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ABSTRACT 22 

This study presents a method for genomic prediction that uses individual-level data and 23 

summary statistics from multiple populations. Genome-wide markers are nowadays widely 24 

used to predict complex traits, and genomic prediction using multi-population data is an 25 

appealing approach to achieve higher prediction accuracies. However, sharing of individual-26 

level data across populations is not always possible. We present a method that enables 27 

integration of summary statistics from separate analyses with the available individual-level 28 

data. The data can either consist of individuals with single or multiple (weighted) phenotype 29 

records per individual. We developed a method based on a hypothetical joint analysis model 30 

and absorption of population specific information. We show that population specific 31 

information is fully captured by estimated allele substitution effects and the accuracy of those 32 

estimates, i.e. the summary statistics. The method gives identical result as the joint analysis of 33 

all individual-level data when complete summary statistics are available. We provide a series 34 

of easy-to-use approximations that can be used when complete summary statistics are not 35 

available or impractical to share. Simulations show that approximations enables integration of 36 

different sources of information across a wide range of settings yielding accurate predictions. 37 

The method can be readily extended to multiple-traits. In summary, the developed method 38 

enables integration of genome-wide data in the individual-level or summary statistics form from 39 

multiple populations to obtain more accurate estimates of allele substitution effects and 40 

genomic predictions. 41 
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INTRODUCTION 43 

Genome-wide markers are nowadays widely used to predict complex traits. This 44 

prediction is based on a linear model that partitions for each individual the observed complex 45 

phenotype value into systematic effects, comprising at least a population mean, an individual 46 

genetic value and an environmental deviation (Fisher, 1918). With genome-wide markers, 47 

individual genetic values can be computed from allele substitution effects estimated from 48 

individual-level phenotype and genotype data (Meuwissen et al., 2001). Subsequently, genetic 49 

values can be also computed for individuals of interest that are genotyped, but not phenotyped. 50 

This process is commonly called genomic prediction. In animal and plant breeding, genetic 51 

values are used to identify genetically superior individuals and use them as parents of the next 52 

generation to improve complex traits like milk yield (Meuwissen et al., 2001; VanRaden, 2008) 53 

or grain yield (Schulthess et al., 2016) In human genetics, genetic values can be used to predict 54 

individual genetic risk for complex diseases to inform preventive and personalized medicine 55 

(Campos et al., 2010; Wray et al., 2013; Pasaniuc and Price, 2017). 56 

Accuracy of estimated allele substitution effects and of resulting genetic values for 57 

complex traits are foremost a function of the amount of available data (Daetwyler et al., 2008). 58 

To maximize the prediction accuracy, use of all available data is recommended (Henderson, 59 

1984; Wray et al., 2013; Vilhjálmsson et al., 2015). In some small populations, collecting large 60 

amounts of data is not possible, and a joint analysis across multiple populations is needed to 61 

achieve high accuracy (Hozé et al., 2014; Wientjes et al., 2016). However, such joint analysis 62 

is often impossible, because of logistic or privacy considerations (Powell and Norman, 1998; 63 

Maier et al., 2018). Therefore, several methods were proposed to enable analysis of data from 64 

multiple populations when individual-level data is not available (Pasaniuc and Price, 2017; Liu 65 

and Goddard, 2018; Maier et al., 2018). These methods approximate a joint analysis by first 66 

obtaining summary statistics from separate analyses of individual-level data for each population 67 
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and then combine these summary statistics to estimate genetic values. In human genetics, 68 

summary statistics usually consist of publically available allele substitution effects, i.e., 69 

genome-wide associations, together with their standard errors, estimated independently for each 70 

marker (Yang et al., 2012; Vilhjálmsson et al., 2015; Maier et al., 2018). In livestock, summary 71 

statistics more likely consist of allele substitution effects estimated jointly for all markers, 72 

together with prediction error (co)variances (Liu and Goddard, 2018). While these methods 73 

may increase prediction accuracy in comparison to separate analyses, a loss in prediction 74 

accuracy is expected relative to an analysis using all individual-level data due to approximations 75 

(Maier et al., 2018). Further, these methods are based on some assumptions that make them 76 

difficult to apply outside their context of development. For example, Maier et al. (2018) 77 

implicitly assumed that only a single phenotype record per trait was associated with an 78 

individual. While this is usually the case in human genetics, it is not in breeding populations 79 

where individuals may have repeated phenotype records for the same trait, e.g., repeated 80 

longitudinal production or reproduction records in livestock or replicated field trials in crops, 81 

or when phenotype records are measured on a group of individuals and linked to a genotyped 82 

relative, e.g., progeny tested bulls for dairy production. 83 

The objective of this study was to develop a method that jointly analyses individual-84 

level data and summary statistics from multiple populations with no or limited amount of 85 

approximation. The method assumes that individual-level data is composed of marker 86 

genotypes and phenotype records that potentially have a variable number of replicates per 87 

individual. Further, summary statistics are assumed to be composed of estimated allele 88 

substitution effects with an associated measure of accuracy. Different measures of accuracy can 89 

be used, which controls the amount of approximation. The developed method is validated with 90 

simulated data. The results show that the method enables accurate integration of different 91 

sources of information across a wide range of settings. 92 

93 
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MATERIAL AND METHODS 94 

The first part of this section describes the theory of (1) separate and joint analyses of 95 

two individual-level datasets, (2) an exact integration of estimated allele substitution effects 96 

from one population into the analysis of another, (3) approximate integrations, and (4) 97 

generalization for multiple populations. The second part describes simulations used for 98 

validation of the developed method. 99 

Theory 100 

Assume we have two populations with individual-level datasets of phenotyped and 101 

genotyped individuals. The two populations and their corresponding datasets are hereafter 102 

referred to as 1 and 2. Further assume that both datasets contain the same markers. From this 103 

data we want to obtain accurate estimates of allele substitution effects and genetic values for 104 

complex traits. We can achieve this by a joint analysis of the two datasets. When one of the 105 

datasets is not available, we can achieve this by integrating the results of a separate analysis of 106 

the unavailable data into the separate analysis of the available dataset. We show how to perform 107 

this integration exactly or approximately. 108 

Separate and joint analyses 109 

A standard marker model, using random regression on marker genotypes, for the 110 

separate analysis of dataset 𝑖 (𝑖  = 1, 2) is: 111 

 𝐲𝑖 = 𝐗𝑖 𝛃𝑖
∗ + 𝐙𝑖 𝐖𝑖 𝛂𝑖

∗ + 𝐞𝑖
∗,       (1) 112 

where 𝐲𝑖  is a 𝑛𝑜𝑏𝑠,𝑖 × 1 vector of phenotypes, 𝛃𝑖
∗ is a 𝑛𝑓,𝑖 × 1 vector of fixed effects that are 113 

linked to 𝐲𝑖  by a 𝑛𝑜𝑏𝑠,𝑖 × 𝑛𝑓,𝑖 incidence matrix 𝐗𝑖 , 𝛂𝑖
∗ is a 𝑛𝑚𝑎𝑟 × 1 vector of allele 114 

substitution effects that are linked to 𝐲𝑖  by a 𝑛𝑜𝑏𝑠,𝑖 × 𝑛𝑖𝑛𝑑,𝑖 incidence matrix 𝐙𝑖  and a 𝑛𝑖𝑛𝑑,𝑖 ×115 

𝑛𝑚𝑎𝑟 matrix of genotypes 𝐖𝑖 , and 𝐞𝑖
∗ is the vector 𝑛𝑜𝑏𝑠,𝑖 × 1 of residuals. In this work we 116 
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consider single-nucleotide polymorphism markers, which we code in 𝐖𝑖  as 0 for homozygous 117 

aa, 1 for heterozygous aA or Aa, and 2 for homozygous AA. Other genotype coding and 118 

centering, that is of the form (𝐖𝑖– 𝟏𝐯𝑖
′) with 𝟏 being a 𝑛𝑖𝑛𝑑,𝑖 × 1 vector of ones and 𝐯𝑖 being a 119 

𝑛𝑚𝑎𝑟 × 1 vector, can be used with no difference in obtained estimates of allele substitution 120 

effects (Strandén and Christensen, 2011). We assume a prior multivariate normal (MVN) 121 

distribution for allele substitution effects for the separate analyis of the dataset 𝑖, 𝛂𝑖
∗, with mean 122 

zero and covariance 𝐁𝑖 𝜎𝛼𝑖

2 , 𝛂𝑖
∗~𝑀𝑉𝑁(𝟎, 𝐁𝑖 𝜎𝛼𝑖

2 ), where 𝐁𝑖  is a 𝑛𝑚𝑎𝑟 × 𝑛𝑚𝑎𝑟 diagonal matrix 123 

(e.g., an identity matrix 𝐈), and 𝜎𝛼𝑖

2  is the variance of allele substitution effects. We also assume 124 

that residuals are multivariate normally distributed with mean zero and covariance 𝐑𝑖𝜎𝑒
2, 125 

