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Abstract

Model approaches to nuclear architecture have traditionally ignored the biophys-

ical consequences of ATP-fueled active processes acting on chromatin. However,

transcription-coupled activity is a source of stochastic forces that are substantially

larger than the Brownian forces present at physiological temperatures. Here, we

describe a first-principles approach to large-scale nuclear architecture in metazoans

that incorporates cell-type-specific active processes. The model predicts the statis-

tics of positional distributions, shapes and overlaps of each chromosome. Our

simulations reproduce common organising principles underlying large-scale nu-

clear architecture across human cell nuclei in interphase. These include the differ-

ential positioning of euchromatin and heterochromatin, the territorial organisation

of chromosomes including both gene-density-based and size-based chromosome

radial positioning schemes, the non-random locations of chromosome territories

and the shape statistics of individual chromosomes. We propose that the biophysi-

cal consequences of the distribution of transcriptional activity across chromosomes

should be central to any chromosome positioning code.

Keywords: Chromatin, human genome, nuclear architecture, active processes, poly-

mer model, transcriptomics, molecular dynamics, Hi-C
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Highlights

• First-principles predictive model for large-scale nuclear architecture incorporat-

ing non-equilibrium activity

• Differential activity and looping patterns underly cell-type-specific features of

such architecture

• Differential positioning of inactive and active X chromosomes an emergent prop-

erty

• Simulations of the model recapitulate many known features of nuclear architec-

ture and predict new ones

Introduction

Chromosomes are not distributed at random within the interphase nucleus, an ob-

servation that is central to our current understanding of large-scale nuclear architecture

in the interphase nuclei of metazoans (Meaburn and Misteli, 2007; Cremer and Cre-

mer, 2010; Bickmore and van Steensel, 2013). Gene rich, more open, early-replicating

euchromatin regions are typically distributed more centrally than gene-poor, relatively

more compact, late-replicating heterochromatin (Cremer and Cremer, 2010). Chro-

mosomes are organised territorially, with each being segmented into relatively more

(A) and less (B) active compartments that are then further subdivided into topolog-

ically associated domains (Lieberman-Aiden et al., 2009; Dixon et al., 2012; Fraser

et al., 2015). In humans, gene-rich chromosome 19, containing a large number of

house-keeping genes, is distributed more centrally across several cell types than the

similarly sized but gene-poor chromosome 18 (Croft et al., 1999; Boyle et al., 2001).
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This observation generalises to a gene-density-based radial positioning schema for all

chromosomes (Takizawa et al., 2008). Gene-rich regions within chromosomes tend to

orient towards the nuclear centre, with expressed alleles often found further from the

nuclear envelope than ones that are not expressed (Takizawa et al., 2008; Therizols

et al., 2014). In some human cell types, chromosomes appear to be positioned by size,

with the centres of mass of smaller chromosomes disposed more centrally than those of

larger ones (Sun et al., 2000; Bolzer et al., 2005; Kölbl et al., 2012). In female cells, the

two X chromosomes are differentially positioned, with the more compact, inactive X-

chromosome found somewhat closer to the nuclear envelope than the active one (Dyer

et al., 1989; Jégu et al., 2017). Actively transcribed chromosomes tend to have rougher,

more elliptical territories than less active ones (Eils et al., 1996; Berezney et al., 2005;

Khalil et al., 2007; Sehgal et al., 2014; Jégu et al., 2017). The probability with which

two loci along individual chromosomes are found in proximity to each other in ligation

assays follows a power-law P(s) ⇠ 1/s↵ with ↵ ' 1 over an approximately 1 - 8 Mb

range, consistent with a fractal globule picture of chromosome structure (Lieberman-

Aiden et al., 2009; Mirny, 2011). Currently, experiments suggest that such organization

is cell-type dependent and that ↵ (1  ↵  1.5) also varies across chromosomes over

a comparable range (Sanborn et al., 2015; Kang et al., 2015).

Most model approaches to nuclear architecture assume a priori that chromosomes

are structured polymers in thermal equilibrium (Cook and Marenduzzo, 2009; Tark-

Dame et al., 2011; Marti-Renom and Mirny, 2011; Heermann et al., 2012; Vasquez

and Bloom, 2014; Imakaev et al., 2015). Some models ignore thermal fluctuations

altogether in favour of incorporating loop structure as derived from the Hi-C data,

while also requiring compatibility with physical restrictions on the overlaps of chromo-

somes (Imakaev et al., 2015; Amitai and Holcman, 2017; Tjong et al., 2016). Others

account for the domain structure of individual chromosomes (Odenheimer et al., 2005;

Jost et al., 2014; Jost et al., 2017; Chiariello et al., 2015; Haddad et al., 2017; Ghosh
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and Jost, 2017; Zhang and Wolynes, 2017; Tiana et al., 2016; Di Pierro et al., 2016;

Di Pierro et al., 2017). As summarized above, large-scale nuclear architecture exhibits

generic features that are largely common across cell types. These should severely con-

strain potential models (Bickmore, 2013). However, set against this stringent require-

ment, virtually all prior models for such architecture are incomplete: (i) these models

fail to predict gene-density based or size-based positioning schemes; (ii) no simulations

reproduce the chromosome-specific distribution functions for gene density or chromo-

some centre-of-mass that FISH-based experiments provide; (iii) the differential posi-

tioning of the active and inactive X chromosomes cannot be obtained using any model

proposed so far and (iv), the spatial separation of heterochromatin and euchromatin,

seen in interphase cell nuclei across multiple cell types, has not been reproduced in

model calculations in which this information is not incorporated a priori. Understand-

ing these discrepancies remains an outstanding problem.

All molecular machinery associated with chromatin remodelling, transcription and

DNA repair is energy-consuming, relying on the hydrolysis of NTP molecules (Flaus

and Owen-Hughes, 2011). Recently, we pointed out that this leads to the localised,

irreversible consumption of energy at the molecular scale (Ganai et al., 2014). This

energy is transduced, through chemo-mechanical “active” processes, into mechanical

work (Weber et al., 2012; Zidovska et al., 2013; Chu et al., 2017). Such processes can

be modelled via recently developed biophysical theories of “active matter” (Menon,

2010; Prost et al., 2015; Marchetti et al., 2013; Needleman and Dogic, 2017). We

argued that a description in terms of inhomogeneous, stochastic forces acting on chro-

matin, equivalent to an effective temperature reflecting local levels of activity, pro-

vided the right biophysical setting (Fodor et al., 2015; Hameed et al., 2012). De-

scribing each chromosome as a polymer composed of consecutive monomers, each

representing a suitably averaged section of chromatin, different monomers can then

be expected to experience different effective temperatures correlating to local active

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/315812doi: bioRxiv preprint 

https://doi.org/10.1101/315812


processes (Ganai et al., 2014; Agrawal et al., 2017; Wang and Wolynes, 2011). Here,

extending these ideas, we propose an ab initio biophysical approach to predicting both

cell-type-specific and cell-type independent features of large-scale nuclear architec-

ture, using data from RNA-seq experiments as a proxy for activity and a Hi-C-derived

description of chromosome looping in each cell type. The model provides a unified

understanding of a number of common features of large-scale nuclear architecture ob-

served across diverse cell-types.

Results and Discussion

We model human chromosomes in diploid female (XX) cells within interphase, de-

scribing each as a polymer made up of monomers linked along a chain. These polymers

are confined within a spherical shell that models the nuclear envelope. Each monomer

represents a 1Mb section of chromatin (Kölbl et al., 2012; Jackson and Pombo, 1998).

Our model chromosomes are dynamic and explore different configurations, based on

the forces they experience. Such forces arise from the dense, non-equilibrium and

fluctuating environment of the cell nucleoplasm, the interactions of chromosomes and

chromosome-nuclear envelope interactions. A number of simulation snapshots of both

homologs of chromosomes 18 and 19, against a background of all other chromosomes

represented in grey-scale, are shown in Figure 1A. From such snapshots, we compute

a variety of statistical properties of chromosomes accessed in experiments (Figure 1B

- G).

We work with three models that associate local levels of non-equilibrium transcrip-

tional activity to an effective temperature. In the gene density model, proposed in our

earlier work, we chose the top 5% of monomers by gene density, assigning them an

active temperature in excess of the physiological temperature Tph (Ganai et al., 2014).

The gene density model yields fairly accurate representations of the measured distribu-

tion function of DNA density S(R) in GM12878 cells, leading to very different distri-
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Figure 1: Model schematics and active temperature assignments
A. Several simulated configurations of 23 pairs of chromosomes within a spherical
nucleus, with pairs of chromosomes 18 and 19 highlighted in the background of other
chromosomes, shown in grey scale. Each bead represents a 1 Mb section on each
chromosome. We average all calculated quantities, such as distribution functions, over
a large number of such configurations in steady state.
B. Schematic of the DNA distribution S(R) of each chromosome, plotted against the
radial coordinate R and averaged over many nuclei in our simulations.
C. Schematic of the centre of mass distribution of each chromosome, SCM (R), plotted
against the radial coordinate R and computed from an average over many simulated
nuclei.
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Figure 1 continued: D. Schematic of the contact probability P(s) between beads of
chromosomes, for two monomers separated by an internal (genomic) distance s along
the polymer.
E. The shapes of individual chromosome territories extracted from simulation con-
figurations. Such shapes are used to compute a number of geometrical properties of
chromosome territories, e.g. their volume, surface area, asphericity and other shape
parameters.
F. Typical image of chromosome territories computed in our simulations, with each
chromosome colored a different color, illustrating the emergence of territoriality.
G. Schematic illustrating a 2D projection of a three-dimensional chromosome territory,
projected along the XY , Y Z, and XZ planes. The ellipticity and regularity parame-
ters can be computed from such 2d projections, and compared to 2D FISH data.
H. The logarithm of gene expression values for each 1Mb monomer, plotted in order
of increasing gene expression. These are computed from transcriptome data. Data are
shown for 5 cell types as indicated in the title to each sub-figure. The horizontal lines
drawn motivate our assignment of effective temperatures as discussed in the text, and
correspond to our assignment of activity in proportion to gene expression. The last
sub-figure plots these data together, illustrating that the shape of the activity profile is
largely similar, even though individual monomers in different cell types can be classi-
fied differently on the basis of their activity.
I. Assignment of effective temperature to each monomer for the combined model. The
red monomers are simulated at T = 1, yellow at T = 6, yellow-green at T = 7, green
at T = 8, cyan at T = 9, blue at T = 10, indigo at T = 11 and violet at T = 12 times
the physiological temperature Tph.
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butions for the chromosome pairs 18 and 19 vis a vis. chromosomes 12 and 20, as seen

experimentally (Ganai et al., 2014). However, such a model is insensitive to cell-type-

dependent features of nuclear architecture (Bickmore, 2013). Accordingly, in the gene

expression model, we focused on transcriptomes across a number of model systems,

exploring varied ways of associating transcript levels to effective temperatures. Fig-

ure 1H shows RNA-seq derived FPKM values summed over 1Mb intervals, indexing

transcript levels, across GM12878, HMEC, HUVEC, IMR90 and NHEK cell types.

