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Recent advances in large-scale single cell RNA-seq enable fine-grained 
characterization of phenotypically distinct cellular states within heterogeneous 
tissues. We present scScope, a scalable deep-learning based approach that can 
accurately and rapidly identify cell-type composition from millions of noisy single-
cell gene-expression profiles.  

Single-cell RNA-seq (scRNA-seq) can provide high-resolution dissection of complex 
biological systems, including identification of rare cell subpopulations in heterogeneous 
tissues, elucidation of cell-developmental programs, and characterization of cellular 
responses to perturbations1-5. Recent platforms, such as DropSeq6, 7, Microwell-seq8 and 
GemCode9, have enabled large-scale scRNA-seq on millions of cells at a time, which 
offers an unprecedented resolution at which to dissect cell-type compositions.  

However, these advances have led to two acute challenges. First, single-cell profiles are 
highly susceptible to transcript amplification noise and dropout events10, 11, and such 
artifacts can become even more pronounced as tradeoffs are made to sequence larger 
numbers of cells. Second, current analytical packages10-16 are unable to scale to large 
datasets, including all cells and measured genes, due to computational memory and/or 
speed restrictions. New approaches are needed to extract informative representations 
from these extremely noisy, massive, high-dimensional scRNA profiles.  

To overcome these challenges, we developed scScope, a software package that uses 
deep learning to extract informative features (low-dimensional representations of gene 
expression profiles) per cell from massive single-cell data (Fig. 1a). A major innovation 
of scScope is the design of a self-correcting layer. This layer exploits a recurrent network 
structure to iteratively perform imputations on zero-valued entries of input scRNA-seq 
data (Methods). In one joint framework, scScope conducts batch effect removal, cellular-
feature learning, dropout imputation and parallelized training (when multiple GPUs are 
available) (Supplementary Fig. 1). To our knowledge, scScope is the first parallelized 
deep-learning framework for unsupervised, single-cell data modeling that can deal with 
both massive and noisy single-cell expression data.  

We evaluated scScope on its scalability, ability to identify cell subpopulations, impute 
dropout gene information and correct batch effects. We used a variety of datasets in these 
evaluations, including two approaches for simulating data with “ground truth” and six 
biological datasets with varying degrees of size, complexity and prior biological annotation. 
Further, we compared the performance of scScope with three published “non-deep” 
methods (MAGIC16, ZINB-WaVE11 and SIMILR12) and two unpublished “deep” learning 
models (scVI17 and DCA18) (Methods and Supplementary Table 1). We note that among 
all compared methods, only scScope offers the ability for parallelized GPU training; for 
fair comparison we used a single GPU for comparisons unless noted otherwise 
(Methods).  
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We first tested the scalability and training speed of scScope on a mouse brain dataset19, 
which contained 1.3M cells, and we focused on the 1,000 most variable genes (Fig 1b, 
Methods). We evaluated the computational costs of all methods over a wide range of 
subsampled data sizes (from 5K to 1M; Methods). scScope was able to complete its 
analysis of the full dataset in under 50 minutes using a single GPU (this runtime can be 
significantly dropped by using multiple GPU training). In comparison, the non-deep 
approaches were unable to scale beyond 100K cells, and the deep approaches, while 
able to scale to 1M cells, required at least seven times more computing time than scScope. 
Thus, scScope is both scalable and highly efficient in dealing with large datasets.  

To calibrate the accuracy of scScope on simulated datasets, we made use of two third-
party packages for generating scRNA-seq data (Methods and Supplementary Table 2). 
First, we used Splatter20 to generate moderate-sized datasets of varying sparsity levels 
(percentage of 0-valued genes), containing: 2K scRNA-seq profiles with 500 genes, and 
three underlying subpopulations. In terms of discovering these underlying subpopulations, 
scScope performs similarly to other approaches when there are only minor dropout 
effects, but shows a large advantage in accuracy as dropout rates increase to realistic 
ranges observed in biological data6, 8 (Fig. 1c). In terms of imputation error, at low sparsity 
(<50%) scScope and MAGIC outperformed all other methods, though at high sparsity 
scScope outperformed all other approaches (Fig. 1d). A major contributor to the accuracy 
of scScope is its recurrent architecture (Fig. 1a), which allows imputed output to be 
iteratively improved through a selected number of recurrent steps (T). When T=1, the 
architecture reduces to a standard autoencoder21, and we found that T=2 provides a 
signification jump in performance. Overall, we found that T=2 offers the best tradeoff 
between speed and accuracy (Supplementary Fig. 2) and set this as the default 
parameter for our evaluations of scScope (though users have the option to change T for 
different applications).   

Second, we used the simulation framework in SIMLR to generate massive-sized and 
more heterogeneous datasets of varying sparsity levels containing: 1M scRNA-seq 
profiles with 500 genes, and 50 underlying subpopulations. To perform our evaluations, 
the deep approaches were able to operate over the full datasets, while the non-deep 
approaches required down-sampled training strategies (Methods). We found that 
scScope consistently outperformed the other methods, particularly at high sparsity levels 
(Fig. 1e). An increasingly important task for scRNA-seq profiling approaches is to identify 
rare cell subpopulations within large-scale data. As might be expected, deep-learning 
approaches performed better than non-deep approaches, which required down-sampling. 
Overall, scScope consistently performed well on these unbalanced datasets, showing 
accuracy even down to subpopulations of size 0.05% of the overall dataset (Fig. 1f). Thus, 
our calibration showed that scScope can efficiently and accurately identify cell 
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subpopulations from datasets with high dropout rates, large numbers of subpopulations, 
rare cell types and across a wide range of dataset sizes. 

We next evaluated scScope on four experimental single-cell RNA datasets containing 
varying degrees of biological “ground truth”. These datasets were used to test the ability 
of scScope to: remove batch effects (Fig. 2a; lung tissue8), recover dropout genes (Fig. 
2b; CBMC dataset22), identify minor subpopulations (Fig. 2c-e; retina dataset6), and test 
clustering accuracy for a large dataset with varying numbers of analyzed genes (Fig. 2f; 
mouse cell atlas8). 