𝐞𝑖
∗~𝑀𝑉𝑁(𝟎, 𝐑𝑖 𝜎𝑒

2), where 𝐑𝑖  is a 𝑛𝑜𝑏𝑠,𝑖 × 𝑛𝑜𝑏𝑠,𝑖 diagonal matrix (e.g., an identity matrix 𝐈), 126 

and 𝜎𝑒
2 is the residual variance. For simplicity and without loss of generality, it is assumed in 127 

the following that residual variances are the same for all separate and joint analyses. Variance 128 

components 𝜎𝛼𝑖

2  and 𝜎𝑒
2 are assumed known, as they will have been estimated from the data 129 

previously. This marker model is the ridge regression model (Hoerl and Kennard, 1976; 130 

Whittaker et al., 2000; Meuwissen et al., 2001; de los Campos et al., 2012) with optional 131 

different weights in 𝐁𝑖  (to differentially shrink different loci) and 𝐑𝑖  (to account for 132 

heterogeneous residual variance due to variable number of repeated phenotype records per 133 

individual). 134 

Separate estimates of allele substitution effects 𝛂𝑖
∗̂ are obtained by solving the following 135 

system of equations: 136 

 [
𝐗𝑖

′𝐑𝑖
−1𝜎𝑒

−2𝐗𝑖 𝐗𝑖
′𝐑𝑖

−1𝜎𝑒
−2𝐙𝑖 𝐖𝑖

𝐖𝑖
′𝐙𝑖

′𝐑𝑖
−1𝜎𝑒

−2𝐗𝑖 𝐖𝑖
′𝐙𝑖

′𝐑𝑖
−1𝜎𝑒

−2𝐙𝑖 𝐖𝑖 + 𝐁𝑖
−1𝜎𝛼𝑖

−2
] [

𝛃𝑖
∗̂

𝛂𝑖
∗̂
] = [

𝐗𝑖
′𝐑𝑖

−1𝜎𝑒
−2𝐲𝑖

𝐖𝑖
′𝐙𝑖

′𝐑𝑖
−1𝜎𝑒

−2𝐲𝑖

]. (2) 137 

Separate estimates of genetic values for individuals in a dataset 𝑖 (𝑖 = 1, 2) are 138 

obtained by 𝐠𝑖
∗̂ = 𝐖𝑖𝛂𝑖

∗̂. 139 
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A marker model for the joint analysis of two datasets 1 and 2 is: 140 

[
𝐲1

𝐲2

] = [
𝐗1 𝟎

𝟎 𝐗2

] [
𝛃1

𝛃2

] + [
𝐙1 𝐖1

𝐙2 𝐖2

] 𝛂 + [
𝐞1

𝐞2

],     (3) 141 

where phenotypes from the two populations are modelled with populations specific fixed effects 142 

(𝛃1 , 𝛃2 ), but a joint set of allele substitution effects (𝛂). We assume a multivariate normal 143 

prior distribution for allele substitution effects with mean zero and covariance 𝐁𝐽 𝜎𝛼𝐽
2 , 144 

𝛂~𝑀𝑉𝑁(𝟎, 𝐁𝐽 𝜎𝛼𝐽
2 ), where 𝐁𝐽  is a 𝑛𝑚𝑎𝑟 × 𝑛𝑚𝑎𝑟 diagonal matrix, and 𝜎𝛼𝐽

2  is the variance of 145 

allele substitution effects in the joint analysis. We also assume that residuals are multivariate 146 

normally distributed, specifically [
𝐞1

𝐞2

] ~𝑀𝑉𝑁 ([
𝟎
𝟎

] , [
𝐑1 𝟎
𝟎 𝐑2

] 𝜎𝑒
2) where 𝐑𝑖  is a 𝑛𝑜𝑏𝑠,𝑖 ×147 

𝑛𝑜𝑏𝑠,𝑖 diagonal matrix. 148 

Joint estimates of allele substitution effects 𝛂̂ are obtained by solving the following 149 

system of equations: 150 

[

𝐗1
′ 𝐑1

−1𝜎𝑒
−2𝐗1 𝟎 𝐗1

′ 𝐑1
−1𝜎𝑒

−2𝐙1 𝐖1

𝟎 𝐗2
′ 𝐑2

−1𝜎𝑒
−2𝐗2 𝐗2

′ 𝐑2
−1𝜎𝑒

−2𝐙2 𝐖2

𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐗1 𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐗2 𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐙1 𝐖1 + 𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐙2 𝐖2 + 𝐁𝐽
−1𝜎𝛼𝐽

−2

] [
𝛃1
̂

𝛃2
̂

𝛂̂

] =151 

[

𝐗1
′ 𝐑1

−1𝜎𝑒
−2𝐲1

𝐗2
′ 𝐑2

−1𝜎𝑒
−2𝐲2

𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐲1 + 𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐲2

]       (4). 152 

Joint estimates of genetic values for individuals in a dataset 𝑖 (𝑖 = 1, 2) are obtained by 153 

𝐠 𝑖̂ = 𝐖𝑖𝜶̂. 154 

Exact integration 155 

The integration of estimates of allele substitution effects from one dataset into the 156 

analysis of another can be performed by means of absorbing corresponding equations in the 157 
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joint system of equations. We choose to integrate estimates from the dataset 1 into the analysis 158 

of dataset 2. Derivations in Appendix A1 lead to the following system of equations that 159 

performs such integration and gives equivalent estimates of allele substitution effects to the 160 

joint analysis (4): 161 

[
𝐗2

′ 𝐑2
−1𝜎𝑒

−2𝐗2 𝐗2
′ 𝐑2

−1𝜎𝑒
−2𝐙2 𝐖2

𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐗2 (𝑃𝐸𝐶(𝛂1
∗̂))

−1

+ 𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐙2 𝐖2 − 𝐁1
−1𝜎𝛼1

−2 + 𝐁𝐽
−1𝜎𝛼𝐽

−2
] [𝛃2

̂

𝛂̂
] =162 

[
𝐗2

′ 𝐑2
−1𝜎𝑒

−2𝐲2

(𝑃𝐸𝐶(𝛂1
∗̂))

−1

𝛂1
∗̂ + 𝐖2

′𝐙2
′ 𝐑2

−1𝜎𝑒
−2𝐲2

],       (5) 163 

where 𝛂1
∗̂  are estimates of allele substitution effects from the separate analysis of dataset 1 using 164 

(2), and (𝑃𝐸𝐶(𝛂1
∗̂))

−1

 is the inverse of the corresponding prediction error covariance (PEC) 165 

matrix. The latter can be obtained as (𝑃𝐸𝐶(𝛂1
∗̂))

−1

= 𝐖1
′𝐙1

′ 𝐌1𝜎𝑒
−2𝐙1 𝐖1 + 𝐁1

−1𝜎𝛼1
−2 with 166 

𝐌1 = (𝐑1
−1 − 𝐑1

−1𝐗1 (𝐗1
′ 𝐑1

−1𝐗1 )
−1

𝐗1
′ 𝐑1

−1). Note that only the individual-level dataset 2 and 167 

summary statistics from the dataset 1 (i.e., the estimated allele substitution effects and their 168 

PEC) are required. Individual-level dataset 1 is therefore not required. 169 

It is worth noting that the integration of estimates of allele substitution effects from the 170 

dataset 1 into the analysis of dataset 2 can also be obtained from a Bayesian context. Bayes 171 

estimators for linear mixed models were discussed by several authors (Lindley and Smith, 172 

1972; Dempfle, 1977; Gianola and Fernando, 1986). In a Bayesian context, we can assume 173 

the following prior multivariate normal distributions for the marker model (1) applied to 174 

dataset 2: 175 

[𝛃2
∗  |𝐔2]~𝑀𝑉𝑁(𝐛𝟐, 𝐔2), where 𝐛𝟐 is a mean vector and 𝐔2 is a (co)variance matrix, 176 

[𝛂2
∗ |𝐁2𝜎𝛼2

2 ]~𝑀𝑉𝑁(𝟎, 𝐁2𝜎𝛼2
2 ), and  177 
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[𝐞2
∗ |𝐑2𝜎𝑒

2]~𝑀𝑉𝑁(𝟎, 𝐑2𝜎𝑒
2). 178 

Assuming a noninformative prior for 𝛃2
∗ , the system of equations (2) for dataset 2 can be 179 

obtained by differentiating the joint posterior distribution of 𝛃2
∗  and 𝛂2

∗  with respect to 𝛃2
∗  and 180 

𝛂2
∗ , and setting the derivatives equal to 0 (Gianola and Fernando, 1986). Integration of 181 

estimates of allele substitution effects from dataset 1 into the analysis of dataset 2 can be 182 

therefore obained by defining a multivariate normal prior distribution for allele substitution 183 

effects in the analysis of dataset 2 using the posterior distribution for allele substitution effects 184 

from a separate analysis of dataset 1: 185 

 [𝛂|𝛂1
∗̂ , 𝑃𝐸𝐶(𝛂1

∗̂), 𝐁1 𝜎𝛼1
2 , 𝐁𝐽 𝜎𝛼𝐽

2 ]~𝑀𝑉𝑁 (𝐐 (𝑃𝐸𝐶(𝛂1
∗̂))

−1

𝛂1
∗̂ , 𝐐),   (6) 186 

 𝐐 = ((𝑃𝐸𝐶(𝛂1
∗̂))