Their distribution follows a Gumbel form (Figure S1). The values in Figure 1H are

plotted in increasing order of expression on a logarithmic scale. We chose structured

effective temperature assignments that reflect the overall shape of this curve. Surpris-

ingly, the gene expression model did not yield appreciably better results than the much

simpler gene density model. To address this, we noted that transcript levels need not

directly correlate to activity, since FPKM values are controlled by the rate at which

transcripts are both produced and degraded, because non-coding transcription is not

fully captured in this version of our model, and because our description averages over

the typical time-scales associated with transcriptional “bursts” (Fraser and Bickmore,

2007; Chubb et al., 2006). We felt that a model which included features of both gene

density and gene expression models should provide a more accurate representation of

inhomogeneous cell-type-dependent activity (Murmann et al., 2005). Accordingly, we

decided to assign monomers with a gene density above a present cutoff, the maximum

active temperatures, as in the earlier gene-density model. All the results presented in

this paper are for this combined model. Figure 1I shows temperature assignments,

within the combined model, for 5 cell types. Such inhomogeneous (effective) temper-

ature assignments, correlating both to gene density and transcription levels averaged

over consecutive 1Mb sections of each chromosome, lie at the core of our work.

Inhomogeneous activity underlies large-scale nuclear architecture
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Figure 2A shows an example of simulation-derived chromosome territories for the

GM12878 cell type, with each chromosome coloured a different colour. Simulations

recover such territorial organization robustly, illustrating how territoriality is an emer-

gent consequence of our model. Figure 2B shows a cut-away profile showing the aver-

aged spatial distribution of active (white, T/Tph > 1) and inactive (black, T/Tph = 1)

monomers in the GM12878 cell type, extracted from snapshots of a typical configura-

tion. Low gene density monomers, shown in black and representing heterochromatin,

are enriched towards the boundaries of the nucleus, whereas high gene-density euchro-

matin regions, shown in white, preferentially occupy the bulk. In Figure 2C, we show

a cutaway profile of the time-averaged effective temperature within our simulated nu-

cleus, an indicator of local activity in each spherical shell centred around the origin. In

Figure 2D we show the time-averaged gene density across spherical shells, in a similar

visualisation. Gene densities, as well as activity, increase towards the nuclear centre.

Our biophysical description of chromosomes and their structuring, given our coarse-

graining to the 1Mb scale, reproduces the different spatial distributions of euchromatin

and heterochromatin, a feature seen across multiple cell types. A central consequence

of our model is that gene densities should correlate to a larger strength of mechanical

fluctuations i.e. activity, and that the distribution of both these quantities should be

attenuated towards the boundaries of the nucleus. This is an emergent property, arising

from the combination of differential activity and confinement, that could not have been

inferred from how the model was constructed.

The model predicts positional distributions of individual chromosomes

Chromosome-specific distribution functions S(R) are obtained experimentally us-

ing confocal slices of FISH images from an ensemble of fixed nuclei. Our computed

S(R) for chromosomes 18 and 19 in the 5 cell types we examine are shown in Figure

3A. All data are averaged over the two autosomal homologs, as their positioning was
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Figure 2: Model predictions for large-scale features of nuclear architecture
A. Chromosome territories computed in our simulations, with each chromosome col-
ored a different color. Note the tendency of each chromosome to overlap relatively
little, visually representing territoriality.
B. A cut-away sphere representation of the average spatial distribution of euchromatin
(or active white) and heterochromatin (or inactive black) monomers as computed for
the GM12878 cell type. Here, the active monomers are defined as those having an ef-
fective temperature in excess of the physiological one. Heterochromatin is found more
peripherally compared to euchromatin which is located towards the nuclear interior.
C. A cutaway sphere representation of average effective temperatures within the sim-
ulated nucleus, as computed for the GM12878 cell type. This illustrates the larger
effective temperatures, indicating enhanced activity, obtained towards the centre of the
nucleus, in comparison to a lower effective temperature in the nuclear periphery.
D. A cutaway sphere representation of the average gene density within the simulated
nucleus, computed for the GM12878 cell type. This illustrates the excess in gene
density seen towards the centre of the nucleus in comparison to the gene density in
the nuclear periphery. This separation of gene-dense and gene-poor 1Mb segments of
chromatin correlates to the distinction in the spatial positioning of euchromatin and
heterochromatin.

found to be equivalent. For the GM12878 cell type, we compare our results with exper-

imental results extracted from Ref. (Kreth et al., 2004). S(R) for chromosomes 18 and

19 exhibit well separated peaks, a feature that holds across cell types. For comparison,

the R2 rise of S(R) towards the nuclear envelope, expected for uniformly distributed

chromosomes, is shown in each subfigure. Figure S2 shows our calculated S(R) for

all chromosomes in the 5 cell types. Figure S3 shows S(R) for the GM18278 cell type

where we compare the predictions of the gene expression model and the combined

model. In Figure S4 we show how S(R) for the GM18278 cell type varies when we

include or exclude looping and when we include or exclude activity. The predictions of

the different models differ substantially for both the gene-rich chromosomes as well as
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the smallest chromosomes. In general, both looping and differential activity are needed

to best represent available experimental data.

Figure 3B shows S(R) for chromosomes 12 and 20. For the GM12878 cell type, we

compare our results with results from Ref. (Kreth et al., 2004). Note that simulation

data for the different cell types all yield similar plots for S(R), with the exception of

the GM12878 cell type where, although the simulation and experimental data peak at

different locations, the overall shape of the curve is rendered accurately, including the

relative shift in peak positions. Figure 3C shows the distribution of centres of mass of

specified chromosomes, SCM (R), for chromosomes 18 and 19. For GM12878 cells,

we compare our results with experimental data from Ref. (Kalhor et al., 2011). The

centre of mass distributions are captured well, especially for chromosome 19. The

broader distribution of SCM (R) for chromosome 18 is also in agreement with the left

tail of the experimental data, although the experiments show a weaker and more out-

ward shifted peak than the simulation prediction. Broadly, differences in positioning of

chromosomes across cell types are more apparent in SCM (R) compared to S(R). Figure

S5 shows SCM (R) for all cell types across all chromosomes. We compare the predic-

tions for SCM (R) in the gene expression and combined models in Figure S6. Results

for SCM (R) with different combinations of activity and loops are shown in Figure S7.

Overall, apart from the gene rich chromosomes, we do not see a substantial difference

between the predictions of the gene expression and combined models. The largest vari-

ability across cell types is seen in chromosomes 1, 4, 7, 11, 12, 16, 21 and 22. SCM (R)

for gene poor chromosomes are sharply peaked while gene rich chromosomes have

broader distributions across all cell types.

Figure 3D shows the partial distribution functions S(R) for inactive and active

monomers in the GM12878 cell type for chromosomes 1, 13, 19 and 21. The distribu-

tion for active monomers is shifted towards the nuclear centre whereas for the inactive

monomers, it is seen to be shifted towards the nuclear periphery. These results relate to
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Figure 3: Predicted radial distribution functions S(R) compared to experimental
data
A. Distribution of monomer density S(R), reflecting the local density of DNA, for chro-
mosomes 18 and 19 (red and blue lines respectively) across 5 cell types as indicated
in the titles of each sub-figure. Experimental data obtained from Ref. (Kreth et al.,
2004) for the GM12878 cell type is plotted together with the simulation predictions,
(red ovals: Chr 18, blue crosses: Chr 19). If chromosomes are distributed randomly
across the nucleus, S(R) ⇠ R2 is expected, as shown with magenta lines.
B. Distribution of the density of monomers, reflecting the local density of DNA, for
Chr 12 and 20 (blue and red lines respectively) across 5 cell types as indicated in the
titles of each sub-figure. Experimental data obtained from Ref (Kreth et al., 2004) for
the GM12878 cell type is plotted (red ovals: Chr 18, blue crosses: Chr 19), together
with the simulation prediction.
C. Distribution of chromosome centres of mass for Chr 18 and 19 (red and blue lines
respectively) shown for 5 cell types, as indicated in the titles of each sub-figure. Ex-
perimental data obtained from Ref. (Kalhor et al., 2011) for the GM12878 cell type are
plotted (red ovals: Chr 18, blue crosses: Chr 19) together with the simulation predic-
tion.
D. Density distribution S(R) of active (red) and inactive (blue) monomers for the
GM12878 cell type. These are plotted for 4 chromosomes largest Chr1, smallest Chr
21, gene poor Chr 13 and gene rich Chr 19. The distribution of active monomers is
more interior with respect to inactive monomers. Here, inactive monomers refer to
those monomers assigned a temperature of T = 1; all other monomers are active.
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the experimental observation that active alleles are positioned more towards the interior

of the nucleus, an effect strong enough to be apparent in our simulations (Fedorova and

Zink, 2009; Therizols et al., 2014).

