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Abstract

Real-world agents, such as humans, animals and robots, observe each other during interactions
and choose their own actions taking the partners’ ongoing behaviour into account. Yet, classical
game theory assumes that players act either strictly sequentially or strictly simultaneously (without
knowing the choices of each other). To account for action visibility and provide a more realistic
model of interactions under time constraints, we introduce a new game-theoretic setting called
transparent game, where each player has a certain probability to observe the choice of the partner
before deciding on its own action. Using evolutionary simulations, we demonstrate that even a
small probability of seeing the partner’s choice before one’s own decision substantially changes
evolutionary successful strategies. Action visibility enhances cooperation in a Bach-or-Stravinsky
game, but disrupts cooperation in a more competitive iterated Prisoner’s Dilemma. In both games,
strategies based on the “Win–stay, lose–shift” and “Tit-for-tat” principles are predominant for
moderate transparency, while for high transparency strategies of “Leader-Follower” type emerge.
Our results have implications for studies of human and animal social behaviour, especially for the
analysis of dyadic and group interactions.

One of the most interesting questions in economics, biological, and social sciences is the emergence
and maintenance of cooperation. A popular framework for studying cooperation (or the lack thereof)
is Game Theory, which is frequently used to model interactions between “rational” decision-makers.
In particular, a model for repeated interactions is provided by iterated games; two settings were
previously used [1]:

• Simultaneous games: players act at the same time without having any information about the
current choice of the partners. Consequently, all players must make a decision under uncertainty
concerning the choices of others.

• Sequential games: players act in a certain order and the player acting later in the sequence is
guaranteed to see the choices of the preceding players. Here the burden of uncertainty only
applies to the first player or – if there are more than two players – becomes lighter with every
turn in the sequence.

Both settings place a simplifying restriction on the decisional context: either all players have no
information about the choices of the partners (simultaneous game), or some players always have
more information than others (sequential game). This simplification might be disadvantageous for
modelling certain behaviours, since humans and animals usually act neither strictly simultaneously nor
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sequentially, but observe the choices of each other and adjust their actions accordingly [2]. Indeed,
the visibility of the partner’s actions plays a crucial role in social interactions, both in laboratory
experiments [3–6] and in natural environments [7–11].

For example, in soccer the penalty kicker must decide where to place the ball and the goalkeeper
must decide whether to jump to one of the sides or to stay in the centre. Since the ball reaches
the target in 0.2-0.3 s [12], the goalkeeper cannot postpone the decision until the trajectory of the
ball is clear, and must make the choice while opponent is preparing the shot. Thus, a simultaneous
game could be used as a crude model for such interactions (see, for instance, [13, 14]). However, in
practice, both players observe each other’s behaviour and try to anticipate the direction of the kick or
of the goalkeeper’s jump from subtle preparatory cues [6]. Thanks to these observations, professional
goalkeepers manage to use their tiny temporal advantage and predict the direction of the shot better
than chance [12–14]. The advantage of a professional goalkeeper over an amateur kicker would result
in even better prediction of the shooting direction. Similar considerations might apply to a wide
range of interactions in real life; however, a framework for the treatment of such cases is missing in
the classical game theory.

To better predict and explain the outcomes of interactions between agents by taking the visibility
factor into account, we introduce the concept of transparent games, where players can monitor actions
of each other. The access to the information about choices of other players is therefore probabilistic;
in particular, for a game between two players at each round three cases are possible:

1. Player 1 knows the choice of Player 2 before making its own choice.

2. Player 2 knows the choice of Player 1 before making its own choice.

3. Neither of players knows the choice of the partner.

Which of these cases applies depends on the reaction times of the players. If they act nearly at the
same time, neither is able to use the information about partner’s action; but a player who waits
before making the choice has a higher probability to see the choice of the partner. Setting a time
constraint (which is always present, either explicitly or implicitly, both in natural and in experimental
situations) prevents players from waiting indefinitely for the partner’s choice. Then, given the reaction
time distributions for the players, one can infer the probability pi

see of Player i to see the choice of the
partner before making own choice.

Transparent games provide a general framework that also includes classical game-theoretical settings:
simultaneous games correspond to p1

see = p2
see = 0.0, while sequential games result in p1

see = 0, p2
see = 1

for a fixed order of turns in each round (Player 1 always moves first, Player 2 – second), and in
p1

see = p2
see = 0.5 for a random order of turns.