−1

− 𝐁1
−1𝜎𝛼1

−2 + 𝐁𝐽
−1𝜎𝛼𝐽

−2)
−1

. 187 

The matrix 𝐐 can be considered as the PEC matrix of a hypothetical separate analysis of 188 

dataset 1 using the multivariate normal prior distribution for allele substitution effects of the 189 

joint analysis, that is 𝛂1
∗~𝑀𝑉𝑁(𝟎, 𝐁𝐽 𝜎𝛼𝐽

2 ) and 𝐐 = (𝐖1
′𝐙1

′ 𝐌1𝜎𝑒
−2𝐙1𝐖1 + 𝐁𝐽

−1𝜎𝛼𝐽
−2)

−1

, and 190 

the vector 𝐐 (𝑃𝐸𝐶(𝛂1
∗̂))

−1

𝛂1
∗̂  can be considered as the estimated allele subsitution effects of 191 

this hypothectical separate analysis. In animal breeding, a similar approach was used to 192 

integrate estimated genetic values and associated accuracies from one genetic evaluation into 193 

another genetic evaluation (Quaas and Zhang, 2006; Legarra et al., 2007; Vandenplas and 194 

Gengler, 2012). 195 

Finally, it is worth noting that the term (𝑃𝐸𝐶(𝛂1
∗̂))

−1

𝛂1
∗̂  can be interpreted as pseudo-196 

phenotypes associated with allele substitution effects of dataset 2, derived from information in 197 

dataset 1. In this sense, the system (5) is similar to approaches that compute pseudo-198 
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phenotypes from available estimated genetic values where individual-level phenotypic 199 

information is not readily available, or is not measured on the individuals themselves but on 200 

close relatives. In animal breeding, these approaches are commonly known as deregression of 201 

estimated genetic values (Jairath et al., 1998). 202 

Approximate integration 203 

Exact integration requires the inverse of prediction error covariance matrix from the 204 

separate analysis, which could be approximated when unavailable. Genomic analyses of 205 

complex traits that combine different datasets commonly have access to estimated allele 206 

substitution effects and associated prediction error variances (in different forms), but not the 207 

whole prediction error covariance matrix 𝑃𝐸𝐶(𝛂1
∗̂) required in (5). We propose several ways 208 

to accommodate this situation. We assume that we know, at least, the prediction error variances 209 

(PEV) of estimated allele substitution effects (𝑃𝐸𝑉(𝛂1
∗̂)), the number of individuals (𝑛𝑖𝑛𝑑,1) 210 

and variance components used in the separate analysis of dataset 1 (𝜎𝛼1
2  and 𝜎𝑒

2). 211 

When only the prediction error variances of the estimated allele substitution effects 212 

(𝑃𝐸𝑉(𝛂1
∗̂)) are known, while PEC are not, then we can approximate (𝑃𝐸𝐶(𝛂1

∗̂))
−1

 with 213 

(𝑃𝐸𝑉(𝛂1
∗̂))

−1

. This approximation would be accurate if the matrix product 𝐖1
′𝐖1  has (close 214 

to) zero off-diagonal elements, which is dependent on the characteristics of genotypes in dataset 215 

1 (e.g., allele frequencies, linkage disequilibrium (LD), and population/family structure). If this 216 

is not the case, the approximation will bias the analysis by ignoring off-diagonal elements. 217 

When allele frequencies and LD correlations in dataset 1 are known, we can obtain a 218 

good approximation of 𝑃𝐸𝐶(𝛂1
∗̂) under some conditions (one phenotype record per individual, 219 

homogenous residual variance, overall mean is the only fixed effect, and Hardy-Weinberg 220 

equilibrium). Derivations in Appendix A2 show that under these conditions we can approximate 221 
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𝑃𝐸𝐶(𝛂1
∗̂) with (𝐖1

′𝐖1 𝜎𝑒
−2 + 𝐁1

−1𝜎𝛼1
−2)

−1
 with the unknown matrix 𝐖1

′𝐖1   approximated 222 

from commonly available population parameters (i.e., allele frequencies and LD correlation) as 223 

 4𝑛𝑖𝑛𝑑,1𝐩𝐩′ + 𝐕
1
2𝐂𝐕

1
2, where 𝐩 is a 𝑛𝑚𝑎𝑟 × 1 vector of allele frequencies, 𝐕 is a 𝑛𝑚𝑎𝑟 × 𝑛𝑚𝑎𝑟 224 

diagonal matrix of expected genotype sum of squares with the 𝑖-th diagonal element equal to 225 

𝑛𝑖𝑛𝑑,12𝑝𝑖,1(1 − 𝑝𝑖,1), and 𝐂 is a 𝑛𝑚𝑎𝑟 × 𝑛𝑚𝑎𝑟 matrix of pairwise genotype correlations between 226 

markers. In practice, the matrix 𝐂 for dataset 1 could be unknown, but we can approximate it 227 

by using a reference panel that includes, for example, available genotypes of non-phenotyped 228 

individuals originating from this population (Yang et al., 2012; Vilhjálmsson et al., 2015; Maier 229 

et al., 2018). 230 

Finally, we relax the assumption of having a single phenotype record per individual in 231 

the preceding approximations. This is relevant when individuals have repeated phenotype 232 

records, e.g., repeated longitudinal production or reproduction records in livestock or replicated 233 

field trials in crops. A related issue is the violation of assumption of homogenous residual 234 

variance when phenotype records are first pre-processed and then used in genomic analyses, 235 

e.g., deregressed progeny proofs in livestock (e.g., Garrick et al., 2009) or adjusted field trial 236 

means in crops  (e.g., Schulz-Streeck et al., 2013; Oakey et al., 2016; Damesa et al., 2017). For 237 

these situations, we show in Appendix A3 that we can approximate 𝑃𝐸𝐶(𝛂1
∗̂) with 238 

( 𝚲1 (4𝐩𝐩′ + 𝚿
1
2𝐂𝚿

1
2) 𝚲1𝜎𝑒

−2 + 𝐁1
−1𝜎𝛼1

−2)
−1

 where 𝚿 is a 𝑛𝑚𝑎𝑟 × 𝑛𝑚𝑎𝑟 diagonal matrix with 239 

the 𝑗-th diagonal element equal to 2𝑝𝑗,1(1 − 𝑝𝑗,1), and 𝚲1 is a 𝑛𝑚𝑎𝑟 × 𝑛𝑚𝑎𝑟 diagonal matrix 240 

with the j-th diagonal element representing the square root of effective number of records for 241 

the j-th marker. The matrix 𝚲1 can be obtained by solving the nonlinear system of equations 242 

𝑑𝑖𝑎𝑔 (( 𝚲1 (4𝐩𝐩′ + 𝚿
1
2𝐂𝚿

1
2) 𝚲1𝜎𝑒

−2 + 𝐁1
−1𝜎𝛼1

−2)
−1

) = 𝑃𝐸𝑉(𝛂𝟏
∗̂ )  243 
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through a fixed-point iteration algorithm (Burden and Faires, 2010) detailed in Appendix A3. 244 

It is worth noting that the proposed algorithm requires the inversion of a 𝑛𝑚𝑎𝑟 × 𝑛𝑚𝑎𝑟 dense 245 

matrix at each iteration. This computational cost can be reduced by performing the algorithm 246 

for each chromosome separately. 247 

Integration with multiple populations 248 

When more than two populations or datasets are available the developed methods can 249 

be easily extended. With 𝑛 datasets, the prior distribution for allele substitution effects in the 250 

separate analysis of the 𝑛-th dataset is defined using the posterior distributions for allele 251 

substitution effects from the separate analyses of 𝑛 − 1 datasets: 252 

 [𝛂|𝛂1
∗̂ , 𝛂2

∗̂ , … , 𝛂𝑛−1
∗̂ ]~𝑀𝑉𝑁 (𝐐 ∑ ((𝑃𝐸𝐶(𝛂𝑖

∗̂))
−1

𝛂𝑖
∗̂)𝑛−1

𝑖=1 , 𝐐), 253 

 𝐐 = (𝐁𝐽
−1𝜎𝛼𝐽

−2 + ∑ ((𝑃𝐸𝐶(𝛂𝑖
∗̂))

−1
− 𝐁𝑖

−1𝜎𝛼𝑖

−2)𝑛−1
𝑖=1 )

−1

. 254 

Simulations 255 

We tested developed methods with simulated data that either had low or high genetic 256 

diversity. The data was simulated in 5 replicates with the AlphaSim program, which uses the 257 

coalescent method for simulation of base population chromosomes and the gene drop method 258 

for simulation of chromosome inheritance within a pedigree (Hickey and Gorjanc, 2012; Faux 259 

et al., 2016). 260 

A diploid genome was simulated with 30 chromosomes, each 108 base pairs long. 261 

Coalescent mutation and recombination rate per base pair were set to 10-8, while effective 262 

population size was modelled over time to mimic population history of a livestock population 263 

in line with the values reported by MacLeod et al. (2013). Specifically, for the low diversity 264 

scenario effective population size of the base population was set to 100 and increased to 120, 265 
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250, 350, 1,000, 1,500, 2,000, 2,500, 3,500, 7,000, 10,000, 17,000, and 62,000 at respectively 266 

6, 12, 18, 24, 154, 454, 654, 1,754, 2,354, 3,354, 33,154, and 933,154 generations ago. For the 267 

high diversity scenario, effective population size of the base population was set to 10,000 and 268 

increased above this value in the same way as in the low diversity scenario; to 17,000 and 269 