To test the ability to remove batch effects, we made use of the lung tissue dataset (part 
of the mouse cell atlas), which contained ~7K scRNA-seq profiles obtained from three 
different batches. We examined the 1,000 most variable genes and used PhenoGraph23 
to identify subpopulations (Methods). Only ZINB-WaVE, scVI and scScope incorporated 
methodology for removing batch effects, and we tested their accuracies—with or without 
batch effect correction—for discovering 32 previously reported cell subpopulations. All 
three methods improved accuracy when the option for batch correction was enabled; 
scScope in particular showed a dramatic improvement in accuracy (Fig. 2a, top). 
Reassuringly, correcting for batch effects did not compromise the short runtime of 
scScope (Fig. 2a, bottom). 

What is the dependency of imputation accuracy on gene expression level? We made use 
of the cord blood mononuclear cell (CBMC) dataset, which contained ~8K scRNA-seq 
profiles and 1,000 most variable genes (Methods). Following the strategy used for scVI 
(Methods), we sequentially simulated dropouts for genes based on octile of expression 
ranking (Fig. 2b). We found for imputing small count values that MAGIC and scVI 
performed well, while for large count values DCA worked well. However, scScope showed 
small imputation errors consistently across the entire range of expression.  

Can minor subpopulations be identified? We made use of the mouse retina dataset6, 
which contained 44K cells from dissociated mouse retinas. We applied all methods to the 
384 most variable genes and used PhenoGraph23 to identify subpopulations (Methods). 
The original study identified 39 cell subpopulations using fine-grained manual adjustment 
and expert visual inspection, which we took as a reference for our comparisons. 
Compared to other approaches, scScope automatically identified the most similar 
clustering (number and assignment) to those reported in the original study (Fig. 2c). We 
annotated the clusters to cell types based on gene markers reported in the original study 
(Supplementary Table 3 and Methods). (The subpopulation of pericytes, identified by 
manual adjustment in the original study, was missed by all tested methods.) Overall, 
clusters identified by scScope showed the most statistically significant enrichment of 
specific cell-type markers (larger fold-changes) (Fig. 2d) and were highly consistent with 
previous, microscopy validation estimates of cell-type composition and proportion24 either 
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without (Fig. 2e) or with (Supplemental Fig. 3) including the major cell type of rod cells. 
Thus, scScope performed well at recovering cell-type compositions even when cell 
proportions are unbalanced. 

What is the benefit of analyzing increasing numbers of genes? We made use of the 
mouse cell atlas, which contained 400K cells sampled from 51 tissues. Only the deep 
learning algorithms were able to scale to these data sizes. To perform automatic 
identification of subpopulations on large datasets, we designed a scalable clustering 
approach (Methods and Supplemental Fig. 4). We made use of the 51 known tissue 
types to assess accuracy of the clustering results. Here, we found that all three algorithms 
performed similarly for 1,000 and 2,000 genes (Fig. 2f). However, the best performance 
overall was achieved by scScope by analyzing 10,000 genes. We note that for this 
analysis, we made use of an option in scScope’s software for scalable memory allocation 
(Methods). Thus, scScope offers the opportunity to analyze increased numbers of genes.  

Finally, we applied scScope to investigate novel biology in datasets. We focused on the 
ability to reveal changes in cell-type composition under perturbed conditions (Fig. 3a-c; 
intestinal dataset25), and the ability to scale to large datasets and reveal new 
subpopulations (Fig. 3d-e; brain dataset19). 

The intestinal dataset contained ~10K cells obtained from mouse intestines with different 
infection conditions. We applied scScope to the 1,000 most variable genes (Fig. 3a and 
Methods). In the original study, enterocytes were identified as a single cluster. 
Interestingly, scScope further subdivided this cell type into four subpopulations: 
differential expression of markers provided delineation of distal vs. proximal enterocyte 
subpopulations, while expression levels of these markers provided further delineation into 
immature vs. mature subtypes. The assessment of maturity was based on expression 
levels of distal or proximal markers (Fig. 3b and Supplementary Fig. 5). Identifying these 
refined enterocyte subpopulations allowed us to make predictions about specific cell-type 
response to infection. For example, the pro-inflammatory gene Saa1 was overexpressed 
during both Salmonella and H. polygyrus (day 10) infections in distal enterocytes, but not 
in proximal enterocytes (Fig. 3c and Supplementary Table 4). This geographic pattern 
of Saa1 expression is known for Salmonella infection, but is a novel prediction arising 
from scScope analysis for H. polygyrus infection. Thus, scScope can be used to rapidly 
explore scRNA-seq data, predict novel gene function and identify new cell subtypes from 
perturbed conditions. 

The 1.3M cells in the brain dataset were obtained from multiple brain regions, including 
the cortex, hippocampus and ventricular zones, of two embryonic mice. scScope 
automatically identified 36 clusters, and we assigned each cluster to one of three major 
cell types based on criteria from the Allen Brain Atlas (http://brain-map.org) (Fig. 3d-e, 
Supplementary Table 5 and Methods): Glutamatergic neurons, GABAergic neurons 
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and non-neuronal cells. The proportions of neurons and non-neurons identified by 
scScope were consistent with cell proportions reported by previous brain study26 (Fig. 
3d). We investigated whether we could identify biological meaning to the 36 clusters, 
some of which contained fewer than 1,000 cells. Satisfyingly, by comparing our top 
overexpressed genes with known cell-type markers26-28 (Supplementary Table 6), we 
were able to assign two thirds of the clusters to known cell types (Fig. 3e). Thus scScope 
can rapidly, automatically and directly identify bona fide, rare cell types from datasets with 
over a million single-cell transcriptional profiles. 

Taken together, scScope offers a platform that will keep pace with the rapid advances in 
scRNA-seq, enabling rapid exploration and accurate dissection of heterogeneous 
biological states within extremely large datasets of single-cell transcriptional profiles 
containing dropout measurements. 
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Figures 

 

Fig. 1. Overview of scScope architecture and performance on simulated datasets. 

a) Overview of the recurrent network architecture of scScope.  