The main question is whether the probabilistic access to the information in transparent games leads to
the success of same or different behavioural strategies as compared to classic games. In other words,
the possibility to see the choice of the partner on some occasions, to be observed by the partner on
others, or to act under mutual uncertainty, may favour behaviours qualitatively different from those
that yield the best performance in games with either full unidirectional transparency (sequential
games) or with no transparency (simultaneous games).

To answer this question, here we study transparent versions of two classical two-player games: the
iterated Prisoner’s dilemma (iPD) [15] and the iterated Bach-or-Stravinsky game (iBoS, also known
as Battle of the Sexes and as Hero) [16]. We selected iPD and iBoS because they are counted among
the most interesting games where cooperation is possible (non-zero-sum games) [16,17], and because
they require two distinct types of cooperative behaviour [18, 19]. While iPD is traditionally used
for studying cooperation [15], iBoS is sometimes considered as a more suitable model [20, 21]. We
employ evolutionary simulations, which allow evaluating optimal strategies using principles of natural
selection, and consider memory-one strategies [22,23] that take into account own and partner’s choices
at the previous round of the game.
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We find that even a small probability of seeing the choice of the partner before one’s own decision
changes the optimal behaviour in the iPD and iBoS games. The possibility to see the partner’s choice
enhances cooperation in the generally cooperative iBoS, but disrupts cooperation in the more com-
petitive iPD. Different transparency levels also bring qualitatively different strategies to success. In
particular, we show that strategies based on the “Win–stay, lose–shift” and “Tit-for-tat” principles
are the most successful in both games for low and moderate transparency, while for high transparency
a new class of strategies, which we term “Leader-Follower” strategies, evolves. Although frequently
observed in humans and animals (see, for instance, [24]), these strategies have up to now remained
beyond the scope of game-theoretical studies, but naturally emerge in our transparent games frame-
work.

Results

Evolutionary simulations for transparent games

We used evolutionary simulations [23] to investigate strategies evolving in transparent versions of iPD
and iBoS. Payoff matrices for these games are shown in Fig. 1. In both games, evolution results in
equal mean reaction times for all players (see “Methods” section). Then the probability psee to see
the choice of the partner is equal for all players, which in a dyadic game results in psee ≤ 0.5.

Figure 1: Payoff matrices for Prisoner’s Dilemma and Bach-or-Stravinsky game. a In
Prisoner’s Dilemma, players adopt roles of criminals suspected of committing a crime, arrested and
kept in isolated rooms. Since prosecutors do not have sufficient evidence, they offer each prisoner an
option to minimize the punishment by making a confession. A prisoner can either betray the other by
defecting (D), or cooperate (C) with the partner by remaining silent. The maximal charge is five years
in prison, and the payoff matrix represents the number of years deducted from it (for instance, if both
players cooperate (CC, upper left), each gets a two-year sentence, because 3 years of prison time have
been deducted). b In Bach-or-Stravinsky game two people are choosing between Bach and Stravinsky
music concerts. Player 1 prefers Bach, Player 2 – Stravinsky; yet, both prefer going to the concert
together. To make the game symmetric we convert musical tastes to the behavioural descriptions:
insisting (I) on own preference or accommodating (A) the preference of the partner. Here cooperation
is achieved when players choose different actions: either (I, A) or (A, I). Importantly, in the classical
version of these games it is assumed that the players cannot communicate.

We studied an infinite population of players using the methods described in [22, 23]. The population
consists of “species” of players, each defined by a strategy vector si and frequency xi(t) in the popula-

tion with
n(t)∑
i=1

xi(t) = 1. A strategy determines the probability of a player to choose one of two actions,

A1 and A2 (corresponding to cooperation and defection in iPD or to insisting and accommodating
in iBoS, respectively). For each species i the strategy is represented by a vector si = (si

k)12
k=1, where

k enumerates the 12 different situations in which the player can be when making the choice. These
depend on the outcome of the previous round, whether or not the player can see the current choice of
the partner, and what the choice is if it is visible. The si

k thus represent the conditional probabilities
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to select action A1, specifically

1. si
1, . . . , s

i
4 are probabilities to select A1 without seeing partner’s choice, given that in the pre-

vious round the joint choice of the player and the partner was A1A1, A1A2, A2A1, and A2A2
respectively;

2. si
5, . . . , s

i
8 are probabilities to select A1, seeing partner selecting A1 and given the outcome of

the previous round (as before).

3. si
9, . . . , s

i
12 are probabilities to select A1, seeing partner selecting A2 and given the outcome of

the previous round.

