tested at the group-level. The same FDR correction at α = 0.05 was
applied to correct for multiple comparisons across labels. Fig. 5C reports the
spatial distribution of statistically significant mean values of M (M > 0). At
rest, the presence of multifractality was confined to a few regions: the poste-
rior superior temporal sulci, the occipital cortex, the right temporo-parietal
junction and the frontal cortices, bilaterally. Additionally, multifractality
was observed in two additional regions of the Default Mode Network (DMN)
lateralized to the right hemisphere, namely the posterior cingulate cortex
and the middle prefrontal cortex. The observed values of M mostly ranged
between 0.01 and 0.02, with the exception of the frontal poles which reached
M = 0.03.

3.7. Multifractality: localized increase in regions engaged in the task

During task, the group-level wavelet-leader spectra C̄2(j) (Fig. 5B) sug-
gested an absence of multifractality in frontal regions (M = 0) but an in-
crease of multifractality in occipital regions. M was increased by about
60 % in occipital cortices, hence showing steeper slopes for C̄2(j). A sta-
tistical assessment of multifractality over the whole cortical surface during
task revealed a spatially extended set of cortical regions showing significant
multifractality (Fig. 5D; mean values of M (M > 0)). Additionally, the
multifractal parameter M took overall larger values compared to the distri-
bution we had observed during resting-state. We notably found larger M
values in cortical regions involved in the perceptual task participants were
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engaged in [46], namely: visual cortices (primary, secondary and visual mo-
tion region (hMT+)) as well as parietal cortices and the posterior superior
temporal sulci.
When statistically contrasting the M parameter estimates between rest and
task (paired t-tests, FDR correction for multiple comparisons across cortical
labels at α = 0.05), we found significant changes in M in brain regions in-
cluding the right occipital cortices, SMA, the left temporo-parietal junction
and posterior cingulate cortex (Fig. 5E). These changes corresponded to an
increase in multifractality, though they remained limited in magnitude to a
maximal increase of 0.01. This was a remarkable observation considering that
the analysis was conducted over the whole cortical surface with no a priori
restriction on the timing of the stimuli or cognitive operations implicated in
the decision-making; rather, our analysis was performed over the whole time
series.
Altogether, these results suggest that multifractal characterization of brain
activity may capture relevant signatures of brain processing that are associ-
ated with task-relevant brain regions.

3.8. Covariation of self-similarity and multifractality from rest to task

So far, we reported significant differences for both H and M when con-
trasting rest and task, namely: while self-similarity H significantly decreased
in task as compared to rest (Fig. 4E), multifractality M significantly in-
creased in task as compared to rest (Fig. 5E). Additionally, the changes in
M were confined to a limited number of brain regions whereas the changes
observed in H were more global, thereby yielding a global accentuation of
the fronto-occipital gradient. Considering the possible overlap of cortical
regions displaying both changes, we then asked to which extent the two
characteristics of scale-free dynamics may be related. We correlated the
changes in H and M from rest to task on a label-by-label basis (Fig. 6).
This analysis revealed that in some of the cortical regions showing task-
related multifractality (Fig. 6A), there was a significant negative correlation
between individual changes from rest to task of H (∆H = HTASK −HREST)
and M (∆M = MTASK −MREST) (Fig. 6B).
These results constituted a particularly important finding: theoretically, H
and M are independent parameters, which model very different aspects of
scale-free dynamics. While self-similarity H provides insights on the tem-
poral autocorrelation of brain activity, M informs on the burstiness of the
signals. The observed negative covariation between self-similarity and mul-
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Figure 5: Multifractal brain activity. Group-average wavelet-leader structure func-
tions C̄2(j) in the same frontal (red) and occipital (blue) labels at rest (A) and during
task (B). The linear fits were computed over the scaling range 8 6 j 6 12 and matched the
(0.1, 1.5) Hz frequency range used before. The associated slopes provided estimates of the
multifractal exponents M . (C-D): Statistically significant (H0 : M = 0) grand-average
cortical maps of multifractal exponents M at rest and during task, showing sparser to-
pographies than for self-similarity H, especially at rest. (E): Cortical maps contrasting M
in task and resting-state testing the null hypothesis that MTASK = MREST. The statistical
significance was assessed on a per label basis by computing a paired Student t-test and
correcting for multiple comparisons with FDR at α = 0.05. Estimates of M were bigger in
task than in rest as shown by positive differences (∆M = MTASK−MREST < 0) in several
regions involved in the task, notably visual, parietal and motor cortices. This contrast
indicated that, locally, multifractality significantly increased when participants performed
a task as compared to when they rested.
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Figure 6: Covariations of self-similarity and multifractality. Significant negative
correlation between changes of H (∆H = HTASK − HREST) and M (∆M = MTASK −
MREST). (A): Cortical source estimates associated with significant correlations (color-
coded Pearson’s r values) observed between ∆H and ∆M . The null hypothesis reads r = 0
in each cortical label. Statistical significance was assessed on a per individual and per label
basis by computing a paired Student t-test. Corrections for multiple comparisons were
performed using FDR at α = 0.05. (B): Scatter plot of ∆H versus ∆M , averaged over all
brain regions reported in (A). The significant negative correlation indicated concomitant
local decreases of H (negative ∆H) and increase of M (positive ∆M). Each dots is an
individual and crosses are outliers (n = 24).