We conclude that there are subtle differences in the gene density distribution func-

tion S(R) as well as in the mean centre-of-mass distribution SCM (R) of chromosomes

across cell types. These originate both in differences in activity profiles across different

cell types as well as variations in their loop content.

Model predictions for size- and gene-density-dependent chromosome positioning

Figures 4A-4D show our computation of the mean centre of mass of each chro-

mosome within the combined model for the cell types GM12878 and IMR90. Also

shown are fits to straight lines as a function of chromosome size (Figures 4A and 4C)

and as a function of gene density (Figures 4B and 4D). The fit against chromosome

size excludes both the two smallest (21 and 22) and the 7 largest (1, 2, 3, 4, 5, 6, 7)

chromosomes. We also show, in the same figure, experimental data for the GM12878

cell type extracted from Figure 6 of Ref. (Kalhor et al., 2011). These data are shown

as filled circles in (Figures 4A and 4B) which represents our predictions for the same

cell type, and as open circles in (Figures 4C and 4D), where their locations are only

indicative.

The simulations reproduce most of the experimental systematics. The positions of

virtually all chromosomes, with the exception of chromosome 21, lie within the error

bars of the experimental data. Note that the experimental and simulation data coincide

for some chromosomes. The positions of chromosomes 7, 9, 13, 17, 18, 19 and 20 are

very close to the experimental data, reproducing the unusual non-monotonicity in their

positions.

If the smallest and largest chromosomes are excluded, an approximate size-dependence

of chromosome positions relative to the nuclear centre is predicted. However, the ac-
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Figure 4: Predicted chromosome centre-of-mass locations compared to experimen-
tal data
A. Predictions for the mean centre-of-mass location for each chromosome, for the
GM12878 cell type and as a function of chromosome size, compared to experimental
data of GM12878 extracted from Ref. (Kalhor et al., 2011). Simulation and experimen-
tal points are shown using red and blue filled circles respectively, together with error
bars, which for the simulations are calculated from the second moment. The relative
radial position 0 and 1 represent the centre and periphery of the nucleus. Chromosome
numbers are indicated above or below each error-bar. The simulation points, after drop-
ping chromosomes 1,2,3,4,5,6,7, 21 and 22 (see text), are fitted to a straight line whose
slope is indicated in the bottom of the sub-figure.
B. Predictions for the mean centre-of-mass location for each chromosome, for the
GM12878 cell type, compared to experimental data extracted from Ref. (Kalhor et al.,
2011), and plotted against the function of chromosome gene density. The simulation
points are fitted to a straight line whose slope and intercept are indicated in the bottom
of the sub-figure.
C. Predictions for the mean centre-of-mass location for each chromosome, computed
for the IMR90 cell type, as a function of chromosome size, with experimental data for
the GM12878 cell type cf. Ref. (Kalhor et al., 2011) shown only for illustrative pur-
poses. Simulation and experimental points are shown together using red and blue ovals
respectively, along with simulation error bars only. Simulation points, excluding chro-
mosomes 1,2,3,4,5,6,7, 21 and 22, are fitted to a straight line whose slope and intercept
are provided in the top of the sub-figure.
D. Predictions for the mean centre-of-mass location for each chromosome, for the
IMR90 cell type, with experimental data for the GM12878 cell type cf. Ref. (Kalhor
et al., 2011) shown only for illustrative purposes, plotted against chromosome gene
density. All the simulation points are fitted to a straight line whose slope and intercept
are provided in the bottom of the sub-figure.
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tivity associated with each individual chromosome also plays a role in determining its

position. The mean centre-of-mass locations for chromosomes in different cell types

are similar but not identical. Chromosomes 18 and 19, although similarly sized, have

very different positions relative to the nuclear centre, as also seen in the data of Fig-

ures 3A and 3C. Note that chromosomes 21 and 22 in Figure 4A are positioned more

towards the exterior of the nucleus in the simulations than in the experimental data.

When chromosome centres-of-mass are plotted against gene densities the slope of the

straight line is negative in all cell types (Figures 4A and S8). Thus, depending on the

region that is fit, one can have reasonable fits to both size dependence and gene density

dependence of chromosome centres of mass relative to the nuclear centre. The fact

that the smallest chromosomes, Chr 21 and 22, lie outside of the fit to chromosome

size may reflect aspects of their activity that our method does not resolve, as well as

variations in loop assignments.

Figure S9 shows the mean centre of mass position as computed for the GM12878

cell type, across a variety of simulation conditions, including for the gene density

model as well as for the combined model with various choices for the incorporation

of loops and activity. Figure S9A shows results for the gene expression model. In Fig-

ure S9B we show results for the case in which we allow differential activity but ignore

looping. In Figure S9C we show results for the case in which differential activity is

absent but looping, as prescribed by the Hi-C data, is retained. All monomers then

experience the same effective temperature, which we take to be the thermodynamic

temperature. Finally, in Figure S9Ds, we show results for the case where looping is

absent as well, so that this case corresponds to the case of chromosomes without loops

at thermal equilibrium. From these, we conclude that in the absence of both activity

and looping, chromosome positioning is only weakly structured. Our simulations indi-

cate that chromosome positioning is very weakly size-dependent or even independent

of size in all conditions where activity is switched off. Allowing for loops induces
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some changes in positioning but these results do not match with experiment. Allow-

ing for activity, but ignoring loops, leads to a differential positioning of chromosomes

but, if anything, the size dependence of chromosome positions is opposite to that seen

in the data. Only models which incorporate both activity and looping are successful

in reproducing both the approximate size dependence of radial positioning, while also

accounting for those specific cases which fall outside this general trend, such as chro-

mosome 19.

The model predicts the centre-of-mass positions of most chromosomes with rea-

sonable accuracy, well within the error bars on the measurements for virtually all chro-

mosomes. Finally, the fact that a number of broad features of the experiments are

reproduced in the model suggests that the large-scale structure and positioning of in-

dividual chromosomes are principally determined by inhomogeneous activity across

chromosomes, the presence of loops and confinement.

Shapes and statistical features of individual chromosome territories compare well

to experiments

Figures 5A and 5B show territories for the two autosomes corresponding to chro-

mosomes 12, 20, 18 and 19. In Figure 5C, we show comparisons between 2d FISH

data for chromosome regularity and ellipticity on WI38 cells, for which data is avail-

able (Sehgal et al., 2014), to predictions from our simulations for the GM12878 and

IMR90 cell types. Both IMR90 and WI387 are lung fibroblast cell lines. Chromosomes

are indexed, along the x-axis, in order of their gene density. The simulation results and

experimental data appear to follow each other, with the simulations finding the same

dip and subsequent rise of both ellipticity and regularity around chromosome 22. Both

ellipticity and regularity peak for chromosome 11, a feature both of the simulations

and of the experiments. The ellipticity and regularity also appear to decrease weakly

with increasing gene density, although individual chromosomes may deviate from this
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general trend (Figure 5C).

Figures 5D and 5E show the summed volume overlap (SVo), sometimes referred to

as the intermingling, and used to understand chromosome-chromosome interactions in

trans, of different chromosomes in our model. The ordering of chromosomes according

to their gene density per chromosome as shown on the x-axis is the same as the ordering

used for the 2d projected data in Figure 5C. The largest overlap is for the most gene

rich chromosome. There are perceptible differences in the overlaps of chromosomes in

the GM12878 and the IMR90 cell types.

In summary, the simulations reproduce broad features of individual chromosome

territories. More active chromosomes appear to deviate more from a spherical shape

and tend to have rougher territories (Berezney et al., 2005). The summed volume over-

lap appears to increase approximately linearly with chromosome gene density, with the

Xi being an exception to this trend. Activity and looping tend to have countervailing

trends, since activity expands chromosome territories while looping contracts them.

Simulations reproduce the differential positioning of the active and inactive X

chromosome

Experiments investigating the positioning of the active and inactive homologs of the

X chromosomes within interphase have consistently found that they are differentially

positioned. The inactive X chromosome (the heterochromatic Barr body) is located

most often towards the periphery of the nucleus (Jégu et al., 2017). This contrasts to

the more central disposition of the active X chromosome Xa, which is larger and more

extensively transcribed than the more compact Xi. We thus specifically investigated

the positioning and other structure properties of the Xa and Xi chromosomes, since we

expected that they would provide an example of where our methods, which emphasise

the role and importance of activity, would yield predictions that other models could

not.
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Figure 5: Structural properties of individual simulated chromosomes in our model
A. Snapshot of simulated configurations of both homologs of chromosomes 12 and 20.
Each chromosome is colored differently so that they can be separately visualized.
B. Snapshot of simulated configurations of both homologs of chromosomes 18 and 19.
Each chromosome is colored differently so that they can be separately visualized.
C. Ellipticity and Regularity for each chromosome as predicted by the model and
obtained from simulations representing the GM12878 (blue) and IMR90(black) cell
types. These are compared to experimental data (red oval symbols) from 2d FISH ex-
periments Ref. (Sehgal et al., 2014) for a cell type closely related to the IMR90 cell
type. Ellipticity values of 1 represent a perfect elliptical chromosome and regularity
values of 1 refer to a perfectly regular chromosome, without roughness. The x axis is
plotted in order of increasing gene density.
D-E. Summed volume overlap (SVo) of chromosomes in GM12878 and IMR90 cell
types, with the x-axis plotted in order of increasing gene density per chromosome.
There is a weak increase with gene density in both cell types, shown as the solid line,
representing the best linear fit to the data. The IMR90 cell shares more volume over-
laps with other chromosomes compared to the GM12878 cell type. The (self-) volume
overlap (Vo) for the same chromosome is taken to be 0.
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Figure 6: Predicted distributions and structural features of the inactive and active
X chromosomes
A. Snapshot of a typical configuration of the active Xa and inactive Xi chromosome
obtained from simulations.
B Monomer density distribution S(R) vs R, for the Xi and Xa chromosome as obtained
from simulations across 5 cell types, named in the header to each subfigure. The inac-
tive X chromosome, Xi, is shown in red and the active X chromosome, Xa, is shown in
blue.
C. Distribution of the location of the centre-of-mass of the Xi and Xa chromosome as
obtained from simulations across 5 cell types, named in the header to each subfigure.
The inactive X chromosome, Xi, is shown in red and the active X chromosome, Xa, is
shown in blue. 20
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Figure 6 continued: D. Contact probability P(s) vs s, for the active (top row) and inac-
tive (bottom row) X chromosomes, computed for 5 cell types within our simulations.
The active X chromosome exhibits a reasonable power-law decay of P(s) with an ex-
ponent ↵ between 1.1 and 1.25. The inactive X chromosome shows a reduced region
of power-law scaling, with an exponent across this reduced range which is between
1.5 and 1.7. Red lines show the power-law fit in both cases, with the fit parameters
indicated within each sub-figure.

