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Abstract 

Mycobacterium chelonae is a rapidly growing mycobacterium present in the environment. It is 

associated with skin and soft tissue infections including abscess, cellulitis and osteomyelitis. Other 

infections by this bacterium are post-operative/transplant-associated, catheter, prostheses and even 

concomitant to haemodialytic procedures. In this study, we employ a subtractive genomics 

approach to predict the potential therapeutic candidates, intended for experimental research against 

this bacterium. A computational workflow was devised and executed to procure core proteome 

targets essential to the pathogen but with no similarity to the human host. Initially, essential 

Mycobacterium chelonae proteins were predicted through homology searching of core proteome 

content from 19 different bacteria. Druggable proteins were then identified and N-

acetylglucosamine-1-phosphate uridyltransferase (GlmU) was chosen as a case study from 

identified therapeutic targets, based on its important bifunctional role. Structure modeling was 

followed by virtual screening of phytochemical library (N > 2200), from 500 medicinal plants, 

against it. A biflavonoid daphnodorin G from Daphne odora was screened as having best potential 

for binding GlmU. Phytotherapy helps curb the menace of antibiotic resistance so treatment of 

Mycobacterium chelonae infection through this method is recommended.  
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1. Introduction 

Mycobacteria species are categorized into two major groups, tubercular and non-tubercular 

mycobacteria. Nontuberculous mycobacteria are further divided into two groups, rapidly growing 

and slow growing mycobacteria, depending upon duration of their reproduction in suitable medium 

(Tortoli, 2014). Mycobacterium chelonae is a member of rapidly growing group, which takes less 

than a week for its reproduction in/on medium. It is the most commonly isolated organism among 

all rapidly growing mycobacteria. It is mostly found in water sources and on medical instruments 

such as bronchoscopes (Gonzalez-Santiago and Drage, 2015), and has been isolated from 

environmental, animal and human sources.  Mycobacterium chelonae infections in human hosts 

have increased over time, with reports of both haematogenous and localized occurrences in the 

recent past (Hay, 2009).  

Outbreaks due to Mycobacterium chelonae contaminated water and compromised injections are a 

rising problem. Infections have been linked to cosmetic and surgical procedures, such as trauma, 

surgery, injection (botulinum toxin, biologics, dermal fillers), liposuction, breast augmentation, 

under skin flaps, laser resurfacing, skin biopsy, tattoos, acupuncture, body piercing, pedicures, 

mesotherapy and contaminated foot bath (Kennedy et al., 2012; Gonzalez-Santiago and Drage, 

2015). Mycobacterium chelonae may also colonize skin wounds, as result of which patients form 

abscess, skin nodules and sinus tracts (Patnaik et al., 2013). 

Recent era has observed a trend for search of drug targets in pathogens using computational 

methods, with a focus on genomic and proteomic data (Shanmugham and Pan, 2013). 

Comparative/differential and subtractive genomics along with proteomics has been used by many 

researchers for the identification of drug targets in various pathogenic bacteria like Pseudomonas 

aeruginosa (Sakharkar et al., 2004), Helicobacter pylori (Dutta et al., 2006), Campylobacter fetus 

(Moolhuijzen et al., 2009), Brugia malayi (Kumar et al., 2007), Leptospira interrogans (Amineni 

et al., 2010), Listeria monocytogenes (Sarangi et al., 2015), Mycobacterium leprae (Shanmugam 

and Natarajan, 2013)  etc. Determination of potential drug targets has been made possible by the 

availability of whole genome and their inferred protein complement sequences in public domain 

databases (Sarangi et al., 2015).  

Parenteral antibiotics against Mycobacterium chelonae include tobramycin, amikacin, imipenem, 

and tigecycline, but it has demonstrated resistance to antibiotics and disinfectants (Brown-Elliott 
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et al., 2012; Jaén-Luchoro et al., 2016). This property assists Mycobacterium chelonae in 

colonizing water systems and allows its access to humans (Jaén-Luchoro et al., 2016). Till now, 

no specific guidelines for the treatment of Mycobacterium chelonae have been defined in the 

literature (Gonzalez-Santiago and Drage, 2015). This clearly illustrates the need to search out drug 

targets in the Mycobacterium chelonae for design of better therapies against infection by this 

bacterium, especially using naturally existing metabolites from microbes and plants. In the current 

study, subtractive proteomics was applied to identify essential druggable proteins in 

Mycobacterium chelonae. Docking of the selected protein GlmU with phytochemicals was carried 

out for identification of a candidate which might bind it and stop its normal cellular function, 

leading to bacterial lysis/death. 