62,000 at 33,154, and 933,154 generations ago. For each chromosome 10,000 whole 270 

chromosome haplotypes were sampled, which on average hosted about 700,000 markers (21 271 

million per genome) for the low diversity scenario and 1,400,000 markers (42 million per 272 

genome) for the high diversity scenario. Out of these loci 100 per chromosome (3,000 per 273 

genome) were sampled as causal loci affecting a complex trait. The allele substitution effect of 274 

causal loci was sampled from a normal distribution with mean zero and variance 1/3,000. The 275 

effects were used to simulate a complex trait with additive genetic architecture. In addition, 276 

2,000 loci per chromosome (60,000 per genome) were selected as markers with the restriction 277 

of having minor allele frequency above 0.05. 278 

From the base population, founder genomes for four populations (A, B, C, and D) were 279 

obtained by random sampling of chromosomes with recombination. The populations were 280 

ancestrally related through the common base population, but otherwise maintained 281 

independently, i.e., there was no migration between the four populations. Each population was 282 

initiated with 10,000 founders (half males and half females) and maintained for 7 generations 283 

with constant size. In the low diversity scenario, with the effective population size of 100, 25 284 

males and 5,000 females were selected as parents of each generation, while in the high diversity 285 

scenario, with the effective population size of 10,000, all 5,000 males and 5,000 females were 286 

used. The 25 males were selected on true genetic value, assuming accurate progeny test was 287 

available. 288 

For every individual in the population we simulated two types of phenotypes. First, an 289 

own single phenotype was simulated as the sum of the true genetic value and a residual sampled 290 
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from a normal distribution with mean zero and residual variance scaled relative to the variance 291 

of true genetic value in the base population such that heritability was 0.3. These simulated single 292 

phenotype records mimic records measured on the individual. Second, a weighted phenotype 293 

was simulated as the sum of the true genetic value and the mean of 𝑛𝑤𝑒𝑖𝑔ℎ𝑡 residuals. Each 294 

residual was sampled from a normal distribution with mean zero and residual variance scaled 295 

relative to the variance of true genetic value in the base population such that heritability was 296 

0.3. The weight 𝑛𝑤𝑒𝑖𝑔ℎ𝑡 was equal to 𝑛𝑤𝑒𝑖𝑔ℎ𝑡 = 1 + 𝑣𝑎𝑙 where the real value 𝑣𝑎𝑙 was sampled 297 

from a geometric distribution with a probability of 0.15. The average 𝑛𝑤𝑒𝑖𝑔ℎ𝑡 was 6.6. These 298 

weighted phenotypes mimic either repeated records of an individual or records on multiple 299 

progeny of an individual. To satisfy the assumption of identical residual variance across all 300 

analyses, phenotype records were divided by the residual standard deviation specific for each 301 

population, such that 𝜎𝑒
2 = 1. For every individual in each population we stored the true genetic 302 

value, own single and weighted phenotype records, associated weight, and 60,000 marker 303 

genotypes. 304 

Analysis 305 

The data was analysed in several ways to evaluate the developed methods. In each case 306 

the aim was to obtain accurate genetic values utilizing all the available information. 307 

Specifically, we integrated results from separate analysis of populations B, C, and D, into the 308 

analysis of population A. We assumed throughout that variance components were known and 309 

equal to the rescaled variances. We analysed three scenarios in total. The first and second 310 

scenario used population specific training data of randomly sampled 30,000 individuals with 311 

single phenotype record from generations 1 to 6 under low and high diversity settings. The third 312 

scenario used population specific training data of randomly sampled 10,000 individuals with 313 

weighted phenotype record from generations 1 to 6 under low diversity setting. In all scenarios 314 
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all of the 10,000 individuals from generation 7 of each population were considered as validation 315 

individuals. The following analyses were performed: 316 

1) A joint analysis of four populations. This was the reference that the other analyses 317 

were compared against; 318 

2) A separate analysis for each of the four populations; 319 

3) An exact integration of separate analyses of populations B, C, and D, into the 320 

analysis of population A; 321 

4) The same as 3), but approximating the PEC matrix with a partial PEC matrix for 322 

each chromosome, i.e., PEC between markers on different chromosomes were set 323 

to zero; 324 

5) The same as 3), but approximating the PEC matrix with a diagonal PEV matrix, i.e., 325 

PEC between all markers were set to zero; 326 

6) The same as 3), but approximating the PEC matrix with PEV, allele frequencies, 327 

and LD correlations between markers obtained from the training sets. For the 328 

scenario with weighted phenotype records, the algorithm for estimating the effective 329 

number of records per marker was performed for each marker separately and for 330 

each chromsome separately. 331 

7) The same as 6), but with LD correlations between markers computed from 332 

validation individuals instead of the training data. 333 

For each analysis we calculated genomic prediction accuracy as the Pearson correlation 334 

between the true and estimated genetic value in validation individuals. Further, we evaluated 335 

the different integrations by comparing estimated genetic values of validation individuals  336 

against the estimated genetic values obtained from the joint analysis, which was considered as 337 

the reference because it used information from all populations. If integration was fully accurate, 338 

there should be no difference between the joint analysis and the analysis with integration. We 339 
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assessed this by (a) accuracy of integration as a Pearson correlation between estimated genetic 340 

values from the joint analysis and the analysis with integration (desired value equals 1), (b) 341 

calibration of integration as a regression of estimated genetic values from the joint analysis on 342 

estimated genetic valuesfrom analysis with integration (desired value equals 1), and (c) 343 

magnitude of error in integration as a mean square error (MSE) between estimated genetic 344 

values from the joint analysis and from the analysis with integration (desired value equals 0). 345 

Data availability 346 

Supplemental figures are available in File S1. A description of the simulated genotype 347 

and phenotype datasets for each scenario is provided in File S2. Simulated genotype and 348 

phenotype datasets for the 5 replicates of each scenario are provided in Files S3, S4, and S5. 349 

All files were uploaded to Figshare.  350 

351 
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RESULTS 352 

Genomic prediction accuracy of separate and joint analyses 353 

Joint analysis increased genomic prediction accuracy in comparison to separate 354 

analyses. This is shown in Table 1. Analysing separately the four datasets gave accuracies of 355 

about 0.71 (low diversity) and 0.53 (high diversity) with single phenotype records, and of about 356 

0.73 (low diversity) with weighted phenotype records. Analysing jointly the four datasets 357 

increased accuracy by 0.09 absolute points with single phenotype records and by 0.12 absolute 358 

points with weighted phenotype records. 359 

Integration based on PEC, partial PEC, or PEV matrices 360 

For all scenarios the developed method enabled exact integration when complete PEC 361 

matrices were used. Integration of estimated allele substitution effects by means of the complete 362 

PEC matrix led to the same estimated genetic values as with the joint analysis, as shown by 363 

correlation and regression coefficients of 1, and MSE close to 0 (Figures 1-6; Figures S1-S6). 364 

For comparison, correlations between estimated genetic values from separate analyses and joint 365 

estimated genetic values were about 0.87 (low diversity) and 0.77 (high diversity) with single 366 

phenotype records, and 0.85 (low diversity) with weighted phenotype records. 367 

Approximate integration by means of partial PEC matrices for each chromosome, that 368 

is ignoring PEC between markers on different chromosomes, gave almost as accurate and 369 

calibrated estimated genetic values as the exact integration. This is illustrated in Figures 1-6 370 

with correlations higher than 0.96, regression coefficients close to 1, and MSE close to 0. 371 

Increasing the diversity slightly deteriorated accuracy and calibration of genomic predictions 372 

(Figures 1-3; Figures S1-S3). 373 
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Approximate integrations by means of PEV matrices, that is ignoring PEC between all 374 

markers, gave quite accurate, but uncalibrated estimated genetic values. This is shown in 375 

Figures 1-6 and in Figures S1-S6. Correlations between joint estimated genetic values and 376 

estimated genetic values with integration by means of PEV were between 0.95 and 0.98 with 377 

single phenotype records and between 0.93 and 0.95 with weighted phenotype records Despite 378 

these correlations close to 1, estimated genetic values were uncalibrated, as depicted by 379 

regression coefficients below 0.77 for the low diversity scenarios with single and weighted 380 

phenotype records, and below 0.86 for the high diversity scenario with single phenotype records 381 

(Figures 2, 5, S2, S5).  382 

Integration based on PEV, allele frequencies, and LD information 383 

When LD information was derived from training data of other populations, approximate 384 

integrations by means of PEV, allele frequencies, and LD information, resulted in highly 385 

accurate and well calibrated estimated genetic values with single phenotype records. This is 386 

shown in Figures 1-3 (Figures S1-S3). Correlation and regression coefficients were equal to 1 387 

for the low diversity scenario. Slightly lower values, but still close to 1, were observed for the 388 

high diversity scenario. For both low and high diversity scenarios, MSE were close to 0. In 389 

contrast, when LD information was derived from validation data of other populations, 390 

approximate integrations gave less accurate and well calibrated estimated genetic values. This 391 

is shown in Figures 3-6 (Figures S3-S6). For these scenarios, correlations were equal to at least 392 