Figure 6A shows a simulation snapshot of active and inactive X chromosome terri-

tories. Figure 6B shows our predictions for how these chromosomes are differentially

positioned across all the cell types we study, through S(R). The inactive chromosome

has an S(R) which is sharply peaked close to the nuclear periphery. Although the ac-

tive X chromosome has a peak at a comparable location, its distribution has a long tail

towards the nuclear centre. Figure 6C shows the calculated distribution of the centre of

mass SCM (R) for these multiple cell types, verifying this essential distinction.

We can compute the contact probabilities P(s) by applying a cutoff to the monomer-

monomer distance distributions obtained in our simulation, averaging across a large

number of simulation configurations. Figure 6D shows our computation of the contact

probability P(s) for both Xa and Xi, across the 5 cell types we study. The cell type is

shown at the top of each sub-figure. The active X chromosome shows more prominent

power-law scaling of the contact probability than the inactive X chromosome, where

any fit to a power law can only be over a far shorter genomic scale. Exponents for the

power-law scaling of P(s) range from 1.11 - 1.24, with the smallest values obtained

for the GM12878 cell type. For the inactive X chromosome, the power-law exponent

obtained over a limited range varies from 1.52 - 1.72, significantly different from the

range of ↵ values obtained in the active case. The variation in the scaling of P(s)

between Xa and Xi should be accessible experimentally.

Structural features of individual chromosomes are well described in our model
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Figure 7A exhibits our results for contact probability P(s) of chromosome 1, across

the five different cell types we study here. The data for small s show a power-law

P(s) ⇠ 1/s↵ behaviour over approximately a decade. The exponent is smallest for the

GM12878 cell type, where our fits yield ↵ ⇡ 1.06. This value is very close to that

obtained experimentally across the same region of genomic separation (Lieberman-

Aiden et al., 2009; Sanborn et al., 2015). Values of ↵ for all other cell types are

consistently larger, with the exception of the IMR90 cell type. Overall, fitting ↵ directly

to the data across cell types yields 0.97  ↵  1.27. We see P (s) ⇠ 1/s↵ with ↵ ' 1

over a 1 � 10 Mb range, as predicted by the fractal globule model, even though our

model lacks virtually all the requisite ingredients for this model. All we require is that

activity is differentially distributed along the chromosome, that we account for looping

as drawn from the Hi-C data, and that we account for crowding by other chromosomes,

all features that previous work elides. Figures S10 and S11 shows plots of P(s) for all

chromosomes computed for the GM12878 and IMR90 cell type. This P(s), for each

chromosome, is best described within the 1 - 10 Mb range in terms of a wide range of

exponents in the range 0.97  ↵  1.40.

Our model specification can be relaxed in several ways, so that we can examine

and quantify independent contributions to this behaviour. For the specific case of chro-

mosome 1, we have also investigated the predictions of the gene expression model, as

shown in Figure S12A, as well as the effects of varying both activity and looping in

the combined model (Figures S12B-S12D). Both the gene expression and combined

models exhibit values of ↵ which lie close to the experimental data, which sees values

of ↵ close to 1. In Figures S12B-S12D, we show results for the combined model with

varying combinations of activity and looping. In the absence of both activity and loops,

the exponent is close to the ↵ = 1.5 expected for simple polymers. Adding loops or

activity reduces this exponent. However, only the combined model, which includes

both activity and looping obtains ↵ values closest to those in experiments.
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Figure 7: Predicted chromosome contact probabilities, distance maps and contact
maps
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Figure 7 continued: A. Contact probability P(s) as a function of genomic distance for
Chr 1, computed across a range of 1 - 15 MB and plotted for 5 different cell types. Our
data is plotted with blue dots displayed with error-bars. Depending on the region that
is fit, a power law scaling is obtained with an exponent between roughly 1.17 and 1.22;
these fits are shown with red colors.
B. Calculated average values of the prolateness parameter (⌃) and the asphericity
parameter (�) for the GM12878 cell type. Larger (smaller) chromosomes have
smaller(larger) values of ⌃ and �, implying that larger chromosomes are more close to
spherical, while smaller chromosomes prefer a more prolate, rod-like shape. The data
suggests that values of ⌃ and � for Chr 1, 21 and Xi take more extremal values than
for the other chromosomes, as shown by the ellipse drawn together with the data.
C. Heatmap of mean distances between monomers, the distance map, in which chro-
mosomes are ordered by their gene density, shown for the GM12878 cell type.
D. Heatmap of mean distances between monomers, the distance map, in which chro-
mosomes are ordered by their gene density, shown for the IMR90 cell type.
E-F. Heatmap of the distance matrix for chromosome 1, expanded out from Figures 7C
and 7D. The locations of the permanent loops inferred from the Hi-C data are plotted
in black. Individual monomers at T = 6 and 7  T  12 are shown in green and black,
adjacent to the X and Y axis, respectively.
G-H. Contact map inferred from the distance matrix for chromosome 1, (Figures 7C
and 7D). The locations of the permanent loops inferred from the Hi-C data are plotted
in black. Individual monomers at T = 6 and 7  T  12 are shown in green and black,
adjacent to the X and Y axis, respectively.
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In Figure 7B, we show the spread of the asphericity parameter � and the shape

parameter ⌃, across chromosomes in the GM12878 cell type. The simulations yield a

linear relationship between � and ⌃. Larger chromosomes have smaller values of �

and ⌃. Thus, an outcome of our model is that larger chromosomes will tend to be more

spherical. The regularity and ellipticity indices calculated for the 2-d projections are in

reasonable agreement with experimental trends (Figure 5C). However, we predict that

the asphericity and prolateness of the Xi chromosome should provide an exception to

the general trend for other chromosomes. We find that the data appears to fall into two

classes, one a more compact set corresponding to all chromosomes with the exception

of Chr 1, 21 and Xi, contained within an elliptical domain as shown in Figure 7B. Val-

ues of � and ⌃ for these special three chromosomes appear to be somewhat displaced

from the locations for the other chromosomes, falling approximately onto the periph-

ery of a larger ellipse. We show similar plots for other cell types in Figure S13. In the

absence of activity, both if loops are present or absent, the � and ⌃ values for these

chromosomes falls within the inner elliptical region across the 5 cell types we consider

(Figure S14).

Figure 7C shows a heat map of monomer distances of chromosomes, indexed in

increasing order of gene density for the GM12878 cell type. A similar plot is shown

for the IMR90 cell type in Figure 7D. One feature of the data is that the more active

chromosomes show smaller values of inter-chromosomal distance, likely reflecting the

fact that more active regions are enriched towards the nuclear centre. In Figures 7E

and 7F, we show the enlarged distance maps for chromosome 1. Applying a cutoff

to such data, we can derive the likelihood of contacts arising from intra-chromosomal

interactions, yielding P(s). Solid lines outside the figure body indicate those perma-

nent attachments between different monomers that the Hi-C data provides. Note that

regions connected by such loops exhibit a larger overlap. Figures 7G and 7H shows

the contact maps inferred after applying a cutoff to the corresponding distance map.
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The borders of the axes show, in black and green, the active temperatures associated

to specific monomers belonging to those chromosomes. The black colour refers to the

most active monomers, with an effective temperature of 12 in units of the physiological

temperatures whereas the green colour shows monomers with an effective temperature

in the range 6� 11. Monomers with a lower effective temperature are not shown. Re-

gions with the same high effective temperature appear to contact each other more, but

these are further modulated by the presence of internal loops. Note the presence of a

dark banded region towards the centre of chromosome 1, associated to a large inactive

region on this chromosome. This is a prominent feature of the experimental data, also

seen in other cell types (Rao et al., 2014). We display similar plots for other cell types

in Figure S15.

To summarise, our model yields structural information for chromosome structures

and shapes that are broadly in agreement with available data. Our simulated distance

maps lack the fine detail of distance maps computed in Hi-C experiments, which pro-

vide data for contacts at the smaller scales of 10 - 100 kB, but nevertheless are relevant

to experiments that probe large-scale structuring. Our computed P(s) contains about a

decade or so of power-law decays, with exponents that are comparable to those seen in

experiments. Our model-based predictions for trends in the asphericity and prolateness

of chromosomes with chromosome size and gene density are testable.

Conclusions

Model descriptions of chromosomes must bridge multiple scales, ranging from mi-

croscopic length-scales of a few angstroms to scales of microns, of order the nuclear

size. For now, brute-force atomistic simulations of the 23 pairs of chromosomes in

human nuclei contained within the densely crowded, fluid and confined environment

of the nucleoplasm are impossible. They are likely to remain so at least for the foresee-

able future. Understanding how microscopic descriptions connect to macroscopic ones
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thus requires intuition for the processes that act to couple these scales, so that model

building, which is as much about what to leave out as it is about what to leave in, can

proceed.