An input single-cell profile with dropout gene measurements (white entries) is corrected 
for batch effects, then the corrected vector 𝑥 is sequentially processed by an encoder 
layer (for feature extraction), decoder layer (for noise reduction) and imputation layer (for 
dropout imputation). The imputed vector 𝑣 is added back to the batch-corrected input 
profile 𝑥 to fill in missing values. This process proceeds recursively 𝑇	times to produce a 
final signature feature vector output ℎ used for biological discovery, such as identification 
of phenotypically distinct subpopulations.  

b) Comparison of run time on dataset of different scales. 
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Datasets of varying size were randomly subsampled from a dataset containing 1.3 million 
mouse brain cells and used for comparison (Methods). A training epoch was set to 100 
for all deep learning methods (DCA, scVI and scScope), and a latent dimension of 50-
dimension was used for all methods. 

c-d) Comparison of clustering and imputation accuracy on 2K single-cell datasets 
generated by Splatter.  

Methods were compared for varying fractions of sparsity levels (controlled by dropout rate, 
Supplementary Table 2). Accuracy measurement is based on (c) adjusted Rand index 
or (d) fractional measure of imputation errors. For each simulated condition, 10 random 
replicates were simulated; mean values and standard deviations (error bars) are reported. 

e-f) Comparison of clustering accuracy on 1M single-cell datasets generated by 
simulation strategy as used in SIMLR. 

Methods were compared for varying (f) fractions of dropout genes or (g) rare 
subpopulation fractions (10 replicates were used; ARI reported as in c-d). scScope and 
scVI directly analyzed the whole dataset, while other methods analyzed 20K down-
sampled subsets. 
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Fig. 2. Evaluation of methods on experimental scRNA-seq datasets. 

a) Analysis of batch correction. Comparison on (top) clustering accuracy and (bottom) 
computational runtime without or with batch correction using mouse lung tissue scRNA-
seq dataset. 

b) Analysis of imputation accuracy for different gene expression levels. Comparison 
of imputation error for dropout genes with different (octiles) gene expression level using 
the cord blood mononuclear cell (CBMC) scRNA-seq dataset. 

c-e) Analysis of minor subpopulations discovery. Using the retina scRNA-seq dataset, 
we compared: (c) the accuracy of cell-type identification (cluster numbers derived from 
each method are indicated in parentheses), (d) the significance of cell-type markers 
identified, and (e) the correlation of minor cell-type proportions identified by computation 
or microscopy (for all cell types, see Supplemental Fig. 3). 

f) Analysis of subpopulation identification for increasing gene depth. Using the 
mouse cell atlas, we compared the ability of different approaches to identify the 51 known 
tissues in the atlas. *: provided software package was unable to complete task. 
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Fig. 3. Application of scScope to explore biology in two experimental datasets. 

a-c) Analysis of intestinal scRNA-seq dataset. (a) Changes in cell-type composition of 
mouse intestinal epithelial under different infection conditions, visualized via tSNE plots. 
TA: transit amplifying, EEC: enteroendocrine, EP: enterocyte progenitor, E: enterocyte. 
scScope identified four subtypes of enterocyte cells. (b) Identification of mature vs. 
immature and distal vs. proximal enterocyte subpopulations. Shown are expression levels 
of E-distal and E-proximal gene markers (average UMI count) on the four enterocyte 
subtypes predicted by scScope and, for comparison, all other clusters (Non-E). (c) 
Discovery of differential expression of the gene Saa1 in distal and proximal enterocytes 
after Salmonella and H. polygyrus infections. 

d-e) Analysis of brain scRNA-seq dataset. (d) Fractions of three major cell types 
(Glutamatergic neurons, GABAergic neurons and non-neurons) identified by scScope 
and comparisons with reported neuron fractions by previous SPLiT-seq research. (e, left) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/315556doi: bioRxiv preprint 

https://doi.org/10.1101/315556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

scScope results visualized using tSNE on 30K cells (randomly sampled from the full 
dataset). Clusters were divided to three major types based on gene markers. (e, right) 
Large-scale annotation of clusters to known cell types according to top 10 overexpressed 
genes. Vertical axis (left): clusters with known cell type annotations and corresponding 
cell numbers. Horizontal axis: differentially expressed marker genes across shown 
clusters. Vertical axis (right): previously reported cell subtype-specific genes, used to 
provide cluster annotation. 
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Methods 

1. scScope model and training. 

Architecture  

The architecture of the scScope network has four modules (Fig. 1a). The parameters in 
these layers are learned from data in an end-to-end manner through optimization. We 
note that scScope is flexible in terms of normalizing and scaling of input data, as long as 
the input values are non-negative.  

Batch Effect Correction 

scSope offers the option to correct for batch effects, following the same batch effect 
correction mechanisms used in ref 11. We denote: the input single-cell profile as 𝑥&' ∈ ℝ*; 
the number of batches by 𝐾; a one-hot experimental batch effects indicator vector 𝑢' ∈
ℝ- (the one-hot (i.e. non-zero) entry indicates the corresponding batch from which 𝑥&' was 
sequenced); and the learnable batch correction matrix as 𝐵 ∈ ℝ*×-. Then, we remove 
the batch effect from 𝑥&' via: 

𝑥' = 𝑟(𝑥&' − 𝐵𝑢') 

Throughout, we use 𝑟(∙) to denote the standard rectified linear unit (ReLU):  

𝑟(𝑣) = 𝑣6 = max(0, 𝑣). 

This rectifier enforces the property that 𝑥'  only has non-negative values, which is 
expected for actual gene count data.  

Then, 𝑥' is regarded as the single-cell profile with batch effects removed. We note that 
𝑢' is an optional input for end-users to indicate each cell’s batch identity. In scScope, 𝑢' 
is set by default to a zero vector, assuming there is no batch effect among cells.  