Probabilities to select A2 are represented by (1 − si
k), respectively. To ensure numerical stability

of the simulations, it is common to introduce a minimal possible error ε in the strategies such that
ε ≤ si

k ≤ 1 − ε, with ε = 0.001, see [22, 23]. The fact that players cannot have pure strategies and
are prone to errors is also closely related to the “trembling hand” effect [22]. Note that in iPD no
rational player would cooperate seeing that partner defects; thus we simplify iPD strategies by setting
si

9 = . . . = si
12 = 0.

For every value of psee = 0.0, 0.1, . . . , 0.5 we performed 80 runs of evolutionary simulations tracing
109 generations in each run. We began each run of simulations with five species having equal initial
frequencies x1(1) = . . . = x5(1) = 0.2 and random strategies si. The frequency of the strategies
xi(t) evolved in time according to the replicator dynamics equation (see “Methods” section). If xi(t)
dropped below 0.001, the species was assumed to die out. On average every 100 generations new
species with random strategies emerged in the population. Details of our simulations can be found in
the “Methods” section.

Since the strategies in the evolutionary simulations were generated randomly, convergence to the
theoretical optimum may take many generations and the observed successful strategies may deviate
from the optimum. Therefore, we provide a coarse-grained description of strategies using the following
notation: symbol 0 for si

k ≤ 0.1, symbol 1 for si
k ≥ 0.9, symbol * is used as a wildcard character to

denote an arbitrary probability.

Let us exemplify this notation for the well-known strategies in the iPD. For instance, the Generous
tit-for-tat (GTFT) strategy is encoded by (1a1b;1***;0000), where 0.1 < a, b < 0.9. Indeed, GTFT
cooperates with cooperators and forgives defectors. To satisfy the first property, the probability to
cooperate after the partner cooperated in previous round should be rather high, say above 0.9, thus
the corresponding entries of the strategy (si

1, si
3, si

5) are encoded by 1. To satisfy the second property,
probability to cooperate after partner defected should be somewhere between zero and one with the
optimal value 1/3 [22]. Since evolving towards this optimum may take long, we allow a broad range of
values for si

2 and si
4, for instance [0.1, 0.9]. We leave si

6, si
7, si

8 arbitrary since for low values of psee these
entries have little influence on the strategy performance, meaning that their evolution towards optimal
values may take especially long. Finally, as stated above, no sensible agent would cooperate in the
iPD if aware that the partner is defecting, leading us to encode si

9 to si
12 by 0. Further we omit these

predefined zero entries when referring to the iPD strategies. Thus, we encode GTFT by (1a1b;1***),
where 0.1 < a, b < 0.9. The Always Defect strategy (AllD) is encoded by (0000;****), meaning that
the probability to cooperate when not seeing partner’s choice is below 0.1, and behaviour when seeing
partner’s choice in not specified. Win – stay, lose – shift (WSLS) is encoded by (1001;1***), and
Firm-but-fair (FbF) by (101b;1***), where 0.1 < b < 0.9.

Transparency suppresses cooperation in Prisoner’s Dilemma

Simulation results for the transparent iPD are presented in Table 1. Most of the effective strategies
were known from earlier studies on non-transparent games, but for high transparency (psee → 0.5) a
new previously unknown strategy emerged. We dub this strategy “Leader-Follower” (L-F); theoreti-
cally it is represented by s = (1, 1, 1, 1; 0, 0, 0, 0), that is the player cooperates when it does not see the
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choice of the partner and defects otherwise. In the simultaneous iPD (psee = 0) L-F behaves as uncon-
ditional cooperator and is easily beaten, but it becomes predominant for psee = 0.5. In the latter case,
when two L-F players meet, the player acting first (the Leader) makes a “self-sacrificing” decision to
cooperate, while the second player (the Follower) sees this and defects (note that for the next round
the roles of the individuals may switch, thus ensuring a certain balance when reaping the benefits
of exploiting a sacrificial first move). We classified as L-F all strategies with profile (*11*; *00*)
since behaviour after mutual cooperation or mutual defection is only relevant when L-F is playing
against another strategy, and success for different types of behaviour depends on the composition of
the population. For instance, (111*; 000*) is optimal in a cooperative population, while (*110; *000)
is more robust against defectors. Note that L-F did not emerge for sequential iPD in [25–27], since in
these studies, players were bound to the same strategy regardless of whether they made their choice
before or after the partner. In contrast, transparent games allow different sub-strategies (s1, . . . , s4)
and (s5, . . . , s8) for these situations.