The model described in this paper stresses a specific biophysical effect, ignored

in previous work, of relevance to the modelling of chromosomes in living cells. We

began by emphasising the relevance of non-equilibrium effects arising from local tran-

scriptional activity for descriptions of nuclear architecture (Chu et al., 2017; Almas-

salha et al., 2017). We proposed that the intensity of active processes should increase

with increased transcription levels. We mapped a reasonable measure of local tran-

scriptional activity, inferred from combining population-level measures of local RNA-

output with estimates of the local gene density, into an effective temperature seen by

each monomeric unit in our polymer model of chromosomes. We then performed simu-

lations of these confined polymers, with properties chosen to reflect generic biophysical

aspects of chromosomes. The monomers in our simulation represented 1Mb sections

of chromosomes, although we could have defined our model at the smaller scales of

0.1 or even 0.01 Mb. However, the averaging inherent in summing transcriptional out-

put over a 1Mb scale renders the model relatively less sensitive to errors and noise in

this input. Further, the 1Mb scale is believed to be an appropriate building block for

chromosome territories. A more detailed and explicit model for non-equilibrium activ-

ity and its consequences for an active temperature description would be useful, but the

form such a model ought to take is presently unclear and best left to more extensive

investigations. Irrespective of potential quantitative improvements on the model front,

the broad trends we describe here should be largely robust.

We made a number of other modelling choices. First, we ignored the important

role of lamin proteins in anchoring specific lamin-associated domains (LADS) to the

nuclear lamina, as well as the interactions of specific gene loci with nuclear pore com-

plexes (Mattout et al., 2015). While these are important omissions, they can at least
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be qualitatively justified by the biophysical intuition that the activity-based physical

segregation of chromosomes is a bulk or “volume” effect that should dominate, at the

simplest level of description, over “surface” effects arising from interactions with the

nuclear envelope. Thus, modelling the effects of interactions of LADS with the nu-

clear lamina by introducing weak monomer-specific interactions with the inner surface

of the confining sphere in our simulations might be expected to modify the results we

present here for specific chromosomes, but hopefully in a controllable manner. Second,

we ignored nucleoli, formed around nucleolus organizer regions containing multiple

copies of rRNA genes, with such regions located on the short arms of the acrocentric

chromosomes 13,14,15, 21 and 22 (Németh and Längst, 2011). We can account at least

qualitatively for the presence of the nucleolus, a relatively large and dense nuclear land-

mark, by excluding a pre-decided sub-volume of space within the simulated nucleus

from being occupied by other chromosomes and adding a weak attractive attraction

that favours association to monomers associated to the p-arms of the acrocentric chro-

mosomes. Third, we simulated the nucleus as a spherical shell containing our model

chromosomes, although nuclear shapes exhibit considerable variability and much of the

experimental data comes from experiments on the relatively flattened nuclei of fibrob-

lasts (Bolzer et al., 2005). Our model could be generalised to account for the effects

of variable nuclear shapes. Fourth, we ignored potential interactions in trans between

chromosomes. Such interactions could potentially arise from the looping out of loci

on different chromosomes to interact at transcription factories (Maharana et al., 2016).

We could account for this by making designated monomers on different chromosomes

“sticky” with respect to each other, thus coupling regions of different chromosomes that

are known to physically localise together when co-transcribed. Fifth, in using RNA-

seq data as a proxy for activity, we ignored non-coding transcription, since RNA-seq

largely provides steady-state gene expression. Inferring activity from newer methods

such as GRO-seq, which also extracts nascent and rapidly degraded transcripts, may
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help to provide a more accurate view of transcription-coupled activity. Last, the role of

nuclear actin and associated motors remains unclear, although they could potentially

contribute additional source of non-equilibrium noise (de Lanerolle, 2012). Indeed, all

the possible improvements on our model that we list above could be incorporated, but

only at the expense of more model detail and a number of further assumptions. These

modifications of our model would have obscured the core argument of this paper, that

the primary driver of many features of nuclear architecture is non-equilibrium activity

that is inhomogeneous across chromosomes, so we choose to leave these questions to

future work.

In first-principles approaches, a small set of initial model assumptions argued for

on general grounds must yield consistent explanations and descriptions for all data, not

just those the model abstracts in its construction. The advantage of simple models is

that they enable us to concentrate on underlying principles that are often obscured by

the complexity of real data, including intrinsic heterogeneities across cell populations,

varied experimental and analysis procedures and the lack of sufficient statistics in some

cases. Prior models for nuclear architecture in mammalian cells fail to reproduce many

general attributes of nuclear architecture known from experiment. These properties

– certainly their important trends – are emergent in our calculations, since they were

not directly encoded in our model specification. This suggests that our methodologies

provide hitherto unavailable biophysical insights into the determinants of large-scale

nuclear architecture in metazoans.

Methods

Interactions of model chromosomes

Our model chromosomes (diploid, XX) occupy the interior of a spherical shell of radius

R0. The interaction between neighbouring monomers is of the finitely-extensible non-

linear elastic (FENE) form. These monomers further interact with (non-neighbouring)
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monomers via a Gaussian interaction, the Gaussian core potential used to model poly-

mer brushes (Stillinger, 1976)

Simulation Methodology

We adapt the widely-used LAMMPS code implementing Brownian dynamics (Plimp-

ton et al., 2007) for a polydisperse polymer system with a local monomer-dependent

effective temperature. For each monomer, LAMPPS applies a Langevin thermostat,

via an over-damped equation of motion, with a different “effective” temperature Ti as-

sociated to each monomer, reflecting its local level of activity. In thermal equilibrium,

we have Ti = Teq for all monomers.

Units and Normalization

We work in de-dimensionalised units, discussed in Supplementary Information.

Deriving effective temperatures

In the gene density model, the gene content of each 1Mb region is obtained from

the GENCODE database (Harrow et al., 2012). Monomers containing a number of

genes which fall below a preset cutoff are termed as “inactive” or “passive” and are

characterized by an effective temperature T = Tph = 310K. Monomers possessing

a larger number of genes are termed as “active” and assigned an effective temperature

Ta > Tph. For the gene expression model, we infer activities from transcriptome

data, using FPKM values from processed RNA-seq output (Consortium et al., 2012).

For the combined model, we use the same temperature assignments as for the gene

expression model but, in addition, also take the top 5% of monomers by gene density

as inferred from GENCODE, promoting them to a temperature of T = 12.

Models for the looping of individual chromosomes

We use Hi-C data on GM12878, NHEK, IMR90, HUVEC and HMEC cells, obtained

from data made publicly available by the authors of Ref. (Rao et al., 2014), to represent

the effects of long-range looping within a chromosome. We ignore loops smaller than
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the 1 Mb scale since these are folded into our description of a single monomer. Across

these cell types we have 236 (GM12878), 50 (NHEK), 116 (IMR90), 51 (HUVEC), and

13 (HMEC) loops that are larger than the 1 Mb scale and which our model accounts for.

These loops are represented by permanent FENE bonds, with an effective interaction

strength that is the same as those of the springs which connect un-looped but connected

monomers.

Summary of Analysis

We calculate Si(R) = 4⇡R2
Pi(~R), where Pi(~R) dR is proportional to the probability

of finding a monomer of chromosome i at a radial vector ~

R from the origin. For a

uniform distribution, Si(R) = 4⇡R2. We compute Si(R) for every model chromo-

some indexed by i. We measure activity in successive radial shells by performing a

configurational average over the effective temperature of every monomer in that shell.

From these we extract a quantity similar to S(R), but normalize by 4⇡R2, so that the

quantity plotted in the cut-away sphere representation simply represents the activity at

radial distance R. The quantity S(R) measures the DNA density associated with a spe-

cific chromosome, across a radial shell at distance R from the nuclear centre, averaged

over a large number of nuclei. The quantity SCM (R) measures a similar distribution,

but of the chromosome centre of mass. We calculate the distribution of centres of

mass of each individual chromosome similarly. To visually examine configurations we

color-coded monomers belonging to individual chromosomes.

Calculation of 3D shape of CTs

For each chromosome in our simulation, we draw a 3-d grid across the nucleus with

a grid spacing of 0.2 � 0.6. We represent the monomers as spheres about which the

density decays as a gaussian with defined width. Separating these monomers are cylin-

drical regions. The density about the axis of each cylinder is assume to fall off also

as a Gaussian with specified width. The density at any given grid point, associated to

a single chromosome, can then be computed by adding up the contributions from all
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spherical and cylindrical regions as defined above. Once such a density field is ob-

tained, we can find the surfaces on which it attains a fixed value, the “implicit surface”.

We adjust the scales governing the decay of the density distribution associated with the

monomers and the cylindrical regions separating them as well as the associated con-

stant specifying the implicit surface to optimise geometrical quantities associated with

chromosome territories vis a vis experiments. Once fixed, these parameters remain the

same for all chromosomes.

Geometric properties of CTs

To calculate the two-dimensional properties of chromosome territories, we use the al-

gorithm of Ref. (Sehgal et al., 2014). To compare our simulation data with data from

2d FISH, we project three-dimensional chromosome territories into the xy plane. We

use the ellipticity calculations of (Žunić and Žunić, 2013). In the three-dimensional

case, once we associate an implicit surface to a chromosome, that surface can further

be triangulated using standard methods, such as the ISOSURFACE command in MAT-

LAB. The total surface area of the chromosomes is obtained by adding the area of

these triangles. To calculate the volume of the chromosome we count the number of

grid points whose grid density values are more than the given isovalue density c. The

asphericity � and shape (or prolateness) ⌃ parameters of a particular chromosome are

calculated from the semi-axis lengths a, b, and c of the smallest ellipsoid that encloses

all the monomers (Millett et al., 2009; Rawdon et al., 2008). The Khachiyan algo-

rithm is used to find the smallest ellipsoid which encloses all the data points (Todd and

Yıldırım, 2007).