2. Material and methods 

2.1.Prediction of Mycobacterium chelonae essential proteome  

Complete proteome sequence of Mycobacterium chelonae CCUG 47445 with accession no: 

NZ_CP007220 was downloaded from the NCBI database. For the prediction of essential proteins, 

Geptop (Wei et al., 2015) was installed on computer and a search was carried out to align the 

Mycobacterium chelonae protein sequences against the essential or core protein sequences from 

defined set of 19 bacteria with an essentiality score cut-off value range of 0.15 (Wei et al., 2015). 

Results were saved and analyzed further. 

2.2.Prediction of non-homologous host proteins 

In order to find the bacterial proteins which do not have similarity with human host, the set of 

essential protein sequences of Mycobacterium chelonae was subjected to BLASTP against the 

human proteome database (Uniprot release 2014). The standalone BLAST software (Altschul et 

al., 1990) was used for this purpose. For identification of non-homologous proteins, an expectation 

(E-value) cut-off of 10−2, gap penalty of 11 and gap extension penalty of 1 was set as the standard. 

E-value cut-off (10−2), based on reported research protocols (Perumal et al., 2007; Sarangi et al., 

2015) was considered.  

2.3.Identification of putative drug targets 

There are several molecular and structural properties which have been explored by researchers for 

selecting suitable therapeutic targets in pathogenic microorganisms. These properties include 

determination of molecular weight, sub-cellular localization, 3D structure and druggability 

analysis (Hassan et al., 2015; Silverio-Machado et al., 2014; Uddin et al., 2015). These properties 
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were evaluated for selection of the therapeutic targets in Mycobacterium chelonae. Molecular 

weight was calculated by using computational tools and drug target-associated literature available 

in the Swiss-Prot database (Boeckmann et al., 2003). Subcellular localization of therapeutic targets 

was predicted using PSORTb (Nancy et al., 2010). It uses feature support vector machine-based 

method and suffix tree algorithm for downstream analysis. Predictions are grouped through a 

Bayesian scheme into one final (consensus) result. Druggable targets were identified with BLAST 

hits through unified protocol from the DrugBank. Parameters were: gap cost: -1 in case of 

extension or opening, mismatch penalty: -3, E-value: 1* 10-5, match: 1, filter algorithm: DUST 

and SEG (Azam and Shamim, 2014). The targets were subjected to KEGG blast for identification 

of associated pathways.  

2.4.Virtual screening of ligand against selected target 

Keeping in view the results of sub-cellular localization, molecular weight determination and 

druggability analysis, an essential protein (GlmU) was chosen for further downstream processing. 

Swiss Model was used for the prediction of 3D structure of the selected target protein (Biasini et 

al., 2014). This tool constructs structure model by recognizing structural templates from the PDB 

using multiple threading alignment approaches (Wang et al., 2016). The top structure used for 

structure prediction was that of GlmU from Mycobacterium tuberculosis (PDB ID: 3D8V). The 

structure was validated and analyzed for quality using SAVES 

(https://services.mbi.ucla.edu/SAVES/), consisting of ERRAT, VERIFY3D and Ramachandran 

plot analysis.  

A phytochemical library consisting of 2266 phytochemical compounds was then docked with 

GlmU (Ashfaq et al., 2013; Mumtaz et al., 2016). Docking was carried out using Molecular 

Operating Environment (MOE) with the parameters: placement: triangle matcher, rescoring 1: 

London dG, refinement: forcefield, rescoring 2: affinity dG. MOE provides fast and accurate 

docking results based on dedicated algorithms and accurate scoring functions (Halim et al., 2015). 