tifractality is non-trivial and crucially suggests a potential coupling in the
covariation of both indices. We discussed these findings further below.

4. Discussion

To briefly sum up, our key findings are:the existence of a fronto-occipital
gradient of self-similarity in the human brain which increases during task as
compared to rest. Second, and to the best of our knowledge, we observed
for the first time multifractality on MEG data collected in a healthy human
population and describe an anatomical distribution of multifractality during
resting-state and task. Local changes in multifractality in task as compared
to rest indicate a possible functional relevance of multifractal infra-slow dy-
namics in brain processing. Our empirical results raise several points of
discussions and conclusions regarding the assessment of scale-free temporal
brain dynamics. We discuss the main ones below.
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4.1. Robust description of infraslow, scale-free dynamics, in human brain
activity

Overall, our results support the notion that scale-free temporal dynamics
constitute a signature of human brain activity as recorded with MEG. We
showed that scale-free properties were neither induced by, nor to be confused
with, instrumental or sensor noise considering that empty-room recordings
did not display the same characteristics. Scale-free dynamics were observed
in a range of frequencies corresponding to 0.1 6 f 6 1.5 Hz. Such time
scales are consistent with currently available data in the literature for the
estimations of H or β [17, 1, 13, 14], and typically characterize infra-slow
neural dynamics [6, 12, 13]. Scale-free temporal dynamics conceptually im-
plies that, within the scaling range, no frequency plays a particular role.
Conversely, all frequencies in that range contribute jointly and in a related
manner to the described dynamics. Such relation is quantified by β, or in a
richer framework which we propose here, by the joint description of H and
M parameters. Scale-free temporal dynamics thus correspond to arrhythmic
signatures confined to infra-slow brain dynamics, which complement oscilla-
tory activity typically seen at higher frequencies (> 2 Hz) [6, 12, 13]. It is
also noteworthy that while the concept of scale-free temporal dynamics theo-
retically implies the absence of any specific time scale, in practice, scale-free
analyses have covered a finite range of frequencies, 0.1 6 f 6 1.5 Hz.
We thus propose that the classical parameter β used to model scale-free
dynamics as a power-law decay of the Fourier spectrum can be efficiently
replaced by the self-similarity parameter H, which models the decay of the
wavelet spectrum. While both exponents are theoretically equivalent and
related (β = 2H − 1), H and wavelet analysis benefit from improved esti-
mation performance (robustness to smooth non-stationarities). The larger
H (or β) - i.e., the steeper the decay of power laws -, the more structured
the temporal dynamics of the time series -i.e., the stronger the long range
dependency quantified by the temporal correlations.