Contact probability and contact map

The contact probability is computed using numerical calculations of the contact fre-

quency of monomers of a given chromosome, averaged over a large number of con-

figurational snapshots. When two monomers i and j of the same chromosome are

separated in 3-d space by 2.5 units in terms of our scaled unit distance, we assume that
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they are in contact. If two monomers are in contact, they are close in distance. How-

ever, measures that look at the frequency of contacts will assign a larger frequency to

such monomers which are predisposed to be close by.
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S1 Model Overview
We model individual chromosomes are modelled as polymer chains, composed of
spherical monomers representing consecutive 1Mb sections of each chromosome. There
are 23 pairs of chromosomes, describing a human diploid female (XX) cell. These
model chromosomes are confined within a spherical shell representing the nucleus.
The monomers are connected through nonlinear springs and interact via a finitely-
extensible nonlinear elastic (FENE) interaction (Kremer and Grest, 1990). Individual
monomers are self-repelling and the total number of monomers is 6086 for a diploid
XX human cell. Monomers experience forces from other monomers, arising from both
bonded and non-bonded interactions. Additionally, each monomer experiences ran-
dom forces arising from thermal as well as active fluctuations. We treat such active
noise as analogous to thermal noise, drawing particular realisations of the noise from a
Gaussian distribution with zero mean and a variance set by the effective temperature.
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To represent activity we assign an active temperature to monomers in three ways.
In the simplest model, the “gene density” model, the temperature assigned to each
monomer reflects the gene density associated with the specific region of the chromo-
some associated to that monomer. The gene content of each such 1Mb region is ob-
tained from the GENCODE database (Harrow et al., 2012). We label each monomer
as active or inactive, associating one of two temperatures (T = 1, 12) to the monomer
depending on its label. Temperatures are scaled in units of physiological temperature
Tph = 310K.

A second model, the “gene expression” model, assumes that the temperature as-
signed to each monomer is proportional to the amount of RNA transcript generated
across that region of chromosome. Transcript levels then provide a proxy for the in-
tensity of active processes locally. We infer these levels using transcriptome data, as
described below. Both the gene expression and gene density models fit specific aspects
of the experimental data well. However, a model description which appears to provide
the most comprehensive fits to the data combines features of both these models. The
model used in this paper, the “combined model”, bases itself largely on the gene ex-
pression model but also assigns high activity to a fraction of monomers with the highest
values of gene density.

An important part of our model is the incorporation of existing prior information
regarding the looping of chromosomes. Here, we use data from Hi-C experiments to
assign permanent loops to our model chromosomes. We simulate our system using
standard Brownian dynamics methods. After verifying that the system has achieved
a non-equilibrium steady state, we compute all properties of interest, including the
distribution of DNA density and of chromosome centre of mass, territorial organisation,
shape statistics and spatial distance maps from which we can infer potential contacts.

S1.1 Interactions of model chromosomes
Our model chromosomes occupy the interior of a spherical shell. The radius of this
shell is R0, which we take to be 17.2 in the reduced units we derive below. The inter-
action between neighbouring monomers (labeled as i, i+ 1, with position coordinates
ri, ri+1) is of the FENE form

Vneighbour monomers(ri, ri+1) = �1

2

Kr20 ln

"
1�

✓
r

r0

◆2
#
, (1)

where K is a spring constant and r0 is the maximum length of the bond; in contrast, our
earlier work used the simpler harmonic spring interaction (Ganai et al., 2014). These
monomers further interact with (non-neighbouring) monomers via a Gaussian inter-
action, the Gaussian core potential used earlier to model polymer brushes (Stillinger,
1976)

Vmonomer�monomer(ri, rj) = V0 exp (�B|ri � rj |2), |ri � rj | < rcut (2)

The effective pair potential at zero separation, V0, is chosen to be of order kBTph,
with kB the Boltzmann constant and Tph the physiological temperature: B = 1.0 ,
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V0 = 1.5 and rcut = 3.5. The interaction between each monomer and the confining
sphere vanishes if the monomer centre falls within the sphere. Outside the sphere and
within a cutoff rc, the monomer experiences a Lennard-Jones potential that diverges as
the distance to the cutoff is reduced. The parameters are ✏ = 250, � = 1 and rc = 1

for this Lennard-Jones potential. We take r0 = 10 and K = 4.17, for both bonded
neighbors and non-bonded monomers connected by long range loops.

S1.2 Simulation Methodology
Our numerical evolution of the system of monomers adapts the widely-used LAMMPS
code implementing Brownian dynamics (Plimpton et al., 2007) for a polydisperse poly-
mer system with a FENE interaction between monomers and a monomer-specific ef-
fective temperature. The effective temperature is incorporated as a local monomer-
dependent effective temperature. For each monomer, LAMPPS applies a Langevin
thermostat, via the following over-damped equation of motion,

⇣
dri
dt

= Fi + ⌘i (3)

where ri represents the location of the ith monomer, ⇣ is a drag coefficient, Fi accounts
for all non-stochastic forces acting on the monomer and ⌘i represents stochastic forces
(gaussian, with vanishing cross-correlations) arising from both active and thermal fluc-
tuations. The noise is assumed Gaussian distributed, with cross-correlations vanish-
ing at all times irrespective of monomer labels. The diagonal correlators, at equal
times and for the same monomer, are non-zero and obtained from h⌘xi (t)⌘xj (t0)i =

h⌘yi (t)⌘
y
j (t

0
) = h⌘zi (t)⌘zj (t0)i = 2kBTi⇣�ij�(t � t0). Here Ti is an “effective” tem-

perature associated to each monomer, reflecting its local level of activity. We represent
each of the components of ⌘i/

p
⇣ as the product of a Gaussian random number with

zero mean and unit variance with the quantity
p

2kBTi/⇣. In thermal equilibrium, we
have Ti = Teq for all monomers. The largest number of monomers (249) are found in
Chromosome 1 and the smallest (47) in Chromosome 21.

In comparison to the model in Ref. (Ganai et al., 2014), the model described here
has 12 fewer monomers, a consequence of differences between the GeneCards and
GENCODE databases.

S1.3 Units and Normalization
Following Refs. (Kreth et al., 2004; Ganai et al., 2014), we consider a chromatin vol-
ume fraction 0.1  �  0.2. The monomer is assumed to have a diameter d ' 500nm;
the equilibrium domain separation is `0 ' 600nm. Both these quantities accord with
computed Kuhn lengths of ⇡ 300nm (Kreth et al., 2004; Rosa and Everaers, 2008).
Assuming that the radius of the nucleus is R0 ' 8.6µm yields a packing fraction of
� ' 0.15. We ignore the marginal differences in nuclear volume across cell types;
such volumes differ by at most a factor of 1.5 for the cell types we consider. We
scale all lengths in units of d and measure energies in units of kBTeq . All chromo-
somes are fairly tightly confined to R0. We can choose units of time (⌧ ) such that
⇣ = 1. We can approximate the value of ⇣ appropriate for this calculation from the
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Stokes relation: ⇣ ' 6⇡⌘sR where R is the hydrodynamic radius appropriate to the
monomer size. Assuming that the appropriate value of the viscosity at such scales is
⌘s ⇠ 10⌘w, with ⌘w the viscosity of water (8.9⇥10

�4Pa·s), its numerical value is then
⇣ = 8.38⇥10

�8N ·s/m. With this choice, ⌧ is then (500.0)2⇣/6kBT ' 8.16⇥10

�1s.
Since ⌧ ⇡ 10

�1s; our choice of time-step of 0.001 thus corresponds to real-time evo-
lution by 10

�4s.

S1.4 Deriving effective temperatures
S1.4.1 Gene density model

In the gene density model, the gene content of each 1Mb region is obtained from the
GENCODE database (Harrow et al., 2012). Monomers containing a number of genes
which fall below a preset cutoff are termed as “inactive” or “passive” and are char-
acterized by an effective temperature T = Tph = 310K. Monomers possessing a
larger number of genes are termed as “active” and assigned an effective temperature
Ta > Tph, argued for thus: The hydrolysis of a single ATP molecule yields approx-
imately 20kBTph of energy, some part of which is transduced into local mechanical
work with the remaining part begin dissipated. Thus, the characteristic energy scales
associated with such hydrolysis events, modelled in terms of an effective temperature,
must be some reasonable fraction of this scale. We have experimented with several dif-
ferent choices of Ta as well as the cutoff, finding that a relatively small spread between
physiological and active temperatures is sufficient to generate the activity-dependent
biophysical structuring this paper discusses. For concreteness, here we take the max-
imum value for the active temperature to be Ta = 12, where Ta is measured in units
of Tph. (Measurements of the diffusion constants of individual gene loci in bacteria
and yeast provide evidence for a similar spread in local “effective” temperatures, as
inferred from an Einstein relation, and that a related variation in local active forces
has been suggested to explain observations from colloidal micro-rheology in the nu-
cleus (Zidovska et al., 2013; Weber et al., 2012; Hameed et al., 2012))

S1.4.2 Gene expression model

For the gene expression model, we infer activities from transcriptome data. We down-
loaded processed RNA-seq data from the ENCODE project website (Consortium et al.,
2012). The data provides FPKM (Fragments Per Kilobase of transcript per Million
mapped read, with fragment referring to a pair of reads for paired-end data) values
that quantify transcripts generated across the human genome. We used five cell types
GM12878, HMEC, HUVEC, IMR90 and NHEK for our analysis. We consider all
genes whose FPKM value lies above a specified cutoff to reduce noise in the data for
each cell type. We then summed the FPKM value for all these genes whose chromo-
some position (mid position of start and end coordinate of a gene) lies within our 1
Mb interval to assign an activity value to that monomer. We went on to assign effec-
tive temperatures proportional to such activity values using a derivative cutoff method.
We examined the expression data discussed above, sorted it in increasing order of ex-
pression, and then took a numerical derivative of this data, using the diff function
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of MATLAB. We set a cutoff of 0.2 for this slope but our results were largely insen-
sitive to where this cutoff was chosen. Given the generic shape of the plot for the
sorted activity, which has two regions in which activity increases sharply separated by
a plateau region, this procedure automatically yields two cutoff lines and three demar-
cated regions. Monomers in the plateau region are assigned a constant value of active
temperature, between Tph and the maximum value of the active temperature 12Tph.