Structural preparation program embedded in MOE added the missing hydrogen atoms, corrected 

the charges and assigned near precise hybridization state to each residue (Junaid et al., 2016). 

3. Results and Discussion 

3.1.Essential proteome prediction  

Initially, total proteome of Mycobacterium chelonae was subjected to core or essential proteins 

prediction. Geptop identified these proteins by screening against 19 bacteria (Fig. 1), based upon 
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orthology and phylogeny features. In the process of essential proteome mining through homology-

based methods, a query protein is considered as essential if it is also present in another bacterium 

and experimentally identified as essential for survival. There are various methods for the prediction 

of essential proteins, for example single-gene knockout, transposon mutagenesis and RNA 

interference but all these methods are time consuming and laborious. A good alternative is high-

efficiency computational methods designed specifically for this type of work (Cheng et al., 2013; 

Wei et al., 2013). Predicted essential proteins were 305 in number (Supplementary File 1), linked 

with significant metabolic pathways in the pathogen life cycle and necessary for its survival. In 

order to disrupt the function and existence of pathogen it is most important to attack those bacterial 

proteins which regulate important functions (e.g. nutrient uptake) in the host environment (Butt et 

al., 2012). Latest antimicrobial drugs are designed on the principle of the inhibition of the 

pathogen’s metabolic pathway (Lemaitre and Girardin, 2013; Uddin et al., 2015). Therefore, such 

protein sequences may be considered as possible therapeutic targets. 

3.2.Identification of non-host proteins  

Non-host proteins refer to those bacterial proteins which do not have homology with human 

proteins. If the homologous proteins are targeted, they could badly affect the metabolism of host 

due to similarity with host proteins. Therefore, non-host proteins could be preferred better drug 

targets, as side effects and cross-reactivity caused by the use of antibiotics could be evaded for 

harming host (Azam and Shamim, 2014; Sarangi et al., 2015). Among the core proteome of 

Mycobacterium chelonae, 117 proteins (Supplementary File 2) indicated ‘no hit’ against the 

human proteome according to the set criteria. These proteins were then used for subsequent 

analysis. 

3.3.Drug Target mining and analysis 

BLASTp was performed to identify significant drug target from newly selected essential proteins. 

Only 17 proteins had significant hits against druggable proteins present in the DrugBank (Table 

1).  

Molecular weight determination and druggability analysis could improve the screening process for 

therapeutic targets, as observed previously for numerous pathogenic bacteria and fungi (Abadio et 

al., 2011). The molecular weight for each potential drug target was calculated (Table 2) and based 

upon previous studies, it is suggested that smaller proteins are readily soluble and easier to purify 

(Duffield et al., 2010). 
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Sub-cellular localization is a critical factor as it helps in accessing the target gene. Cellular 

functions are compartment specific, so if the location of unknown protein is predicted then its 

function could also be known which help in selection of proteins for further study. Membrane 

proteins are reported as more useful target and more than 60% of the currently known drug targets 

are membrane proteins (Arinaminpathy et al., 2009; Tsirigos et al., 2015). Cytoplasm is the site 

of proteins synthesis and most of these proteins remain there to carry out their specific functions 

after synthesis. However, some proteins need to be transported to different cellular compartments 

for their specific function (Strzyz, 2016). The subcellular localization of non-host proteins of 

Mycobacterium chelonae was predicted and majority were demarcated as cytoplasmic (Table 1). 

3.4.GlmU analysis and phytochemical screening  

After the characterization of all druggable proteins of Mycobacterium chelonae, GlmU was 

selected for further analysis (out of 305 essential and 117 non-homologous proteins). It is a 

bifunctional enzyme, exhibiting both acetyltransferase and uridyltransferase activities (Moraes et 

al., 2015; Sharma et al., 2016). 