0.94, and regression coefficients varied between 0.87 and 1.05. 393 

For the scenario with weighted phenotype records, approximate integrations by means 394 

of LD information from training data of other populations resulted in highly accurate and well 395 

calibrated estimated genetic values when sets of markers per chromosome were used to estimate 396 

the effective number of records for each marker. Correlations between joint estimated genetic 397 
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values and estimated genetic values with integration were about 0.99 (Figure 4, Figure S4), 398 

regression coefficients were about 0.95 (Figure 5, Figure S5), and MSE were close to 0 (Figure 399 

6, Figure S6). Using LD information from the validation data of other populations, instead from 400 

the training data of other populations, gave slightly less accurate (correlations higher than 0.95), 401 

and moderately less calibrated estimated genetic values (regression coefficients between 0.87 402 

and 1.04; Figure 4-6; Figures S4-S6). For both cases, estimating the effective numbers of 403 

records per marker, instead of for all markers per chromosome simultaneously, reduced 404 

accuracy and calibration of estimated genetic values (Figure 4-5; Figures S4-S5).  405 

Comparison of estimated allele substitution effects 406 

Correlation and regression coefficients between estimated allele substitution effects 407 

from the joint analysis and analysis with integration largely followed patterns of the 408 

corresponding values for estimated genetic values (Tables 2-3). Correlation and regression 409 

coefficients were close to 1 when the integration of estimated allele substitution effects was by 410 

means of the complete PEC matrices. Ignoring PEC between markers on different 411 

chromosomes, or ignoring PEC between all markers, reduced correlations to between 0.92 and 412 

0.99 (Tables 2-3). Using LD information with PEV led to correlations between joint estimates 413 

of allele substitution effects and estimates with integration ranging from 0.71 to 0.83 for the 414 

scenario with weighted phenotype records (Tables 2-3). 415 

  416 
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DISCUSSION 417 

The results show that the developed method enables accurate and well calibrated 418 

estimated genetic values for complex traits using both individual-level data and summary 419 

statistics. As expected from theory, the analysis of individual-level data and estimated allele 420 

substitution effects from other analyses by means of PEC matrices, yielded the same estimates 421 

as the joint analysis of all individual-level data. To our knowledge, this is the first time that 422 

individual-level data and summary statistics were analysed simultaneously for genomic 423 

predictions. As illustrated by simulations, the combined analysis of multiple datasets may 424 

increase genomic prediction accuracy over separate analyses of a single dataset. Unfortunately, 425 

combining individual-level data from several sources is generally not feasible for several 426 

reasons, e.g., political roadblocks, data protections concerns, or data inconsistencies (Powell 427 

and Sieber, 1992; Vilhjálmsson et al., 2015; Maier et al., 2018). However, summary statistics, 428 

such as estimates of allele substitution effects and associated measures of accuracy (e.g., PEV), 429 

are usually available for exchange. The developed method enables increase in genomic 430 

prediction accuracy of complex traits by means of jointly analysing the available individual-431 

level data and summary statistics. 432 

Accurate integration of estimated allele substitution effects is possible also when the 433 

complete PEC matrix is not available. This is important because computing the exact PEC 434 

matrix and exchanging it between analyses might be challenging in some cases. For the vast 435 

majority of used marker arrays in animal and plant breeding the calculations and data transfers 436 

should be doable. For example, most arrays have between 10,000 and 100,000 markers, for 437 

which we need between ~1 and ~80 GB of memory to store the PEC matrix and between a 438 

minute and a day to invert it on current computers. For a larger number of markers, commonly 439 

used in human genetics, the memory requirements and computing time become prohibitive. The 440 

results show that in such cases we can still obtain accurate genomic predictions when the 441 
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integration is done by means of partial PEC matrices for each chromosome. This is expected 442 

since high LD between markers mostly occurs within chromosomes. High LD between markers 443 

on different chromosomes may especially occur in structured populations and populations 444 

under selection (Farnir et al., 2000; Flint-Garcia et al., 2003; Rostoks et al., 2006). Both of these 445 

conditions are present in breeding populations. However, the results suggest that LD between 446 

chromosomes can be ignored for the purpose of integration for populations with both low and 447 

high diversity. The results also show that we can succesfully integrate estimated allele 448 

substitution effects when only PEV and allele frequencies from each population are available 449 

together with LD information of a reference genotype panel representative of each population. 450 

Assuming that such reference genotype panels are available, only estimated allele substitution 451 

effects, associated PEV, and allele frequencies need to be exchanged between populations for 452 

such analyses. Similar conclusions were drawn from studies combining only summary statistics 453 

obtained from genome-wide association studies to perform multi-trait genomic predictions 454 

(Maier et al., 2018). 455 

Accurate integration of estimated allele substitution effects is possible irrespective of 456 

the diversity of the populations and characteristics of genotypes (e.g., allele frequencies, LD). 457 

This is obvious, and confirmed by our results, when integration is perfomed by means of 458 

complete PEC matrices. When complete PEC matrices are unavailable, accurate integration is 459 

possible if the inverses of the PEC matrices can be approximated accurately from available 460 

population parameters (i.e. LD and allele frequency information), whatever the level of 461 

diversity and characteristics of the populations, as shown by our results or a study combining 462 

summary statistics in human genetics (Maier et al., 2018). In our study, the population 463 

parameters obtained from the reference panels adequately reflected the characteristics of the 464 

training sets. Future studies should be conducted to assess the impact of suboptimal reference 465 
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panels. Therefore, the developed method is expected to perform well on any type of data, from 466 

animal and plant breeding to human genetics, provided accurate information is available. 467 

The developed method has some simplifying assumptions that can be readily relaxed. 468 

For example, we assumed that the same genotype coding was used in all populations. This 469 

assumption can be relaxed when centered genotype coding (i.e., of the form of (𝐖𝑖– 𝟏𝐯𝑖
′)) is 470 

used because variance component estimates, estimates of allele substitution effects and PEC 471 

are the same irrespective of the centering of the genotype coding, provided that the model has 472 

a fixed general mean, which is considered in the integration (Strandén and Christensen, 2011). 473 

Also, centered and scaled (standardised) genotype coding is often used in human genetics, 474 

instead of only centered genotype coding (Yang et al., 2010; Speed et al., 2012; Maier et al., 475 

2018). In practice, estimated genetic values are not influenced by scaling of centered genotype 476 

coding (Strandén and Christensen, 2011; Bouwman et al., 2017). Therefore, allele substitution 477 

effects estimated using one type of genotype scaling could be obtained from a post-analysis by 478 

converting estimated genetic values computed for a reference genotype panel into allele 479 

substitution effects for another genotype scaling. Converting estimated genetic values into 480 

allele substitution effects is often referred to as back-solving of allele substitution effects 481 

(Strandén and Garrick, 2009; Strandén and Christensen, 2011; Wang et al., 2012; Bouwman et 482 

al., 2017). Prediction error covariances associated with the converted estimated allele 483 

subsitution effects could be derived from the (prediction error) covariances of the estimated 484 

genetic values (see derivations in Appendix A4).  485 

Allele substitution effects estimated from analyses using different different sets of 486 

markers or different residual variances, can be used in the integration as well. The assumption 487 

that all individuals were genotyped at the same loci could be considered as fullfilled if small 488 

differences in the sets of markers are corrected by assuming zero allele substitution effect and 489 

zero accuracy for markers not used in an analysis. When large differences between sets of 490 
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markers are observed, this assumption can be accomodated following two approaches. A first, 491 

post-analysis, approach consists of assuming that estimated genetic values are the same for two 492 

different sets of markers, allowing the conversion of estimated allele substitution effects from 493 

one set of markers to another set of markers (Liu and Goddard, 2018). The conversion can be 494 

performed by back-solving estimated allele substitution effects from estimated genetic values, 495 

as proposed previously for different genotype codings, or by applying a marker model to the 496 

estimated genetic values with the reference set of markers (Liu and Goddard, 2018). A second 497 

approach consists of harmonizing genotype data across populations. This approach must be 498 

performed before the analyses, and requires therefore coordination between populations. 499 

Harmonization of genotype data could be performed by identifying a subset of markers for 500 

which all populations are genotyped, or by genotype imputation (e.g., Marchini and Howie, 501 

2010). Finally, the assumption that residual variances were the same in all populations, can be 502 

relaxed by noting that separate estimates of allele substitution effects 𝛂𝑖
∗̂, obtained by the system 503 

of equations (2), can be also obtained by the following different formulations: 504 

𝛂𝑖
∗̂ = (𝐖𝑖

′𝐙𝑖
′𝐌𝑖𝜎𝑒𝑖

2 𝐙𝑖𝐖𝑖 + 𝐁𝑖
−1𝜎𝛼𝑖

−2)
−1

𝐖𝑖
′𝐙𝑖

′𝐌𝑖𝜎𝑒𝑖

2 𝐲𝑖

= (𝐖𝑖
′𝐙𝑖

′𝐌𝑖𝐙𝑖𝐖𝑖 + 𝐁𝑖
−1𝜆)−1𝐖𝑖

′𝐙𝑖
′𝐌𝑖𝐲𝑖

= (𝐖1
′𝐙1

′ 𝐌1𝜎𝑒𝑓
−2𝐙𝑖𝐖𝑖 + 𝐁1

−1𝜆𝜎𝑒𝑓
−2)