For each cell type, given similar curves of sorted expression value, such cutoffs on
the data represent the effects of activity on each monomer. We can translate this into
an active temperature. In (Figure 1H), for each cell type, we show these cutoff lines.
We assign the lowest temperatures to monomers whose activity falls below the value
it takes in the plateau region. Monomers associated with the plateau are assigned a
common temperature of 6. Finally, monomers with the highest expression values and
thus the highest activity, are assigned a temperature which interpolates, in units of 1,
between 7 and 12. The effects of variation of activity are strongest for these monomers,
as is reasonable since activity increases steeply in this region.

S1.4.3 Combined model

For the combined model, we use the temperature assignments indicated above. How-
ever, in addition, we also take the top 5% of monomers by gene density as inferred
from GENCODE, promoting them to a temperature of T = 12.

S1.5 Summary of Analysis
Our simulations are run for 10

7 time steps, with around 4 ⇥ 10

6 steps discarded to
ensure adequate equilibration. All data are averaged over at least 25 independently
initialised configurations, with each initial configuration contributing 6000 indepen-
dent measurements as the simulation proceeds. We verified that the same steady state
properties were achieved irrespective of initial (random) configuration. Since the prob-
ability of finding a chromosome at a radial separation r from the origin depends only
on the modulus of r, i.e. |r| ⌘ r, we calculate the probability of finding a monomer
belonging to a specific chromosome at a radial distance from the origin, for each chro-
mosome. The main text describes the different distribution functions we calculate.

S1.6 Calculation of 3D shape of CTs
We begin by drawing a 3-d grid across the nucleus with a coarse grid spacing of 0.5
in our scaled units. We calculate the DNA density associated with our polymer model
for chromosomes on this grid as described below. Chromosome densities are then
defined at the grid points for each simulation configuration. We represent chromosome
configurations in the following ways. First, individual monomers are considered as
spheres about which the density decays as a normalized gaussian in the radial variable.
The characteristic scale of the Gaussian is set by the length scale Rs. We experimented
with various choices of Rs to see what might best represent the data. Between these
monomers, we assume that the DNA configuration can be described as a cylinder with
fixed radius, with the DNA density about the axis of each cylinder assumed to fall off
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also as a Gaussian with specified width Rc. We have varied Rc to obtain optimal fits
as well, but finally fixed on Rc = Rs = 2� as an optimal choice for all chromosomes
across all configurations and all cell types.

The density at any given grid point can then be computed by adding up the con-
tributions from all spherical and cylindrical regions associated to a chromosome. We
then interpolate these density values to a smaller grid, typically of spacing 0.17 using
MATLAB’s INTERP3 function. Once such a density field is obtained, we can find the
surfaces on which it attains a fixed value, the “implicit surface”.

Our calculation of the density at a given grid point proceeds as follows. Consider
the location of the grid point Oj , where j indexes the specific grid point. Let n be
the length of chromosome Ck and denote the ith monomer of the kth chromosome as
Ck

i . The visual computational of such calculation is shown in (Figure S16). The two
consecutive monomer Ck

i and Ck
i+1 of k chromosome is represented by small circles in,

and lines representing the centreline of the associated cylindrical regions. Oj is the grid
point where we have to calculate the spherical density Dsphere which is contributed by
mentioned two monomers shown in (Figure S16A) and similarly contribution by their
centerline in form of cylindrical density Dcylinder is shown in (Figure S16B). The
density at the grid point Oj arising from chromosome k is then computed from the
following formula and also shown in (Figure S16C).

G(Oj) = max

 
n�1X

i=1

exp


� d 2

2R2
c

�
,

nX

i=1
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"
� ||

���!
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i ||2
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s

#!
8
>><

>>:
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. These conditions

ensure that (a) the contribution of the associated cylinder to the density at any grid
point is cylindrically symmetric about the line joining neighbouring monomers and
that (b) the contributions from the spherical regions is also accounted for.

After the density values at all grid points is computed, the isosurface command
from MATLAB is used to draw the implicit surface (F (x, y, z) = c) for the chro-
mosome given a density isovalue c. A smaller value of c yields a loose cloud-like
surface around chromosomes while larger values of c gives tighter, more well-defined
surfaces around them. We chose a value of c such that the chromosome territories it
yields are visually equivalent to those obtained in experiments based on similar iso-
surface representations of experimental FISH data. The 3d surface representation of
such chromosome is shown in (Figure 1E). This computation is used in the fits to the
experimental data shown in (Figure 5C).

S1.7 Calculation of 2D shape of CTs
To calculate the two-dimensional properties associated to projected chromosome terri-
tories. To compare our simulation data with data from 2d FISH as obtained in those ex-
periments and other similar ones, we project three-dimensional chromosome territories
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into the xy plane for specificity, noting that averaging over configurations which are
rotationally symmetric implies that all projections should be equivalent. A schematic
illustrating this is shown in (Figure 1G). The calculations of Ref. (Sehgal et al., 2014;
Žunić and Žunić, 2013) rely on the computation of the geometric moments M of the
image I . For calculating the ellipticity and regularity of 2d CTs image, we first normal-
ize, scale and rotate the complementary binary image I of our projected chromosome
territories such that

1. The area of shape is 1

2. The centroid of shape coincides with the origin and

3. The orientation of shape is 0 (implying that the long axis is parallel to the x-axis).

The scaled moments then are:

Mpq =

X

x

X

y

xpyqI(x, y) (5a)

Where I(x,y) is the pixel intensitites of the grayscale image and {p, q} can each be
drawn from 0 . . .1, and refer to the order of moments. We choose each of {p, q} from
0,1,2 for specificity.

Given the moments, we compute the ellipticity ✏ from

✏ =
1

2

⇥ 1

a2 ⇥M20 + b2 ⇥M02
(5b)

where a and b are given by

a =

q
2⇡2L� ⇡ ⇥

p
4⇡2L2 � 1, b =

q
2⇡2L+ ⇡ ⇥

p
4⇡2L2 � 1 (5c)

and L = M20 +M02

As ✏ tends to 1, projected chromosome territories resemble ellipses. To calculate
the regularity of these projected territories, the area ratio of each CT over its convex
hull is determined, using the MATLAB functions BWAREA and BWCONVHULL. If
a chromosome is regular, this ratio should be close to 1. As the irregularity in projected
CTs increases, this ratio will decrease.

S1.8 Methods for calculating 3d shape statistics for chromosome
territories

We use two methods for finding the shape statistics of chromosomes. In the ellipsoidal
fit method, the center, rotation, and principal radii of the smallest ellipsoid which en-
closes all the data points of a polymer are calculated using Khachiyan algorithm (Todd
and Yıldırım, 2007). An alternative grid-based method is described in the subsec-
tion Calculation of 2D shape of CTs. The ellipsoid fit method is an easy and fast
method for finding the approximate shapes of the polymer, but is less accurate than
the grid-based method. On the other hand, the grid-based method is computationally
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expensive. In our work, we calculate the shapes of 2d and 3d territories using the grid-
based method but use the simpler ellipsoidal fit method for the shape parameters � and
⌃ described below.

The difference in the computation of chromosome territory properties between the
grid-based method and the ellipsoid fit method is illustrated in (Figure S17).

S1.9 Asphericity � and shape ⌃ parameter calculation of chromo-
somes

The asphericity � and the shape parameter ⌃ of individual chromosomes can be calcu-
lated from the 3 semi-principal radii (a,b,c) of the ellipsoid obtained for each ellipsoidal
fit to a chromosome territory. The asphericity � parameter given in Eq. 6a character-
izes the average deviation of the chain conformation from spherical symmetry (Millett
et al., 2009; Rawdon et al., 2008). The shape ⌃ parameter measures the prolateness or
oblateness of chromosomes and is defined in Eq. 6b.

�(a, b, c) =
(a� b)2 + (b� c)2 + (c� a)2

2(a+ b+ c)2
(6a)

⌃(a, b, c) =
(2a� b� c)(2b� a� c)(2c� a� b)

2(a2 + b2 + c2 � ab� ac� bc)3/2
(6b)

The parameter � is bounded in the regime 0  �  1. The � value is 0 for the
perfect sphere when (a = b = c) and 1 for rod shape when (b = c = 0). The shape
or prolateness parameter ⌃ is bounded by �1  ⌃  1. The ⌃ is �1 for perfect
oblate shapes, e.g. when (a = b > c) and 1 for perfectly prolate shapes, e.g. when
(a > b = c), providing a useful index for chromosome shapes.
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Figure S1: Distribution of expression values derived from transcriptome data The histogram
of the log of gene expression values as obtained from transcriptome data for 5 cell types is
shown in blue. Each cell type name is provided at the top of each subfigure. The sub-figures
illustrate a fit of histogram values to an extreme value distribution, the Gumbel distribution,
shown in red. The Gumbel distribution for a single variable x takes the form f(x;µ,�) =