Encoder 

For each cell 𝑐 , scScope makes use of an encoder layer to compress the high-
dimensional single-cell expression profile 𝑥' ∈ ℝ*  into a low-dimensional, latent 
representation ℎ' ∈ 	ℝ>,𝑀 < 𝑁. Here, 

ℎ' = 𝑓C(𝑥') = 𝑟(𝑊C𝑥' + 𝑏C) 

where the encoder layer 𝑓C(∙)  is a composition of a linear transform with learnable 
parameters 𝑊C	 ∈ 	ℝ*×> and 𝑏C ∈ 	ℝ>  followed by the nonlinear activation 𝑟(∙). We note 
that ReLU is the most widely used non-linear function in deep learning due to its ease in 
back-propagating gradient information across layers.  
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Decoder 

A decoder layer is established to decompress the latent representation ℎ' to an output 
𝑦' ∈ 	ℝ* that is of the same dimension as the input single-cell profile,  

𝑦' = 𝑓H(ℎ') = 𝑟(𝑊Hℎ' + 𝑏H) 

where the decoder layer 𝑓H(∙)  is a composition of a linear transform with learnable 
parameters 𝑊H	 ∈ 	ℝ*×>  and 𝑏H ∈ 	ℝ*  followed by the nonlinear activation 𝑟(∙) . The 
nonlinear ReLU activation 𝑟(∙) sets all negative values to zero, which makes experimental 
sense for gene transcript abundance measured by nonnegative values. When minimizing 
the differences between 𝑦'	and 𝑥'	(∀	𝑐 = 1… . 𝑛) in the training set (of size 𝑛), the above 
encoder-decoder network acts as a typical auto-encoder (AE) neural network. AEs exhibit 
the potential for generating a “clean” signal 𝑦'	by removing additive noise from	𝑥'	via 𝐿N 
norm minimization (typically, 𝑝 = 2)29. However, the AE paradigm lacks a mechanism for 
dealing with dropout entries (missing data), which can be an even more severe problem 
than noise for scRNA-seq.  

Imputer 

We next focus on estimating missing data measurements. Zero-valued measurements 
can be due either to biological reasons (un-transcribed genes), or to technical reasons 
(dropouts). Our imputation step is designed to deal with the later problem, namely to 
estimate dropout gene expression values. Of course, a challenge shared by all single-
cell-based imputation is to distinguish between zero-expressed vs. dropout 
measurements. 

To this end, we developed a self-correcting layer to impute missing entries caused by 
dropout during sequencing. Our imputation approach implicitly makes use of the fact that 
subsets of genes are often co-regulated (e.g. by common transcription factors or pathway 
activation) and that their patterns of co-expression can be learned by observation of 
sufficiently many cells. The decoder in our AE framework is enabled to find such patterns 
from the latent space representation. The studies of transcriptional regulatory 
mechanisms have led to the development of many approaches for network-based 
pathway recovery.  

For our purposes of imputing expression values from initial zero values, we chose to make 
use of a widely used sparse graph-reconstruction approach30. We only perform imputation 
operations for zero measurements of the original single cell profile 𝑥'. Assume for cell 𝑐 
that gene 𝑔 has zero expression value in the expression profile 𝑥'. Our goal is to impute 
𝑣'R, the value of gene 𝑔 in cell 𝑐, using the output of the decoder layer, 𝑦'. We do this by: 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/315556doi: bioRxiv preprint 

https://doi.org/10.1101/315556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

𝑣'R = 𝑟(𝑤RT𝑦' + 𝑏R) 

where learnable parameters 𝑤R ∈ ℝ*	is a sparse vector and 𝑏R is a bias for each gene 𝑔. 
(The 𝑖VW entry in vector 𝑤R indicates the influence of a gene 𝑖 on the expression of gene 
𝑔.) These gene-specific parameters are learned from regression across all cells. We used 
𝑦' rather than the original input 𝑥' to represent gene expression values as it is expected 
to contain less expression noise after AE reconstruction. As above, the nonlinear ReLU 
activation 𝑟(∙)  forces regressed values to be non-negative; the hope for truly zero-
expressed genes is that regression will return non-positive values, which are set to zero 
after ReLU activation.  

As with our previous network layers, we can describe the imputation step in matrix form 
as follows. We define 𝑍' (resp. �̅�') as the set of zero- (resp. non-zero-) valued genes in 
profile 𝑥' of the 𝑐-th cell. We can now write the imputation layer as: 

𝑣' = 𝑓Z(𝑦') = 𝑃\][𝑟(𝑊Z𝑦' + 𝑏Z)] 

where the imputation layer 𝑓Z(∙) is the triple composition of a linear transform (with sparse 
weight matrix 𝑊Z = [𝑤`T;… ; 𝑤bT] ∈ 	ℝ*×*  and bias 𝑏Z 	∈ 	ℝ* ), an ReLu 𝑟(∙), and “entry-
sampling” operator 𝑃\]. 𝑃\] sets to zero all entries not in 𝑍', as we are only interested in 
imputation for zero-valued genes in the profile 𝑥' (i.e., for any vector 𝑟, 𝑃\]c𝑟de = 𝑟d	𝑖𝑓	𝑗 ∈
𝑍'	and	𝑃\]c𝑟de = 0, 𝑗 ∉ 𝑍').  

After obtaining imputed vector 𝑣', we obtain a corrected single-cell expression profile: 
𝑥j' = 𝑥' + 𝑣'. This corrected single cell profile 𝑥j' can be used as the input to the encoder 
layer to learn an updated latent representation through the encoder-decoder framework. 
Because missing values have been estimated in 𝑥j' , the new latent representation is 
expected to be better than the original one encoded from 𝑥'. 

Learning the objective function. 