GlmU has been analyzed for various bacterial species (Patin et al., 2015; Rani et al., 2015), 

including Escherichia coli (Brown et al., 1999), Streptococcus pneumonia (Kostrewa et al., 2001), 

Haemophilus influenzae (Mochalkin et al., 2008) and Mycobacterium tuberculosis (Zhang et al., 

2009). Predicted structure of GlmU estimated RMSD of 0.5 Å. Structure was found to be a 

homotrimer. Ramachandran plot showed 97.2% residues in favored regions (90.4% in core, 9.4% 

in allowed, 0.3% in generously allowed) and no residue in disallowed region. According to 

VERIFY3D program, at least 80% of the amino acids should have value >= 0.2 in the 3D/1D 

profile and 96.55% of predicted GlmU residues had an averaged 3D-1D score >= 0.2, thus passing 

the quality check. An ERRAT score of 90.66 was obtained.  

Each monomer of GlmU consists of two domains: N and C-terminal domains. N-terminal domain 

has / like fold, similar to dinucleotide-binding Rossmann fold topology. C-terminal domain 

exhibits a regular left-handed -helix conformation and a long -helical arm connecting both 

domains (Sharma et al., 2016). N-terminal domain is essential for uridyltransferase activity as it 

catalyses the transfer of uridine monophosphate from uridine-triphosphate to N-

acetylglucosamine-1-phosphate (GlcNAc1P). C-terminal domain has acetyltransferase activity as 

it catalyzes the transfer of an acetyl group from acetyl-CoA coenzyme to GlcN1P, in order to 

produce GlcNAc1P (Moraes et al., 2015).  
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GlmU plays fundamental role in the formation of bacterial cell wall by carrying out catalysis of 

uridine-diphospho-N-acetylglucosamine, an important precursor in bacterial peptidoglycan cell 

wall (Sharma et al., 2016). Activity of acetyltransferase of eukaryotic cells differ from the activity 

of GlmU in the way that, eukaryotic acetyltransferase occurs on GlcN6P and not on GlcN1P. These 

properties make GlmU suitable as the drug target (Moraes et al., 2015) and it has been used for 

drug targeting in bacteria such as Haemophilus influenza (Mochalkin et al., 2007) apart from 

designing inhibitors against it for Mycobacterial species (Li et al., 2011; Tran et al., 2013; Rani 

and Khan, 2015; Mehra et al., 2016). It is also known that proteins that are involved in more than 

one pathway of pathogen, in addition to that they are non-host proteins, could be more effective 

drug targets (Sarangi et al., 2015). Inactivation of bifunctional GlmU enzyme leads to loss of 

mycobacterial viability (Zhang et al., 2008; Rani and Khan, 2015), therefore GlmU was used for 

docking against phytochemicals.  

The possible interaction between protein and the ligand is understood computationally through 

molecular docking. Docking results of GlmU with compounds from 500 medicinal plants (a 

phtyochemical library of 2266 compounds (Mumtaz et al., 2016), revealed that daphnodorin G 

was the top scoring compound showing affinity for GlmU (Fig. 3; Table 2). It has molecular weight 

of 558.495 g/mol and is a metabolite of the plant Daphne odora (Taniguchi and Baba, 1996).  

Receptor centric docking approach was employed for screening of prospective phytochemical 

library of compounds from more than 500 medicinal plants against GlmU of Mycobacterium 

chelonae. We focused on phytochemical screening against Mycobacterium chelonae GlmU 

because plant derived/natural compounds could be used as antibacterial therapeutics for treatment 

of bacterial infections (Aparna et al., 2014). A comparative analysis of structural shape and 

chemical complementarity to GlmU was ranked, based on S value in MOE and the one with least 

score i.e. Daphnodorin G was obtained as best inhibitor. Analogues of Daphnodorin have been 

reported previously to show antibacterial and nematicidal activities (Zhuo et al., 2015). Huang et 

al. (2010) reported Daphnodorin analogs as inhibitor of respiratory syncytial virus while Hu et al. 