−1

𝐖1
′𝐙1

′ 𝐌1𝜎𝑒𝑓
−2𝐲𝑖  

 505 

where 𝜎𝑒𝑖

2  (𝜎𝑒𝑓
2 ) is the residual variance used for the 𝑖-th (focal) analysis, and 𝜆 = 𝜎𝑒𝑖

2 𝜎𝛼𝑖

−2. 506 

For integration of 𝛂𝑖
∗̂, (𝑃𝐸𝐶(𝛂𝑖

∗̂))
−1

 must be approximated using the residual variance of the 507 

focal population (𝜎𝑒𝑓
2 ) and the effective numbers of records per marker estimated using variance 508 

components of the 𝑖-th analysis. Another way to relax this assumption is to extend our univariate 509 

model to a bivariate model, similarly to methods developed to combine different genetic 510 

evaluations in animal breeding (Schaeffer, 1994; Vandenplas et al., 2015). In a bivariate model, 511 

one trait would represent individual-level data, while the other trait would represent summary 512 
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statistics. The genetic correlation between the two traits could be estimated based on a subset 513 

of individual-level data available for both datasets or based on summary statistics (Bulik-514 

Sullivan et al., 2015). Such an approach would also allow the integegration of summary 515 

statistics expressed on a different scale (e.g., different measure units, trait definitions) than the 516 

scale of the focal population (Vandenplas et al., 2015).  517 

The developed method can be readily generalized to multi-trait models and is therefore 518 

a generalization of previous works that were based on several (implicit) assumptions (Liu and 519 

Goddard, 2018; Maier et al., 2018). For example, previous works assumed that no individual-520 

level data were available. It was also (implicitly) assumed that only single phenotype records 521 

with homogeneous residual variance (Maier et al., 2018), or that the least-squares part of the 522 

separate analyses (Liu and Goddard, 2018), were available for integrating estimated allele 523 

substitution effects. Both assumptions lead to simple and accurate approximations of PEC 524 

matrices as shown in our study. However, we relax all these assumptions, such that our method 525 

can jointly analyse individual-level data and summary statistics, with possibly multiple 526 

phenotype records per individual. 527 

  528 
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CONCLUSIONS 529 

We developed a method for genomic prediction that accurately integrates summary 530 

statistics obtained from analyses of separate populations into an analysis of individual-level 531 

data. The method accommodates use of multiple phenotype (pseudo-)records per individual, 532 

and further extensions have been presented to accommodate for differences in residual 533 

variances or genotype codings used in the populations. When complete summary statistics 534 

information is available the method gives identical genomic predictions as the joint analysis of 535 

individual-level data from all populations. When summary statistics information is not 536 

complete we can use a series of approximations that give very accurate and well calibrated 537 

genomic predictions. 538 

539 
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Table 1 – Genomic prediction accuracy for  joint and separate analyses in scenarios with 690 

single or weighted phenotype records and low or high diversity (values are averages across 691 

the five replicates1) 692 

Phenotypes Diversity Analysis Populations 

   A B C D 

Single Low Joint 0.811 0.811 0.823 0.815 

  Separate 0.705 0.708 0.718 0.718 

 High Joint  0.687 0.686 0.687 0.684 

  Separate 0.536 0.537 0.528 0.528 

Weighted Low Joint 0.860 0.865 0.865 0.862 

  Separate 0.720 0.739 0.724 0.727 
1 Standard errors are between 0.003 and 0.016. 693 

 694 
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Table 2 - Comparison of estimated allele substitution effects from different analyses with 696 

estimates from the joint statistical analysis using single phenotype records in scenarios with 697 

low and high diversity (values are averages across the five replicates1) 698 

Analysis 
Low diversity High diversity 

Correlation Regression Correlation Regression 

Separate A 0.71 1.09 0.65 1.10 

Separate B 0.71 1.09 0.65 1.10 

Separate C 0.71 1.09 0.65 1.11 

Separate D 0.71 1.09 0.64 1.10 

PEC 1.00 1.00 1.00 1.00 

PECwithin chromosome 0.99 0.98 0.97 0.95 

PEV 0.96 0.80 0.96 0.89 

LDtraining 1.00 1.00 0.98 0.97 

LDvalidation 0.96 0.88 0.93 0.84 
1 Standard errors are between 0.00 and 0.01. 699 
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Table 3 - Comparison of estimated allele substitution effects from different analyses with 701 

estimates from the joint statistical analysis using weighted phenotype records in the scenario 702 

with low diversity (values are averages across the five replicates with standard errors between 703 

brackets) 704 

Analysis Correlation Regression 

Separate A 0.61 (0.10) 0.88 (0.13) 

Separate B 0.58 (0.15) 0.62 (0.12) 

Separate C 0.56 (0.12) 0.93 (0.23) 

Separate D 0.33 (0.08) 0.65 (0.18) 

PEC 1.00 (0.00) 0.99 (0.01) 

PECwithin chromosome 0.96 (0.01) 1.01 (0.02) 

PEV 0.92 (0.02) 0.80 (0.05) 

LDtraining (1 marker) 0.77 (0.09) 0.83 (0.10) 

LDtraining (1 chromosome) 0.83 (0.09) 0.95 (0.11) 

LDvalidation (1 marker) 0.73 (0.11) 0.75 (0.13) 

LDvalidation (1 chromosome) 0.71 (0.15) 0.74 (0.18) 

 705 
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FIGURES 707 

 708 

Figure 1 - Correlation between estimated genetic values (EGV) from the joint analysis 709 

and from different analyses in populations A and B using a single phenotype record per 710 

individual in scenarios with low and high diversity (values are averages across the five 711 

replicates with standard errors). 712 
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 714 

Figure 2 – Regression of estimated genetic values (EGV) from the joint analysis on 715 

estimated genetic values from different analyses in populations A and B using a single 716 

phenotype record per individual in scenarios with low and high diversity (values are 717 

averages across the five replicates with standard errors). 718 
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 720 

Figure 3 - Mean square errors between joint estimated genetic values (EGV) from the 721 

joint analysis and from different analyses in populations A and B using a single 722 

phenotype record per individual in scenarios with low and high diversity (values are 723 

averages across the five replicates with standard errors). 724 

 725 
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 727 

Figure 4 - Correlation between estimated genetic values (EGV) from the joint analysis 728 

and from different analyses in populations A and B using weighted phenotype records in 729 

the scenario with low diversity (values are averages across the five replicates with 730 

standard errors). 731 
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 733 

Figure 5 - Regression of estimated genetic values (EGV) from the joint analysis on 734 

estimated genetic values from different analyses in populations A and B using weighted 735 

phenotype records in the scenario with low diversity (values are averages across the five 736 

replicates with standard errors). 737 

 738 
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 740 

Figure 6 - Mean square errors (SE) between estimated genetic values (EGV) from the 741 

joint analysis and from different analyses in populations A and B using weighted 742 

phenotype records in the scenario with low diversity (values are averages across the five 743 

replicates with standard errors). 744 

 745 
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Appendix A1: Exact integration 747 

Here we detail the derivation of exact integration by means of absorbing the set of 748 

equations that pertain to one dataset. We start with the system of equations for separate analysis 749 

of dataset 1: 750 

[
𝐗1

′ 𝐑1
−1𝜎𝑒

−2𝐗1 𝐗1
′ 𝐑1

−1𝜎𝑒
−2𝐙1 𝐖1

𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐗1 𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐙1 𝐖1 + 𝐁1
−1𝜎𝛼1

−2
] [

𝛃1
∗̂

𝛂1
∗̂
] = [

𝐗1
′ 𝐑1

−1𝜎𝑒
−2𝐲1

𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐲1

] (A1.1) 751 

and the system of equations for the joint analysis of datasets 1 and 2: 752 

[

𝐗1
′ 𝐑1

−1𝜎𝑒
−2𝐗1 𝟎 𝐗1

′ 𝐑1
−1𝜎𝑒

−2𝐙1 𝐖1

𝟎 𝐗2
′ 𝐑2

−1𝜎𝑒
−2𝐗2 𝐗2

′ 𝐑2
−1𝜎𝑒

−2𝐙2 𝐖2

𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐗1 𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐗2 𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐙1 𝐖1 + 𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐙2 𝐖2 + 𝐁𝐽
−1𝜎𝛼𝐽

−2

] [
𝛃1
̂

𝛃2
̂

𝛂̂

] =753 

[

𝐗1
′ 𝐑1

−1𝜎𝑒
−2𝐲1

𝐗2
′ 𝐑2

−1𝜎𝑒
−2𝐲2

𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐲1 + 𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐲2

].      (A1.2) 754 

From the first set of equations (𝛃1
̂ ) in (A1.2) it follows: 755 

𝛃1
̂ = (𝐗1

′ 𝐑1
−1𝜎𝑒

−2𝐗1 )
−1

(𝐗1
′ 𝐑1

−1𝜎𝑒
−2𝐲1 − 𝐗1

′ 𝐑1
−1𝜎𝑒

−2𝐙1 𝐖1 𝛂̂).   (A1.3).  756 

From the third set of equations (𝛂̂) in (A1.2) it follows: 757 

𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐗1 𝛃1
̂ + 𝐖2

′𝐙2
′ 𝐑2

−1𝜎𝑒
−2𝐗2 𝛃2

̂ + (𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐙1 𝐖1 +758 

𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐙2 𝐖2 + 𝐁𝐽
−1𝜎𝛼𝐽

−2)𝛂̂ = 𝐖1
′𝐙1

′ 𝐑1
−1𝜎𝑒

−2𝐲1 + 𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐲2 . (A1.4). 759 

Inserting (A1.3) into (A1.4) gives, after some algebra: 760 

𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐗2 𝛃2
̂ + (𝐖1

′𝐙1
′ 𝐌1𝜎𝑒

−2𝐙1 𝐖1 + 𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐙2 𝐖2 + 𝐁J
−1𝜎𝛼𝐽