4.2. Multifractality: going beyond self-similarity

In addition to self-similarity, our results demonstrated the existence of
multifractality while participants performed a task and, to a lesser extent,
during resting-state. This specific result underline the richness of infraslow
brain dynamics and of the usefulness of the framework we propose to char-
acterize scale-free brain activity. Specifically, we showed that multifractality
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allows distinguishing time series that share the same global correlation struc-
ture (i.e., the same self-similarity) but different local transient structures
and burstiness over time (i.e., multifractality). In other words, multifrac-
tality quantifies local scale-free temporal dynamics as transient departures
from Gaussianity and support the recent mention that multiplicative pro-
cesses should be taken into account in the assesment of macroscopic brain
activity [12]. Hence, our approach is key to proper scale-free modeling al-
though it remains seldom discussed in the neuroscience literature [43, 24, 27].
Additionally, and from a signal processing perspective, our results suggest
that the multifractal random walk is a likely more accurate modeling than
the fractional Brownian motion to describe spontaneous brain activity in the
infraslow regime (< 2 Hz).

4.3. Anatomical distribution of self-similarity and multifractality in resting-
state activity

The spatial distributions of self-similarity and multifractality quantified
at rest and during task were obtained using the theoretically robust and
practically efficient wavelet-leader multifractal framework [45]. With this
approach, we observed a fronto-occipital gradient of the self-similarity pa-
rameter H in resting-state. This observation was congruent with previous
findings in the literature [36, 14], but also extended them from scalp level
to cortical source estimates. The fronto-occipital gradient corresponded to
larger values of self-similarity in frontal regions and lower values in posterior
regions. This pattern converges with the known distribution of temporal
scales at which neural processing operate: a recent meta-analysis has no-
tably showed a hierarchy of intrinsic time-scales going from slower dynamics
in frontal to faster dynamics in sensory cortices [62]. Comparable temporal
hierarchies have been functionally described in the human visual system [63]
and across brain systems [64]. These temporal hierarchies are functionally
compatible with finer time scales needed for sensory sampling, and integra-
tive processes over longer time scales occurring in frontal cortices for higher
cognitive operations [65, 66, 67]. By indexing the anatomical distribution of
temporal autocorrelation functions, the fronto-occipital gradient in H pro-
vides an alternative means to characterize the hierarchy of temporal scales
in cortex.
Additionally, during resting-state, the presence of weak multifractality locali-
zed in regions of the DMN (fronto-polar, middle prefrontal cortex and the
PCC) was supplemented by multifractal spontaneous brain activity in the
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occipital cortex and along the superior temporal sulcus. This weak multi-
fractality, naturally one order smaller than values of H, is consistent with
well-behaved multifractal synthetic models [45] or values reported for brain
data [43, 68, 24, 69, 19, 27, 70]. The presence of M in DMN and beyond
suggested that multifractality may be a relevant index for brain processing.

4.4. Global decrease of self-similarity from rest to task

By contrasting brain activity during engagement in a task against resting-
state, we observed a general decrease of H over the whole cortex, suggesting
an overall and global shortening of temporal autocorrelation during task
performance. Additionally, the decrease in self-similarity was not uniform
across brain regions, which contributed to the strengthening of the fronto-
occipital gradient. In other words, relatively less short-time dynamics were
found in frontal regions and more short-time dynamics were observed in
posterior regions during task than during rest. The accentuation of the
fronto-occipital gradient in H between rest and task is overall consistent with
faster and richer dynamics deployed for the analysis of sensory information
in cortical regions engaged in the task [71]. This observation also converges
with previous fMRI studies showing a lower regional H during task than
during resting-state [26, 27] and stronger decreases of H with higher cognitive
loads [72]. The most salient differences of self-similarity were observed in
regions involved in the task (occipital cortex, motor cortex, SMA and vlPFC),
i.e. the decrease in H was the largest in these regions. This observation is
in line with the hypothesis that self-similarity may quantify neural excitabi-
lity, with smaller values of self-similarity indexing higher levels of neuronal
excitability in a given brain region [1, 26, 71, 18].

4.5. Local increase of multifractality from rest to task

Although we found a large number of cortical labels showing a significant
presence of multifractality during task, contrasting task against rest revealed
increases of M in only a small number of cortical regions. The relatively
small changes of M in magnitude, the limited sample size (i.e. 24 individ-
uals only) and the potentially large inter-individual variability may explain
why only a fraction of cortical regions were reported as statistically signifi-
cant in the paired t-test. Nevertheless, the presence of the highest M values
in regions (occipito-parietal cortices, visual motion area, pSTS) involved in
the visual motion discrimination task used here [46] suggests that multifrac-
tality may be functionaly relevant to cortical processing. The local changes
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of multifractality would be consistent with the notion that multifractality
may reflect the combination of multiplexed self-similar processes,i.e. the su-
perimposition of several self-similar processes associated with different neural
populations within the same cortical patch (given the limits of the spatial
resolution with MEG). As such, one working hypothesis for multifractality
in brain processes is that it may index the number of neural processes within
a cortical region employed in a given task. This working hypothesis will be
actively investigated.