The imputation layer imposes a recurrent structure on the scScope network architecture. 
For clarity of exposition, the recurrent scScope can be unfolded into multiple time steps 
(Supplementary Fig. 6 shows three steps). Then, the whole recurrent scScope 
framework can be described as: 

ℎ'V = 𝑓C(𝑥j'V) = 𝑓C(𝑥' + 𝑣'Vk`), 		𝑦'V = 𝑓H(ℎ'V), 𝑣'V = 𝑓Z(𝑦'V), 		𝑣'l = 0,	 

for iterations 𝑡 = 1…𝑇. At the first step, the correcting layer’s output 𝑣'l is set as zero. We 
note that if we only consider one learning step (𝑇 =1) then scScope is a standard normal 
auto-encoder network.  
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The learning objective for scScope is defined by the unsupervised, self-reconstruction 
pursuit (as typically used in auto-encoder training):  

𝑓C, 𝑓H, 𝑓Z = 𝑎𝑟𝑔𝑚𝑖𝑛	𝐿 = 	ppqr	𝑃\s][𝑦'
V − 𝑥']rq

t
T

Vu`

b

'u`

 

The entry-sampling operator 𝑃\s] forces loss computation only on (non-zero) measured 
entries of 𝑥'. The parameters in the encoder layer (𝑓C), decoder layer (𝑓H) and imputation 
layer (𝑓Z) are all learned by minimizing the above loss function. We note that scScope 
learns its informative latent representation (ℎ'T) in an unsupervised manner. scScope 
requires no extra information (e.g. cell type) to accomplish its deep-learning training.  

Multiple GPU training. 

scScope offers the option to train its deep model by using multiple GPUs, which can 
dramatically reduce runtime (Supplementary Fig. 1). In this mode, scScope replicates 
its network structure on multiple GPUs and aggregates all network parameters on the 
CPU. These network parameters include the connections and biases of all encoder, 
decoder and imputation layers of scScope. In a round of batch training, one GPU grabs 
the current network parameters from the CPU to use for its own network replicate of 
scScope. Then, for gradient calculation, the GPU processes a randomly chosen batch of 
𝑚 (= 64 or 512) single-cell expression profiles from a total of 𝑛 single-cell profiles.  

We apply a conventional gradient calculation framework for neural networks, which 
iteratively performs feed-forward and back propagation steps. In the feed-forward (FF) 
step, a GPU passes its batch of 𝑚 single-cell samples through its locally stored scScope 
network and accumulates the losses for this batch. In the back propagation (BP) step, 
batch-dependent gradient information for network parameters on different layers is 
calculated by sequentially propagating accumulated loss from the end to the first network 
layer. This BP operation is performed by using gradient calculation functions wrapped in 
deep-learning packages (in our case TensorFlow). We apply this process independently 
across all 𝑘 GPUs in a parallelized manner to obtain gradient information from a total 
𝑘 × 𝑚  samples. The gradient information of those 𝑘  GPUs is averaged by the CPU, 
i.e.	𝐺(d) = (𝐺`

(d) + ⋯+ 𝐺y
(d))/𝑘, where 𝐺y

(d) is the gradient calculated from the 𝑘VW GPU in 
the 𝑗VW  round of optimization iteration. Finally, we apply adaptive moment estimation 
(ADAM)31 with default TensorFlow32 parameters to update the network parameters stored 
on the CPU. Iterations were terminated when either the objective function showed little 
changed (i.e. < 0.1%) or the number of iterations reached a maximal epoch (e.g. 100).  

Cell subpopulation discovery. 
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Representations outputted by scScope can be integrated with any clustering methods. 
Here we used the graph-based method PhenoGraph23, as it performs automated robust 
discovery of subpopulations, as well as determines subpopulation numbers automatically.  

1) Graph clustering for moderate-scale data. 

We directly applied the PhenoGraph software to datasets of moderate scale. All clustering 
results were obtained using a Python-implemented PhenoGraph package (version 1.5.2). 
We followed the suggested setting and considered 30 nearest neighbors when 
constructing graphs. 

2) Scalable graph clustering for large-scale data. 

scScope enables the feature learning on millions of cells. However, PhenoGraph is 
unable to handle millions of cells due to the extreme computational costs 
(Supplementary Fig. 7) and memory requirements in graph construction. To leverage 
the power of graph clustering on analyzing these large-scale data, we designed a density 
down-sampling clustering strategy by combining k-means and PhenoGraph. 

In detail, we divided cells into 𝑀  groups with equal size and performed 𝐾 -means 
clustering on each group independently (Supplementary Fig. 4). The whole dataset was 
split to 𝑀 × 𝐾 clusters and we only input the cluster centroids into PhenoGraph for graph 
clustering. Finally, each cell was assigned to graph clusters according to the cluster labels 
of its nearest centroids. 

In our implementation on the dataset of 1.3 million mouse brain cells, we took 𝑀 = 500 
and 𝐾 = 400, which made it possible to process millions of data in only tens of minutes 
without loss of accuracy (Supplementary Fig. 8 and Methods). 

3) Scalable memory allocation for analyzing large numbers of genes in large datasets. 

For large datasets and gene numbers, scScope implements a scalable memory allocation 
strategy that allows the dataset to be broken into a smaller number of batches that can 
be loaded directly into memory. We note that when this option is used, minibatches are 
only selected from within each batch during training. This option was only used in Fig. 2f 
for the case of ≥10K genes; here the 400K mouse cell atlas dataset was broken into four 
batches of size 100K. 

2. Imputing dropout genes. 

This output layer of the scScope neural network provides a complete set of gene profiles 
with all entries filled. Accordingly, we directly used filled values of this layer to impute 
missing results.  
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3. Implementation of comparison methods. 

We note that a hyper-parameter across all methods is the number of latent feature 
dimensions M (Methods); we observed that all methods were reasonably robust to 
changes in M (e.g. Supplementary Fig. 9), and to avoid an intractable number of possible 
comparisons, we set M=50 for all comparisons. Unless otherwise noted, the software 
packages were used as follows. 

Markov Affinity-based Graph Imputation of Cells (MAGIC): The MAGIC algorithm was 
performed using the python-based package magic. We input the raw data and employed 
the library_size_normalize() function provided by the software for all simulated and 
real data to learn 50-dimension latent features. 