(2000) reported its analog as moderately active against HIV-1. Further Lab testing is proposed to 

know about minimum inhibitory concentration value and other parameters for Daphnodorin G 

against Mycobacterium chelonae. 
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4. Conclusion 

In this study, we proposed GlmU as one of the important therapeutic drug targets for 

Mycobacterium chelonae as it is bifunctional, essential protein for pathogen and has no homology 

with human proteome. We have provided putative model for phytotherapy against Mycobacterium 

chelonae through virtual screening-based identification of potent metabolite from a database of 

more than 2000 compounds. This study could be taken as an initiative for screening and quick 

designing of phytotherapy against microbes using a computational modus operandi. It is expected 

that our study will also facilitate selection and screening of other Mycobacterium chelonae 

therapeutic target proteins against phytochemical and other relevant compounds for Lab testing 

and successful entry into drug design pipeline. 
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Figure/ Table legends 

Fig. 1. Workflow describing subtractive proteomics with respective number of obtained 

sequences. In silico parameter analysis included hydrophobicity, sub-cellular location prediction, 

molecular weight etc.  

Fig. 2. (A) Docked GlmU with daphnodorin G (3D conformation) and (B) 2D conformation of 

docked complex showing residue interactions. 

Table 1. Predicted druggable proteome of Mycobacterium chelonae. GRAVY is average 

hydrophobicity of the protein measured by Kyte-Doolittle algorithm. Hydrophobicity value below 

0 are indicates globularity (means protein is hydrophilic), while score value of above 0 indicates 

protein to be membranous (hydrophobic). 

Table 2. Top 5 compounds obtained with best inhibition score against GlmU of Mycobacterium 

chelonae.  

Supplementary File 1. List of bacterial species used for essential proteome prediction of 

Mycobacterium chelonae. 

Supplementary File 2. Essential proteome of Mycobacterium chelonae. 

Supplementary File 3. Non-homologous core proteome of Mycobacterium chelonae. 
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Table 1. Predicted druggable proteome of Mycobacterium chelonae. GRAVY is average 

hydrophobicity of the protein measured by Kyte-Doolittle algorithm. Hydrophobicity value 

below 0 are indicates globularity (means protein is hydrophilic), while score value of above 

0 indicates protein to be membranous (hydrophobic). 
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al., 2015; Li 

et al., 2016 

5. WP_046252

393 

dihydropteroate synthase 2 37365.

3 

350 -0.165 Cytoplas

mic 

Folate 

biosynthesis 

Roland et 

al., 1979; 

Hammoude

h et al., 

2014; Zhao 

et al., 2016 

6. WP_046252

395 

2-amino-4-hydroxy-6-

hydroxymethyldihydropter

idine diphosphokinase  

1 19332.

9 

178 -0.054 Cytoplas

mic 

Tetrahydrofol

ate 

biosynthesis 

Shi et al., 

2001 

7. WP_046252

399 

pantoate - beta-alanine 

ligase/ pantothenate 

synthetase 

1 33527.

3 

314 -0.057 Cytoplas

mic 

Pantothenate 

biosynthesis 

White et al., 

2007; Ciulli 

et al., 2008; 

Velaparhi et 

al., 2008; 

Hung et al., 

2009; Sledz 

et al., 2010; 

Yang et al., 

2011  

8. WP_046252

764 

3-oxoacyl-ACP 

synthase/beta-ketoacyl 

acyl carrier protein 

synthase 

2 35485.

1 

340 0.070 Cytoplas

mic 

Lipid 

synthesis 

He and 

Rynold, 

2002; He et 

al., 2004; 

Nie et al., 

2005; Lee 

et al., 2012 

9. WP_046252

769 

bifunctional N-

acetylglucosamine-1-

phosphate 

uridyltransferase 

(GlmU)/glucosamine-1-

phosphate 

acetyltransferase 

1 50208.

3 

482 -0.026 Cytoplas

mic 

Amino sugar 

and 

nucleotide 

sugar 

metabolism, 
Biosynthesis 

of antibiotics 

Pereira et 

al., 2009; 

Buurman et 

al., 2011; 

Stokes et 

al., 2012; 

Min et al., 

2012; 

Mehra et 

al., 2015 

10.WP_046253

413 

cell division protein FtsI 1 68842.

9 

642 -0.300 Cytoplas

mic 

membrane 

Peptidoglyca

n 

biosynthesis, 
beta-Lactam 

resistance 

Slayden and 

Belisle, 

2009 

11.WP_046253

421 

cell division protein FtsZ 1 38795.