4.6. Covariation of self-similarity and multifractality from rest to task

We evidence an interesting covariation pattern in self-similarity and mul-
tifractality from rest to task: the MEG brain dynamics evolved from well
structured and long term correlated global temporal dynamics (large H)
with weak burstiness (M ' 0, weak multifractality) at rest, to less struc-
tured global temporal dynamics (lower H, lesser long range dependence, or
more power at the upper bound of the scaling range, i.e., around 1Hz) dur-
ing task performance, showing though much larger transient irregular and
non Gaussian behaviors (larger M , multifractality). Let us emphasize that
this covariation (decrease in H, increase in M) was non trivial and was not
induced by the modeling nor by the analysis we undertook. This covariation
thus constitutes a signature of the changes induced in brain dynamics when
participants engaged in a perceptual discrmination task.

Our tentative explanation for this covariation is the following: the local
decrease of temporal autocorrelation (H) suggests that neural populations
in a given cortical region and at a large temporal scale (lower infra-slow i.e.
' 10 s) tend to operate more independently while, at the same time, the
increase of temporal burstiness (M) in the same region suggests that the
same neural populations may interact at finer temporal scales (higher infra-
slow, i.e. ' 1s). Distinct dynamic modes may thus take place as a function
of task requirements: while neural excitability may be sufficient to detect
the presence/absence of a stimulus in the environment [1, 26, 17], temporal
multiplexing may be required for thorough analysis of sensory inputs. In
other words, temporal multiplexing may occur when a certain level of neural
excitability has been reached.
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5. Conclusions

Relying on the robust and efficient wavelet and wavelet-leader analysis
framework, our present contribution showed that multifractality provides a
fruitful paradigm to complement self-similarity in the modeling of scale-free
temporal dynamics and infraslow macroscopic brain activity. We showed
that spontaneous human brain activity at rest is well characterized by a
a strong self-similarity and weak multifractality, indicating a significantly
globally-structured activity, with long range dependencies. The strength of
this structured activity showed a fronto-occipital gradient. We showed that
performing a task induced a non trivial (negatively correlated) local coupling
of self-similarity and mutifractality with an overall decrease of self-similarity
(yet, strengthening of the fronto-occipital gradient) accompanied by a lo-
cal increase of multifractality in task-relevant brain regions. Overall, this
pattern indicates less structured (or less correlated) temporal dynamics yet
bursty occurences of well-structured local scale-free patterns (not accounted
for by self-similarity but well quantified by multifractality). Altogether, these
observations support the hypothesis that (i) self-similarity, as indexed by pa-
rameter H, inversely reflects neural excitability, with large H corresponding
to lower excitability and vice versa and that (ii) multifractality, indexed by
M , might code for multiplexing of neural processes.

The present analysis of scale-free dynamics in brain temporal dynamics
will be continued by exploring the benefits of using more refined analysis tools
based on p-leaders [73] or on multivariate models, rather than univariate, for
self-similarity [74] and multifractality [75, 70].

References

[1] B. J. He, J. M. Zempel, A. Z. Snyder, M. E. Raichle, The temporal
structures and functional significance of scale-free brain activity, Neuron
66 (3) (2010) 353–369.

[2] M. Breakspear, Dynamic models of large-scale brain activity, Nature
Neuroscience 20 (3) (2017) 340–352.

[3] A. K. Engel, P. Fries, W. Singer, Dynamic predictions: oscillations and
synchrony in top–down processing, Nature Rev Neurosci 2 (10) (2001)
704–716.

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/315853doi: bioRxiv preprint 

https://doi.org/10.1101/315853
http://creativecommons.org/licenses/by-nc-nd/4.0/


[4] F. L. da Silva, EEG and MEG: relevance to neuroscience, Neuron 80 (5)
(2013) 1112–1128.
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