Zero-Inflated Negative Binomial-based Wanted Variation Extraction (ZINB-WaVE): We 
employed the R package zinbwave, and all default parameters were used to learn the 50-
dimension feature vector. For running without batch correction, we set batch information 
for each cell as the same, and for batch correction mode the batch indices were input as 
reference. 

Single-cell interpretation via multi-kernel learning (SIMLR): We used the Python 
implementation of SIMLR with the authors’ default parameter settings. SIMLR needs to 
take the desired cluster number as input. For our simulated dataset, we input the known 
cluster numbers. For the retina dataset, where the “true” cluster number is unknown, we 
set it to 39, which is the cluster number reported in the original study6. 

Deep count autoencoder (DCA): DCA is an unpublished software based on TensorFlow 
framework. We installed the Python package of DCA (download date: Sep. 4, 2018) and 
ran DCA by setting the latent dimension to 50. We set the training epoch to 100 and kept 
all other default parameters. 

Single-cell Variational Inference (scVI): scVI is an unpublished work on biorxiv. We used 
the Torch-based Python package of scVI (download date: June 5, 2018). In the original 
demonstration of the software, they assigned different parameters for different test 
datasets. Here, we set the training step to 0.001, epoch to 100 and the latent dimension 
to 50. The software shuffled the cell order randomly in training and did not offer the option 
to output the latent representation with the same input cell orders. In order to keep track 
of the input cells for later analysis, we appended cell IDs to the cell labels.  

scScope: scScope was implemented in Python 3.6 with TensorFlow-GPU 1.4.1, Numpy 
1.13.0, Scikit-learn 0.18.1 packages and was tested on a server with 4 GPUs (Nvida Titan 
X) and 64GB memory. For all experiments presented in this paper, we extracted 50-
dimensional representations with 2 recurrent learning steps (𝑇 = 2). For medium-scale 
data size, we use the default batch size of 64 and epoch of 100 in training; for large-scale 
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data set, we use a larger batch size of 512 and smaller epoch of 10 to speed up the 
learning process. Unless noted specifically, scScope was run on single GPU mode in our 
comparisons. 

Down-sampling training strategies on large-scale dataset: It is not possible to run directly 
the non-deep-learning based approaches on dataset with millions of cells. For these 
packages, we randomly down-sampled datasets containing more than 1M cells to a 
subset of 20K cells. On these down-sampled datasets, single-cell feature vectors were 
learned by the respective method and clustered by PhenoGraph. A support vector 
machine (SVM) was trained on this subset in the latent feature space and then used to 
assign labels for the rest of cells in the unsampled dataset. The deep-learning approaches 
we tested can learn features on millions of cell profiles, but the software does not provide 
a function for automatic clustering on such large-scale datasets. Therefore, for 
comparisons we passed the output of their deep learning algorithms for single-cell feature 
learning to our scalable graph clustering approach for large-scale clustering. 

All compared methods were run on the same server with Xeon E5 CPU, 64 GB memory, 
Nvidia Titan X GPU and Ubuntu 14.04 operation system. Further, all comparisons were 
performed using log transformed input (we observed similar relative performance of the 
six compared methods above across five different choices of input scaling or 
normalization methods; Supplemental Fig. 10).   

4. Evaluation of clustering performance  

We used the adjusted Rand index (ARI)33, 34 to compare label sets of two clustering 
methods. For two clustering results 𝑈 and 𝑉 with 𝑟 and 𝑠 clusters on a data set of 𝑛 cells, 
𝑛�d denotes the number of cells shared between cluster 𝑖 in 𝑈 and cluster 𝑗 in 𝑉. And ARI 
is defined as  

𝐴𝑅𝐼	 =
∑ �

𝑛�d
2 ��d − �∑ �𝑛�∗2 �� ∑ �

𝑛∗d
2 �d � / �𝑛2�

1
2 �∑ �𝑛�∗2 �� + ∑ �

𝑛∗d
2 �d � − �∑ �𝑛�∗2 �� ∑ �

𝑛∗d
2 �d � / �𝑛2�

 

where 𝑛�∗ = ∑ 𝑛�dd , 𝑛∗d = ∑ 𝑛�d�  and 𝑛 is the number of cells in the data set. 

5. Evaluation of Imputation performance  

The imputation accuracy was defined as the normalized distance between the imputed 
log count entries and log count ground truth entries. We constructed lists 𝑙 and 𝑙� whose 
elements correspond to either ground truth or imputed values (respectively) for all 
dropouts entries across all cells (Fig. 1d). We defined the normalized error as: 
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𝑒𝑟𝑟𝑜𝑟 =
qr𝑙 − 𝑙�rq

`

r|𝑙|r
l

 

 

where r|		|rN means the 𝑙N norm of a vector. 

On the simulated data, the ground truth dropout vector 𝑙 is known. However, for real 
biological data, the ground truth values for missing genes are unknown. To evaluate 
scScope’s imputation accuracy on real biological data, we followed the same down-
sampling strategy as used for scVI17. Namely, we randomly split the entire collection of 𝑛 
cells into 𝑛V���b training cells and 𝑛��� validation cells. We used the different imputation 
methods to build gene models from the 𝑛V���b  cells. On each of the  𝑛���  cells, we 
randomly set  𝑝% of its non-zero genes as “simulated” missing genes and set their 
corresponding count values to zero. The real measured values of these simulated missing 
genes were then used to generate the ground truth list 𝑙, and the list 𝑙� was based on 
inferred values for the simulated missing genes from the 𝑛��� cells. The imputation error 
was calculated as above. 

6. In silico studies 

Simulation with Splatter  

The simulation package Splatter20 is designed to generate realistic scRNA-seq data. We 
used this package to generate data with 2000 cells, 3 subpopulation groups, and dropout 
rates from 1 to 5.  