−2)𝛂̂761 

= 𝐖1
′𝐙1

′ 𝐌1𝜎𝑒
−2𝐲1 + 𝐖2

′𝐙2
′ 𝐑2

−1𝜎𝑒
−2𝐲2  762 
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with 𝐌1 = (𝐑1
−1 − 𝐑1

−1𝐗1 (𝐗1
′ 𝐑1

−1𝐗1 )
−1

𝐗1
′ 𝐑1

−1). 763 

Now the system of equations (A1.2) can be re-written with the first set of equations 764 

(𝛃1
̂ ) absorbed as: 765 

[
𝐗2

′ 𝐑2
−1𝜎𝑒

−2𝐗2 𝐗2
′ 𝐑2

−1𝜎𝑒
−2𝐙2 𝐖2

𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐗2 𝐖1
′𝐙1

′ 𝐌1𝜎𝑒
−2𝐙1 𝐖1 + 𝐖2

′𝐙2
′ 𝐑2

−1𝜎𝑒
−2𝐙2 𝐖2 + 𝐁𝐽

−1𝜎𝛼𝐽
−2] [𝛃2

̂

𝛂̂
] =766 

[
𝐗2

′ 𝐑2
−1𝜎𝑒

−2𝐲2

𝐖1
′𝐙1

′ 𝐌1𝜎𝑒
−2𝐲1 + 𝐖2

′𝐙2
′ 𝐑2

−1𝜎𝑒
−2𝐲2

].      (A1.4). 767 

Similarly, the absorption of the first set of equations (𝛃1
∗̂) in separate analysis of dataset 768 

1 (A1.1) leads to: 769 

(𝐖1
′𝐙1

′ 𝐌1𝜎𝑒
−2𝐙1 𝐖1 + 𝐁1

−1𝜎𝛼1
−2)𝛂1

∗̂ = 𝐖1
′𝐙1

′ 𝐌1𝜎𝑒
−2𝐲1 ,    (A1.5) 770 

where 771 

𝐖1
′𝐙1

′ 𝐌1𝜎𝑒
−2𝐙1 𝐖1 + 𝐁1

−1𝜎𝛼1
−2 = (𝑃𝐸𝐶(𝛂1

∗̂))
−1

     (A1.6) 772 

is the inverse matrix of prediction error covariances of 𝛂1
∗̂ .  773 

Combining (A1.4) and (A1.5) with the use of (A1.6) enables the exact integration of 774 

estimates from the separate analysis of dataset 1 into the separate analysis of dataset 2 with the 775 

following system of equations: 776 

[
𝐗2

′ 𝐑2
−1𝜎𝑒

−2𝐗2 𝐗2
′ 𝐑2

−1𝜎𝑒
−2𝐙2 𝐖2

𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐗2 (𝑃𝐸𝐶(𝛂1
∗̂))

−1

+ 𝐖2
′𝐙2

′ 𝐑2
−1𝜎𝑒

−2𝐙2 𝐖2 − 𝐁1
−1𝜎𝛼1

−2 + 𝐁𝐽
−1𝜎𝛼𝐽

−2
] [𝛃2

̂

𝛂̂
] =777 

[
𝐗2

′ 𝐑2
−1𝜎𝑒

−2𝐲2

(𝑃𝐸𝐶(𝛂1
∗̂))

−1

𝛂1
∗̂ + 𝐖2

′𝐙2
′ 𝐑2

−1𝜎𝑒
−2𝐲2

].      (A1.7) 778 
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Appendix A2: Approximate integration 780 

Here we detail the derivation of different approximate integrations by means of 781 

simplified assumptions and use of summary statistics. We start with the expression for 782 

prediction error covariance matrix of allele substitution effects from dataset 1: 783 

𝑃𝐸𝐶(𝛂1
∗̂) = (𝐖1

′𝐙1
′ 𝐌1𝜎𝑒

−2𝐙1 𝐖1 + 𝐁1
−1𝜎𝛼1

−2)
−1

.     (A2.1) 784 

If we assume that: (1) every individual has a single phenotype record, i.e., 𝐙1 = 𝐈, (2) residual 785 

variance is homogeneous, i.e. 𝐑1 = 𝐈, and (3) only overall mean is fitted as a fixed effect, i.e., 786 

𝐗1 = 𝟏; then we can simplify (A2.1) as: 787 

𝑃𝐸𝐶(𝛂1
∗̂) = (𝐖1

′𝐙1
′ 𝐌1𝜎𝑒

−2𝐙1 𝐖1 + 𝐁1
−1𝜎𝛼1

−2)
−1

, 788 

= (𝐖1
′𝐙1

′ (𝐑1
−1 − 𝐑1

−1𝐗1 (𝐗1
′ 𝐑1

−1𝐗1 )
−1

𝐗1
′ 𝐑1

−1) 𝐙1 𝐖1 𝜎𝑒
−2 + 𝐁1

−1𝜎𝛼1
−2)

−1

, 789 

≈ (𝐖1
′ (𝐈 − 𝐗1 (𝐗1

′ 𝐗1 )
−1

𝐗1
′ ) 𝐖1 𝜎𝑒

−2 + 𝐁1
−1𝜎𝛼1

−2)
−1

, 790 

≈ (𝐖1
′𝐖1 𝜎𝑒

−2 + 𝐁1
−1𝜎𝛼1

−2)
−1

,      (A2.2) 791 

because (𝐈 − 𝐗1 (𝐗1
′ 𝐗1 )

−1
𝐗1

′ ) = 𝐈 − 𝟏(𝟏′𝟏)−1𝟏′ = 𝐈 −
𝟏𝟏′

𝑛𝑖𝑛𝑑,1
 will tend to the identity matrix 792 

𝐈 with increasing 𝑛𝑖𝑛𝑑,1. The matrix (𝐈 −
𝟏𝟏′

𝑛𝑖𝑛𝑑,1
), also known as the centering matrix, is a 793 

symmetric and idempotent matrix with off-diagonal elements equal to −
1

𝑛𝑖𝑛𝑑,1
 and with 794 

diagonal elements equal to 1 −
1

𝑛𝑖𝑛𝑑,1
. 795 

When genotypes from the dataset 1 are not available, but variance components 𝜎𝛼1
2  and 796 

𝜎𝑒
2 are, we “only” need to approximate the unknown matrix of genotype sum of squares 𝐖1

′𝐖1  797 

in (A2.2). This product can be approximated from linkage-disequilibrium and allele frequency 798 
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information of the dataset 1, as shown in the following (similarly to Yang et al. (2012), 799 

Vilhjálmsson et al. (2015), and Maier et al. (2018)). Assume that linkage-disequilibrium 800 

between two markers is represented by the correlation of their unphased genotypes (Rogers and 801 

Huff, 2009). Then, a matrix of all pairwise correlations between markers is: 802 

𝐂 = (𝑑𝑖𝑎𝑔(𝐓1
′𝐓1 ))

−1
2

𝐓1
′𝐓1 (𝑑𝑖𝑎𝑔(𝐓1

′𝐓1 ))
−1

2
,     (A2.3) 803 

where the matrix 𝐓1  contains centered genotypes of dataset 1 (𝐓1 = (𝐈 −
𝟏𝟏′

𝑛𝑖𝑛𝑑,1
) 𝐖1 =804 

𝐖1 −
1

𝑛𝑖𝑛𝑑,1
𝟏𝟏′𝐖1 ). The matrix product 𝐓1

′𝐓1  can be computed as: 805 

𝐓1
′𝐓1 = (𝐖1 −

1

𝑛𝑖𝑛𝑑,1
𝟏𝟏′𝐖1 )

′

(𝐖1 −
1

𝑛𝑖𝑛𝑑,1
𝟏𝟏′𝐖1 ) = 𝐖1

′𝐖1 −
1

𝑛𝑖𝑛𝑑,1
𝐖1

′𝟏𝟏′𝐖1 −806 

1

𝑛𝑖𝑛𝑑,1
𝐖1

′𝟏𝟏′𝐖1 +
1

𝑛𝑖𝑛𝑑,1

1

𝑛𝑖𝑛𝑑,1
𝐖1

′𝟏𝟏′𝟏𝟏′𝐖1 = 𝐖1
′𝐖1 − 4𝑛𝑖𝑛𝑑,1𝐩𝐩′.  (A2.4) 807 

where 𝐩 =
1

2𝑛𝑖𝑛𝑑,1
𝐖1

′𝟏 are allele frequencies in dataset 1 (Strandén and Christensen, 2011). 808 

Assuming Hardy-Weinberg equilibrium, the 𝑖-th diagonal element of the matrix product 𝐓1
′𝐓1 , 809 

is equivalent to expected genotype sum of squares at the 𝑖-th marker, 𝑛𝑖𝑛𝑑,12𝑝𝑖,1(1 − 𝑝𝑖,1) with 810 