1
�

exp(

x�µ

�

). exp(� exp(

x�µ

�

)). The fitting parameters µ and � for the Gumbel distribution
in each case are provided in each subfigure. Two black vertical lines, derived from the analysis
that led to (Figure1H), demarcate the histogram into 3 regions. The distribution has a long tail
towards low expression values and a more sharply decaying right tail towards high expression
values.
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Figure S2: Computed Distribution functions S(R) for all simulated chromosomes across 5
cell types. Distribution functions S(R) for each simulated chromosomes for GM12878 (blue),
HMEC(green), HUVEC(black), IMR90(cyan) and NHEK(red) is shown. The active chromo-
some Xa and inactive chromosome Xi are shown with solid and dashed lines. Chromosome
numbers are mentioned in the left upper corner of each subfigure.
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Figure S3: Distribution functions S(R) for all chromosomes, within the “gene expression”
and “combined” models. S(R) for each chromosome within the gene expression (red) and
the combined model (blue) are shown. Experimental data from Ref. (Kreth et al., 2004) for
Chromosomes 12, 18, 19 and 20 are shown as magenta-coloured circles.
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Figure S4: Distribution functions S(R) for all chromosomes with different combinations of
activity and loops. The monomer density distribution for each chromosome is shown for the
models mentioned below. All cases involving activity are shown for the combined model. Act:N,
Lps:N Both activity and loops are switched off, with all monomers at the same effective temper-
ature of T = 1, shown in green; Act:Y, Lps:N Activity is present, implying an inhomogeneous
distribution of temperatures, but loops are switched off, shown in red; Act:N, Lps:Y Activity is
absent but loops are present, shown in black; Act:Y, Lps:Y Both activity and loops are present,
shown in blue color. This is the original “combined model”, also shown in (Figures 3A and
3B) and (Figure S3); The experimental data for chromosomes 12, 18, 19 and 20 are shown as
magenta-colored circles, using data from Ref. (Kreth et al., 2004).
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Figure S5: Centre of mass distributions S
CM

(R) for all simulated chromosome in 5
cell types. The centre of mass distribution S

CM

(R) for each simulated chromosome for
GM12878(blue), HMEC(green), HUVEC(black), IMR90(cyan) and NHEK(red) is shown.
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Figure S6: The centre of mass distribution S
CM

(R) for all chromosomes, within the “gene
expression” and “combined” models. S

CM

(R), the centre of mass distribution of each chromo-
some for gene expression (red) and combined model (blue). Experimental data from Ref. (Kalhor
et al., 2011) for Chromosomes 18 and 19 are shown in magenta.
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Figure S7: Centre of mass distribution S
CM

(R) for all chromosomes with different com-
binations of activity and loops. S

CM

(R) center-of-mass distribution for each chromosome is
shown for the models described below. Act:N, Lps:N Both activity and loops are switched off,
with all monomers at the same effective temperature of T = 1, shown in green; Act:Y, Lps:N
Activity is present but loops are switched off, shown in red; Act:N, Lps:Y Activity is absent
but loops are present, shown in black; Act:Y, Lps:Y Both activity and loops are present, shown
in blue color. This is the original “combined model”, also shown in (Figures 3C and S6); The
experimental data for chromosomes 18 and 19 are shown using magenta circles using data from
Ref. (Kalhor et al., 2011).
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Figure S8: Mean centre-of-mass location for each chromosome against chromosome sizes
and chromosome gene density. (Figures A,C,E). Predictions for the mean center of mass
location for each chromosome, for the HMEC, HUVEC, NHEK cell type, as a function of chro-
mosome size, compared to experimental data of GM12878 Ref. (Kalhor et al., 2011) is shown in
Figures A, C and E respectively. Simulation and experimental points are shown together using
red and blue ovals respectively, along with simulation error bars. The relative radial position
0 and 1 stands for the centre and periphery of nucleus respectively. Chromosome numbers are
indicated above or below each error-bar. Simulation points except chromosome 1,2,3,4,5,6,7,21
and 22 are fitted to a straight line whose parameters (slope, intercept) are provided at the top
of each sub-figure. (Figures B,D,F). Predictions for the mean centre of mass location for each
chromosome as in Figures A,C and E, but plotted against the function of chromosome gene den-
sity in Figures B,D and F respectively. All the simulation points are fitted to a straight line whose
parameters (slope, intercept) are mentioned below each sub-figure.
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Figure S9: The relative centre-of-mass position of each chromosome for different combi-
nations of activity and loops. The relative centre-of-mass position of each chromosome, in
increasing order of size, shown for different models; (A) Gene expression The effective temper-
ature assignment of monomers is derived from gene expression model of GM12878 cell type and
loops are extracted from Hi-C data; (B) Act:Y, Lps:N The effective temperature assignment of
monomers is taken from the combined model of GM12878 cell type but no loops are present; (C)
Act:N, Lps:Y All monomers are at the same temperature (no activity), but loops inferred from
Hi-C are present; (D) Act:N, Lps:N All monomers are at the same temperature (no activity) and
loops are also absent; Simulation data points (red oval) are shown together with the experimental
data (blue triangle) (Kalhor et al., 2011) along with respective error-bars. Chromosome numbers
are mentioned above or below each error-bar.

S17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/315812doi: bioRxiv preprint 

https://doi.org/10.1101/315812


0

2

Y =−1.06*x +2.45
1lo

g(
P(

s)
)

Y =−1.08*x +2.51
2

Y =−1.12*x +2.40
3

Y =−1.19*x +2.46
4

Y =−1.09*x +2.37
5

Y =−1.19*x +2.37
6

0

2

Y =−0.99*x +2.28
7lo

g(
P(

s)
)

Y =−1.19*x +2.32
8

Y =−1.18*x +2.29
9

Y =−1.18*x +2.26
10

Y =−1.06*x +2.19
11

Y =−1.13*x +2.19
12

0

2

Y =−1.24*x +2.24
13lo

g(
P(

s)
)

Y =−1.13*x +2.13
14

Y =−1.23*x +2.14
15

Y =−1.16*x +2.05
16

Y =−1.18*x +1.96
17

Y =−1.25*x +2.11
18

0 0.5 1

0

2

Y =−1.15*x +1.67
19lo

g(
P(

s)
)

log(s)
0 0.5 1
Y =−1.27*x +1.93
20

log(s)
0 0.5 1
Y =−0.97*x +1.78
21

log(s)
0 0.5 1
Y =−1.13*x +1.79
22

log(s)
0 0.5 1
Y =−1.11*x +2.32
Xa

log(s)
0 0.5 1
Y =−1.24*x +2.47
Xi

log(s)

Figure S10: Contact probability P (s) for each chromosome in the GM12878 cell type. The
scaling of monomer contacts within the initial 10 Mb region for each chromosome is shown
with blue dots, accompanied by error-bars. The best power law fit to the data is provided along
with each subfigure, in red. The chromosome number is mentioned in the bottom corner of each
subfigure. The range of exponents provided by the fit is 0.97� 1.27.
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Figure S11: Contact probability P (s) for each chromosome in the IMR90 cell type. The
scaling of monomer contacts in the initial 10 Mb region for each chromosome is shown with
blue dots, accompanied by error-bars. The best power law fit to the data is provided along with
each subfigure, in red. The chromosome number is mentioned in the bottom corner of each
subfigure. The range of exponents provided by the fit is 1.09� 1.40.
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Figure S12: Contact probability P(s) of chromosome 1 for different combinations of activity
and loops. Contact probability for chromosome 1, fit to a power law for the gene density, gene
expression and combined models, plotted in the range [1-20 Mb]. (A) Gene Expression P (s) for
the gene expression model with effective temperature assignments using RNA-seq of GM12878
cell (Consortium et al., 2012). Loops are obtained from Hi-C experiments (Rao et al., 2014);
(B) Act:N, Lps:Y P (s) for the case where there is no activity but looping is present; (C) Act:N,
Lps:N P (s) for the case where both activity and looping are absent ; (D) Act:Y, Lps:N P (s) in
the case where the effective temperature assignment corresponds to the combined model for the
GM12878 cell type but loops are absent.
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Figure S13: Asphericity � and Prolateness ⌃ parameter of chromosomes for IMR90,
HMEC, HUVEC, and NHEK cell type. We capture broad trends in the data by plotting an
ellipse that includes closely correlated points. Chromosomes 1, 21 and Xi, are clearly excluded
while chromosomes 22, 2, 20, 11, 15, 9 and 13 lie within the ellipse.
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Figure S14: Asphericity � and Prolateness ⌃ parameter of chromosomes for different com-
binations of activity and loops. � and ⌃ of each chromosome is plotted for 3 different models:
Act:N, Lps:N in which activity is absent and all permanent loops are absent; Act:N, Lps:Y in
which activity is absent, but permanent loops are present; Act:Y, Lps:N in which effective activ-
ity is taken from the combined model appropriate to GM12878 cell type but permanent loops are
absent; From these figures, we observe that chromosomes achieve a prolate ellipsoidal shape in
the absence of activity. Larger chromosomes are more spherical and smaller chromosomes are
rougher and more rod-like.
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Figure S15: Simulation-derived distance and contact maps for the HMEC, HUVEC and
NHEK cell types. A-C Distance maps for all chromosomes, ordered according to their gene
density; D-F Distance map of chromosome 1 displayed along with locations of the permanent
loops (black curve) as inferred from the Hi-C data for this cell type. Individual monomers at T
= 6 and 7  T  12 are shown in green and black beside the X and Y axis, respectively; G-I
Contact map of chromosome 1 displayed along with locations of the permanent loops with black
curve as inferred from the Hi-C data. Individual monomers at T=6 and 7  T  12 are shown
in green and black beside the X and Y axis, respectively; Related color-bars for distance and
contact maps are shown beside the respective sub-figures.
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Figure S16: Schematic showing how the chromosome territory is computed using the grid
method. A Density at yellow grid point (D

sphere

) is computed due to sphere effect; B Density at
yellow grid point (D

cylinder

) is computed due to cylinder effect; C The actual density at yellow
grid point G(O

j

) is the maximum of either D
sphere

or D
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A B

Figure S17: Comparison of output of grid method and 3d ellipsoid fit method. (A) Schematic
representation of volume overlap of chromosome 1 and 3 by an implicit surface method. The
polymer form of chromosome 1 and 3 is represented with white and black color respectively.
The 3d surface of chromosome 1 and 3 computed from grid method is shown with red and blue
color respectively. (B) Schematic representation of volume overlap of chromosome 1 and 3 by
an ellipsoidal fit method. The polymer form of chromosome 1 and 3 is represented with white
and black color respectively similar to Fig. A. The 3d surface of chromosome 1 and 3 computed
from ellipsoid algorithm is shown with red and blue color respectively.
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