Simulation with SIMLR 

We used the simulation approach from SIMLR12 to generate large-scale scRNA-seq data 
due to limitations in scalability of Splatter. Following previous studies, we initially tested 
the performance of scScope for cell-subpopulation discovery using simulated data10, 12. 
We assumed the high-dimensional single-cell expression data 𝑥' ∈ ℝ* is generated or 
controlled by a latent code 𝑧' ∈ 	ℝ�(𝑃 < 𝑁), which is not observable. 𝑧' is sampled from 
a Gaussian mixture model with 𝑘 Gaussian components, i.e. 𝑧'~∑ 𝜋�𝑁(µd, 𝛴d)y

du` . The 
mixture coefficients 𝜋� were chosen from a uniform distribution and normalized to sum to 
1, the mean vector µd ∈ 	ℝ� was uniformly sampled in [0,1]N, and the covariance matrix 
𝛴d ∈ 	ℝ�×� was chosen to be Σ = 0.1 × 𝐼, for identity matrix 𝐼. 

To simulate single-cell gene vectors, we generated a projection matrix 𝐴 ∈ ℝ*×�	to map 
the low-dimensional latent code to a high-dimensional space. First, we simulated ground 
truth, 𝑥'V���, which cannot be observed:  
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𝑥'V��� = 𝐴𝑧' + 𝑏 

where each entry in 𝐴  was independently sampled from the uniform distribution 
𝑈(−0.5,0.5) and bias 𝑏 = 0.5 is added to avoid negative gene expression in the high-
dimensional mapping. Second, we simulated the observed profile, 𝑥'��  , which may 
contain gene-specific noise and dropout artifacts due to the sequencing technique and 
platform. Noise was added to the true gene profile by: 𝑥'Rb�� � = 𝑥'RV��� + 𝜀'R , where 
ε'R~𝑁(0, 𝛴Rb�� �) and 𝛴Rb�� � was uniformly sampled in the range of [0, 0.2] independently 
for each gene. Dropout events were added via a double exponential model with decay 
parameter35 𝛼: 

𝑥'R��  = 𝑥'Rb�� �𝛿[𝑞'R > exp(−𝛼	𝑥'Rb�� �
t)] 

where 𝑥'R denotes the 𝑔VW gene of 𝑥', 𝑞'R was randomly sampled in [0, 1], and 𝛿 =1 if its 
argument is true and = 0 otherwise. This double-exponential model is motivated by the 
widely-used assumption that low-expressed genes have higher probability to be 
influenced by dropout events.  

We use the aforementioned generative model to create 𝑁 single-cell profiles 𝑥��� , 𝑖 =
1…𝑁. In the reported results (Fig. 1e-f), we repeat such random generation process for 
10 times on 𝑛 =10K and 1M simulated single-cell profiles under various conditions for 
performance comparisons among different approaches.  

Simulation with rare cell subgroups 

To generate cell subpopulations with rare cell types, i.e. cell clusters with very limited 
numbers of cells compared to the major clusters, we sample the mixture coefficients 𝜋� 
from a non-uniform distribution as  

	𝜋`…y© = 𝑞;	𝜋y©6`…y =
1 − 𝑞 ∗ 𝑘ª
𝑘 − 𝑘ª

 

where 𝑞 ≪ 1/𝑘 is the mixture fraction for each minor cluster, 𝑘ª is the number of rare cell 
subpopulations, and 𝑘 is the total number of subpopulations. With this minor modification 
from the previous section, we generate imbalanced cell-type compositions with 𝑘ª rare 
cell types.  

In our simulation results reported in Fig. 1f, we generate large-scale, imbalanced datasets 
with 1M single-cell profiles according to the following parameters: 𝛼 = 0.5 (dropout rate), 
𝑘 = 50 (total number of clusters), 𝑘ª = 5 (the number of rare cell types) and varied the 
rare cell-type mixture rate q in the range from 0.1%~0.4%. 10 replicates for each condition 
were analyzed. We randomly down-sample these 1M single cell profiles to 10K. On the 
subsampled datasets, after learning features, we applied PhenoGraph for de novo cell 
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subpopulation discovery. On the un-subsampled datasets, we used our scalable graph 
clustering approach (Methods). We note that subpopulation numbers are automatically 
determined by these clustering approaches.  

7. Analysis of biological data sets. 

(a) Lung tissue data 

The lung tissue dataset is part of the Mouse Cell Atlas data8. This dataset was 
downloaded from Gene Expression Omnibus (GEO) database (accession number: 
GSE108097). In this dataset, 6,940 cells were sequenced via three independent 
experiments by Microwell-seq, with 2,512, 1,414 and 3,014 cells in each batch. 1,000 
high variable genes were selected for analysis. Then three batch correction methods 
(ZINB-WaVE, scVI and scScope) were used on the normalized data to learn the low-
dimensional features. Cell types were identified by PhenoGraph clustering.  

To evaluate the clustering accuracy, identified cell labels were compared with previously 
reported labels (https://satijalab.org/seurat/mca.html).  

(b) Cord blood mononuclear cells dataset 

In this dataset, 8,617 cord blood mononuclear cells (CBMC) were profiled by CITE-seq, 
a new technology which enabled the simultaneous measurement of protein levels and 
transcriptome levels for each cell22. This dataset was downloaded from GEO database 
(accession number: GSE100866). Cell types in CBMC have been extensively studied and 
identified. Based on this prior knowledge, 13 monoclonal antibodies were chosen to 
identify bone fide cell types. These antibodies serve as an “orthogonal” ground truth to 
evaluate analysis results based on RNA-seq data. 

In the data pre-processing stage, we removed the spiked-in mouse cells and only kept 
8,005 human cells for analysis using the cell-filtering strategy introduced in original 
study22. The top 1,000 most variable human genes were selected for downstream 
analysis after the log1p transformation and normalization by library size. For antibody 
data, we used the centered log ratio transformed antibody-derived tags (ADTs), which is 
also provided by authors. 

To evaluate the performance of each method, we first automatically identified cell 
populations based on ADTs data using PhenoGraph. Then, scRNA-seq data were input 
to each method to learn latent representations which were used by PhenoGraph to predict 
cell types. The ADTs-derived cell types were taken as ground truth to evaluate the 
accuracy of cell types by scRNA-seq data. 