𝑝𝑖,1 being the allele frequency of the 𝑖-th marker in dataset 1. 811 

Combining (A2.3) and (A2.4) we can approximate the unknown matrix of genotype 812 

sum of squares 𝐖1
′𝐖1  as: 813 

𝐖1
′𝐖1 ≈  4𝑛𝑖𝑛𝑑,1𝐩𝐩′ + 𝐕

1
2𝐂𝐕

1
2,       (A2.5) 814 

where 𝐕 is diagonal matrix of expected genotype sum of squares with the 𝑖-th diagonal element 815 

equal to 𝑛𝑖𝑛𝑑,12𝑝𝑖,1(1 − 𝑝𝑖,1). 816 
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Appendix A3: Estimation of the effective number of records per marker 818 

Here we detail the algorithm for computing the effective number of records per marker 819 

by use of available population parameters (i.e. linkage-disequilibrium, and allele frequency 820 

information) and prediction error variances of 𝛂1
∗̂  (𝑃𝐸𝑉(𝛂1

∗̂)) of the dataset 1. We start with the 821 

expression for the prediction error covariance matrix of allele substitution effects from dataset 822 

1: 823 

𝑃𝐸𝐶(𝛂1
∗̂) = (𝐖1

′𝐙1
′ 𝐌1𝜎𝑒

−2𝐙1 𝐖1 + 𝐁1
−1𝜎𝛼1

−2)
−1

. 824 

If the number of individuals and the number of records per individual are unknown, we can 825 

assume that a 𝑛𝑚𝑎𝑟 × 𝑛𝑚𝑎𝑟  diagonal matrix 𝚲1 exists such that: 826 

𝑃𝐸𝐶(𝛂1
∗̂) ≈ (𝚲1 (4𝐩𝐩′ + 𝚿

1
2𝐂𝚿

1
2) 𝚲1𝜎𝑒

−2 + 𝐁1
−1𝜎𝛼1

−2)
−1

 827 

where 𝚿 is a 𝑛𝑚𝑎𝑟 × 𝑛𝑚𝑎𝑟  diagonal matrix with the j-th diagonal element equal to 828 

2𝑝𝑗,1(1 − 𝑝𝑗,1), and the squared j-th diagonal element of 𝚲1 represents the effective number of 829 

records for the j-th marker. The term (4𝐩𝐩′ + 𝚿
1
2𝐂𝚿

1
2) is similar to the approximation of the 830 

unknown matrix of genotype sum of squares 𝐖1
′𝐖1  (i.e., 𝐖1

′𝐖1 ≈  4𝑛𝑖𝑛𝑑,1𝐩𝐩′ + 𝐕
1
2𝐂𝐕

1
2) in 831 

the Appendix A.2. However, it does not involve the number of individuals 𝑛𝑖𝑛𝑑,1 because it is 832 

confounded with the effective number of records. 833 

 The diagonal matrix 𝚲1 can be estimated by solving the nonlinear system of equations 834 

𝑑𝑖𝑎𝑔 (( 𝚲1 (4𝐩𝐩′ + 𝚿
1
2𝐂𝚿

1
2) 𝚲1𝜎𝑒

−2 + 𝐁1
−1𝜎𝛼1

−2)
−1

) = 𝑃𝐸𝑉(𝛂𝟏
∗̂ ) through a fixed-point 835 

iteration algorithm (Burden and Faires, 2010) as follows: 836 

1) 𝐐1
0 = (𝐏0−1

− 𝐁1
−1𝜎𝛼1

−2) ∗ (𝑑𝑖𝑎𝑔 (4𝐩𝐩′ + 𝚿
1
2𝐂𝚿

1
2) 𝜎𝑒

−2)
−1

 837 
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where 𝐏0  is a diagonal matrix with the i-th diagonal element equal to the PEV of the i-838 

th marker and 𝑑𝑖𝑎𝑔 (4𝐩𝐩′ + 𝚿
1
2𝐂𝚿

1
2) contains the diagonal elements of (4𝐩𝐩′ +839 

𝚿
1
2𝐂𝚿

1
2) ; 840 

2) 𝚲1
0 = √𝐐1

0 841 

3) 𝑘 = 1 842 

4) 𝐏𝑘 = 𝑑𝑖𝑎𝑔 ((𝚲1
𝑘−1 (4𝐩𝐩′ + 𝚿

1
2𝐂𝚿

1
2) 𝚲1

𝑘−1𝜎𝑒
−2 + 𝐁1

−1𝜎𝛼1
−2)

−1

) 843 

5) 𝐇 = (𝐏𝑘−1
− 𝐁1

−1𝜎𝛼1
−2) ∗ (𝑑𝑖𝑎𝑔 (4𝐩𝐩′ + 𝚿

1
2𝐂𝚿

1
2) 𝜎𝑒

−2)
−1

 844 

6) 𝐒𝑘 = 𝐐1
0 − 𝐇 845 

7) If trace of 𝐒𝑘 is not sufficiently small: 846 

a. 𝐐1
𝑘 = 𝐐1

𝑘−1 + 𝐇 847 

b. If any diagonal element in 𝐐1
𝑘 is negative, set it to 0 848 

c. 𝚲1
𝑘 = √𝐐1

𝑘 849 

d. 𝑘 = 𝑘 + 1 850 

e. Repeat from 4 851 

8) 𝚲1
𝑘 = √𝐐1

𝑘 852 

It is worth noting that the proposed algorithm is similar to algorithms to estimate effective 853 

number of records per individual, where “effective” means that they are free of contributions 854 

from relatives (Misztal and Wiggans, 1988; Vandenplas and Gengler, 2012). The j-th diagonal 855 

element of 𝐐1
𝑘 can therefore equivalently be considered as the effective number of records for 856 

the j-th marker. 857 

  858 
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Appendix A4: Conversion of allele substitution effects 859 

Here we detail a post-analysis to obtain allele substitution effects estimated using one 860 

type of genotype coding (𝛂1
∗∗̂) by converting estimated genetic values computed for a reference 861 

genotype panel with allele substitution effects for another genotype coding (𝛂1
∗̂). We assume 862 

that allele substitution effects (𝛂1
∗̂) are available with the associated prediction error 863 

(co)variance matrix (𝑃𝐸𝐶(𝛂1
∗̂)), as well as the (co)variance matrix of 𝛂1

∗  (𝑉𝑎𝑟(𝛂1
∗)), and 864 

genotypes of a reference panel using a particular type of genotype coding (𝚪∗). Estimates of 865 

genetic values for the reference individuals are obtained as 𝐠1
∗̂ = 𝚪∗𝛂1

∗̂ .  866 

Assuming that estimated genetic values are not influenced by scaling of centered 867 

genotype coding (Strandén and Christensen, 2011; Bouwman et al., 2017), and that the 868 

(co)variances of genetic values are the same irrespective of the genotype coding, we can write 869 

that  𝐠1
∗∗̂ = 𝚪∗∗𝛂1

∗∗̂ = 𝐠1
∗̂  with 𝚪∗∗ being a matrix with reference genotypes using another type 870 

of genotype coding than 𝚪∗ and 𝐠1
∗∗̂ being a vector of estimated genetic values using this type 871 

of genotype coding. Therefore, 𝛂1
∗∗̂ can be computed by back-solving as follows (Strandén and 872 

Garrick, 2009; Wang et al., 2012; Bouwman et al., 2017): 873 

𝛂1
∗∗̂ = 𝐁1

∗∗𝚪∗∗′(𝚪∗∗𝐁1
∗∗𝚪∗∗′)−1𝐠1

∗̂ = 𝚻𝐠1
∗̂  874 

where 𝐁1
∗∗ is a diagonal matrix (e.g., an identity matrix 𝐈) with optional different weights to 875 

differentially shrink different loci. 876 

Based on the properties of mixed models (Henderson, 1984), the prediction error 877 

covariance matrix of 𝛂1
∗∗̂, 𝑃𝐸𝐶(𝛂1

∗∗̂), can be obtained as follows: 878 
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𝑃𝐸𝐶(𝛂1
∗∗̂) = 𝑉𝑎𝑟(𝛂1

∗∗) − 𝑉𝑎𝑟(𝛂1
∗∗̂) = 𝑉𝑎𝑟(𝛂1

∗∗) − 𝑉𝑎𝑟(𝚻𝐠1
∗̂) = 𝑉𝑎𝑟(𝛂1

∗∗) − 𝚻𝑉𝑎𝑟(𝐠1
∗̂)𝚻′879 

= 𝑉𝑎𝑟(𝛂1
∗∗) − 𝚻 (𝑉𝑎𝑟(𝐠1

∗) − 𝑃𝐸𝐶(𝐠1
∗̂)) 𝚻′880 

= 𝑉𝑎𝑟(𝛂1
∗∗) − 𝚻(𝚪∗𝑉𝑎𝑟(𝛂1

∗)𝚪∗′ − 𝚪∗𝑃𝐸𝐶(𝛂1
∗̂)𝚪∗′)𝚻′881 

= 𝑉𝑎𝑟(𝛂1
∗∗) − 𝚻𝚪∗ (𝑉𝑎𝑟(𝛂1

∗) − 𝑃𝐸𝐶(𝛂1
∗̂)) 𝚪∗′𝚻′ 882 

 883 
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