6 

383 0.076 Cytoplas

mic  

Chromosome 

partition, 

cytoskeleton, 

Wang et al., 

2003b; Ito 

et al., 2006; 
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toxin-anti-

toxin  

Park et al., 

2014 

12.WP_046253

835 

enoyl-[acyl-carrier-

protein] reductase (InhA) 

 

3 28724.

0 

269 0.152 Cytoplas

mic 

membrane 

Lipid 

biosynthesis 

Heath et al., 

2000; He et 

al., 2007; 

Luckner et 

al., 2010 

13.WP_046254

273 

DNA ligase (NAD(+)) 

LigA 

1 74430.

9 

684 -0.226 Cytoplas

mic 

DNA 

replication, 

Base excision 

repair, 

nucleotide 

excision 

repair, 

mismatch 

repair 

Brötz-

Oesterhelt 

et al., 2003; 

Srivastava 

et al., 2005; 

Mills et al., 

2011 

14.WP_046254

500 

thymidylate kinase 1 23403.

1 

212 -0.394 Cytoplas

mic 

Pyrimidine 

metabolism 

Wang et al., 

2000; 

Haouz et 

al., 2003; 

Fioravanti 

et al., 2005; 

Kosinska et 

al., 2005 

15.WP_046254

518 

biotin--[acetyl-CoA-

carboxylase] ligase 

1 27934.

5 

264 -0.084 Cytoplas

mic 

Biotin 

metabolism 

Freiberg et 

al., 2004; 

Polyak et 

al., 2012; 

Soares da 

Costa et al., 

2012 

16.WP_046254

614 

alanine racemase 1 41861.

3 

397 -0.008 Cytoplas

mic 

D-Alanine 

metabolism, 

Vancomycin 

resistance 

Badet and 

Walsh, 

1985; Flynn 

et al., 1985; 

Anthony et 

al., 2011 

17.WP_046255

923 

ribonucleotide-

diphosphate reductase 

subunit beta/ 

ribonucleoside 

diphosphate reductase-β 

2 36899.

2 

320 -0.437 Unknown Purine and 

pyrimidine 

metabolism 

Moore, 

1969; 

Tholander 

and 

Sjöberg, 

2012 
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Table 2.  

Serial 

No. 

Compound S-value Metabolite forming plant 

1 Daphnodorin G -7.67 Daphne odora 

2 Durantanin I -6.90 Duranta repens 

3 5,7-Dihydroxy-4'-methoxy-6,8-

di-C-methylflavanone 7-(4,6-

digalloylglucoside) Matteucinol-

7-O-[4'',6''-di-O-galloyl]-beta-D-

glucopyranoside 

-6.15 Miconia myriantha 

4 Chebulinic acid -5.89 Terminalia chebula, Caesalpinia coriana, 

Phyllanthus emblica 

5 Myricitrin -5.85 Pistacia weinmannifolia J.Pisson ex.Franch,   

Rhus parviflora,  

Haplopappus bailahuen, 

Warburgia stuhlmannii,  

Cornus kousa, 

Davidsonia pruriens, 

Doliocarpus spraguei, 

Acacia aroma,   

Acacia saligna, 

Caesalpinia pulcherrima, 

Desmanthus illinoensis, 

Flemingia congesta, 

Quercus rubra,   

Patersonia spp., 

Juglans mandshurica,   

Leea thorelii Gagnep,   

Myrica rubra,   

Lysimachia spp., 

Eugenia edulis,   

Luma chequen,   

Plinia pinnata, 

Nymphaea caerulea, 

Nymphaea lotus, 

Phyllanthus emblica,   

Abies amabilis, 
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Armeria sp., 

Ceratostigma willmottianum, 

Limonium spp., 

Eskemukerjea megacarpum HARA, 

Chondropetalum spp., 

Elegia capensis, 

Diploknema butyracea, 

Manilkara zapota cv.Tikal,   

Leptolaena diospyroidea, 

Leptolaena pauciflora, 

Heuchera spp., 

Lithophragma spp., 

Metasequoia glyptostroboides, 

Hedychium spp., 

Peltiphyllum peltatum, 

Sarcolaeana multiflora 
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