(c) Retina data 
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In this dataset, 44,808 cells were captured from the retinas of 14-day-old mice and 
sequenced by DropSeq6. Data were obtained from the GEO database (accession number: 
GSE63473). In order to be comparable with published results, we followed previous 
experimental procedures to select 384-most variable genes6 and then to log transform 
their expression (log(TPM + 1)). After clustering, we annotated clusters obtained by each 
method using the same maker genes in the original study6. 

We identified candidate cell types based on the highest average type-specific marker 
expression (Supplementary Table 3). For each cluster, we calculated the fold-change 
values of all cell-type markers, and if at least one of a type-specific gene marker was 
expressed significantly higher (log2 fold change > 0.5) than in all other clusters, we 
assigned the cluster with the candidate cell type. Otherwise the cluster was assigned to 
the cell type “Rod cell”. 

(d) Mouse cell atlas data 

The mouse cell atlas (MCA) dataset is designed to offer a comprehensive investigation 
of all major cell types in mouse8. Data were downloaded from the GEO database 
(accession number GSE108097). In the dataset, 405,796 cells were sampled from 51 
tissues and were sequenced by Microwell-seq.  

Data were firstly normalized by library size and 1,000, 2,000, 5,000, 10,000 and 20,000 
top-variable genes were selected to test the scalability of each method on gene numbers. 
Only the deep-learning based methods (DCA, scVI and scScope) could be applied 
directly to this large-scale dataset. Further, to identify clusters in the MCA dataset, we 
applied our scalable clustering approach to the latent features.  

In most of the 51 tissues, one major cell type dominated the cell population (see Figure 
2b-c in ref 8). Therefore, we used the tissue identify as a proxy for ground truth to evaluate 
cell-type discovery. 

(e) Intestinal data 

In this dataset, intestinal epithelial cells were captured from 10 mice and sequenced using 
droplet-based scRNA-seq25. Data were downloaded from the GEO database (accession 
number GSE92332). Among all cells, 1,770 cells from 2 mice were infected by Salmonella 
for 2 days; 2,121 cells (2 mice) and 2,711 cells (2 mice) were infected by H. polygyrus for 
3 and 10 days, respectively. An additional 3,240 cells were sequenced from 4 healthy 
mice as a control group. We again followed the same procedure that log-transformed the 
expression data and selected top 1,000 most variable genes as input to scScope. For cell 
subpopulation annotation, we first assigned clusters to one of 7 major cell types (stem, 
cell-cycle related, distal enterocyte, proximal enterocyte, goblet, enteroendocrine, and tuft) 
according to the maximum averaged expression of cell-type makers (Supplementary 
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Table 7). Second, cell-cycle related clusters were subdivided into increasing stages of 
maturation (transit amplifying early stage, transit amplifying late stage, and enterocyte 
progenitor) based on the ratio of cell-cycle & stem cell markers to enterocyte expression 
(Supplementary Table 8). Third, the distal and proximal enterocyte clusters were further 
classified (immature vs. mature) based on increasing expression levels of the enterocyte 
gene markers. 

After annotating clusters, we calculated the cell proportion for each mouse and then 
averaged the proportions among mice of the same infection condition. For significant tests 
of proportion changes after infection, we compared proportions of mice in control group 
and in infection group using a two-sided t-test and rank-sum test. P-values were obtained 
under the null hypothesis that no changes happened in proportions after infection. 

Overexpressed genes for each cluster were also identified by the same differential 
expression analysis. 

(f) Brain data 

Data were obtained from 10x Genomics (http://10xgenomics.com). 1,308,421 cells from 
embryonic mice brains were sequenced by Cell Ranger 1.3.0 protocol. We transformed 
unique molecular identifier (UMI) count data into log(TPM+1)6 and calculated the 
dispersion measure (variance/mean) for each gene. According to the rank of the 
dispersion measure, we selected the top 1,000 most variable genes for analysis. 

Due to the massive scale of the dataset, we set the batch size of scScope to 512 and 
trained the model for 10 epochs. Cells were further clustered into 36 groups by our density 
down-sampling clustering. We annotated clusters to three major types (excitatory neurons, 
inhibitory neurons and non-neuronal cells) based on maximal-expressed maker genes 
(Supplementary Table 6). 

To identify cluster-specific overexpressed genes, we then conducted differential 
expression analysis for each gene. We normalized UMI-count to the range of [0 1] for 
each gene, enabling comparisons across genes. Then gene-expression fold-change and 
rank-sum P-values were calculated between cells within vs. outside each cluster. 
Significantly overexpressed genes were identified using the criteria of log2 fold change > 
0.5 and rank-sum P-value < 0.05.  

Data set was download from https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.3.0/1M_neurons on December 10, 2017. 

The data analysis by 10xgemonics was obtained from 
http://storage.pardot.com/172142/31729/LIT000015_Chromium_Million_Brain_Cells_Ap
plication_Note_Digital_RevA.pdf. 
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8. Evaluation of the density down-sampling accuracy. 

To evaluate the accuracy of the proposed density down-sampling clustering method, we 
randomly selected a subset (𝑛 = 5,000, 10,000, 20,000, 50,000, 100,000) of 1.3 million 
data and directly input corresponding scScope features to PhenoGraph for clustering. 
Then, we compared subset labels with labels obtained by density down-sampling 
clustering on the whole dataset. The comparison was repeated 100 times on different 
randomly selected subsets (Supplementary Fig. 8). 

9. Software used in study 

MAGIC: https://github.com/KrishnaswamyLab/MAGIC 

ZINB-WaVE: https://github.com/drisso/zinbwave 

SIMLR: https://github.com/bowang87/SIMLR_PY 

DCA: https://github.com/theislab/dca 

scVI: https://github.com/YosefLab/scVI 

PhenoGraph: https://github.com/jacoblevine/PhenoGraph 

10. Code availability 

scScope can be obtained as an installable Python package, which can now be obtained 
via “pip install scscope”, and is available under the Apache license. All software, 
instructions and software updates are maintained on https://github.com/AltschulerWu-
Lab/scScope. 
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