psee 0.0 0.1 0.2 0.3 0.4 0.5
WSLS, (1001;1***) 74.5 96.5 98.2 95.9 70.2 18.3
GTFT, (1a1b;1***) 24.7 0.0 0.0 0.0 0.2 0.7
AllD, (0000;****) 0.1 0.6 0.2 0.2 0.7 1.0
FbF, (101b;1***) 0.0 0.0 0.0 0.1 2.9 2.1
L-F, (*11*;*00*) 0.0 0.0 0.0 0.0 0.1 32.8

Table 1: Frequencies of stable strategies in the iterated Prisoner’s Dilemma for different
transparency levels. The frequencies were computed over 109 generations in 80 runs; strategies
were counted as stable if they survived for more than 100 generations after they emerged in the
population. The frequency of the most successful strategy for each psee value is shown in bold.

Similar to the classic simultaneous iPD, WSLS was predominant in the transparent iPD for low
and moderate psee, which is reflected by the clearly visible WSLS profiles in the final strategies of
the population (Fig. 2). Note that GTFT, another successful strategy in the simultaneous iPD,
disappeared completely for psee > 0. For psee ≥ 0.4, the game resembled the sequential iPD and the
results changed accordingly. Similar to the sequential iPD [25–27], the frequency of WSLS waned, the
FbF strategy emerged, cooperation became less frequent and took longer to establish itself (Fig. 3a).
For psee = 0.5 the population was taken over either by L-F, WSLS or (rarely) by FbF, which is reflected
by the mixed profile in Fig. 2. Pairwise comparison of strategies in iPD (Supplementary Fig. 1) helps
to explain the superiority of WSLS for psee < 0.5, the disappearance of GTFT for psee > 0.0, and the
drastic increase of L-F frequency for psee = 0.5.

For psee ≤ 0.3 cooperation evolved relatively quickly thanks to the predominance of WSLS. Fig. 3a
shows that further increase of psee apparently undermined cooperation in iPD, this is why in the
realistic iPD-prototype a face-to-face interrogation would be used. However, Leader-Follower is in a
sense a cooperative strategy for iPD: it alternates between cooperation and defection instead of using
a synchronized cooperation.

Cooperation emergence in the transparent Bach-or-Stravinsky game

Our simulations revealed that four memory-one strategies are most effective in iBoS for various levels
of transparency. In contrast to iPD there exist only few studies of iBoS strategies, therefore we
describe the observed strategies in detail.

1. Turn-taker aims to enter a fair coordination regime, where players alternate between IA (Player 1
insists and Player 2 accommodates) and AI (Player 1 accommodates and Player 2 insists) states.
In the simultaneous iBoS, this strategy takes the form (q, 0, 1, q), where q = 5/8 guarantees
maximal reward in a non-coordinated play against a partner with the same strategy for the
payoff matrix in Fig. 1b. We classify as Turn-takers all strategies encoded by (*01*;*0**;**1*).
Turn-taking was shown to be successful in the simultaneous iBoS for a finite population of agents
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Figure 2: iPD strategies present in the final population. Strategies are taken for the 109-th
generation and averaged over all runs. CC, CD, DC and DD stand for the outcomes “both players co-
operate”, “self cooperated, partner defected”, “self defected, partner cooperated” and “both defected”,
respectively. a Strategy entries s1, . . . , s4 are close to (1001) for psee = 0.1, . . . , 0.3 demonstrating the
dominance of WSLS. Deviations from this pattern for psee = 0.0 and psee = 0.4 indicate the presence
of the GTFT (1a1b) and FbF (101b) strategies, respectively. The almost uniform profile for psee = 0.5
is caused by mixture of WSLS and Leader-Follower strategies; as neither has an absolute majority in
the population, s1, . . . , s4 are quite low. b Entries s5, . . . , s8 are irrelevant for psee = 0.0 and indicate
the same WSLS-like pattern for psee = 0.1, . . . , 0.4. Note that s6, s7 > 0, which means that in trans-
parent settings WSLS-players tend to cooperate seeing that the partner is cooperating even when this
is against the WSLS principle. The abrupt decrease of reciprocal cooperation for psee = 0.5 indicates
the rise of Leader-Follower strategy.
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Figure 3: Fraction of runs for which cooperation was established a in iPD and b in iBoS. We
assumed that cooperation was established in the population if the average payoff was above 0.9 · 3 for
iPD and above 0.95 · 3.5 for iBoS (90% and 95% of maximal possible value). The threshold for iPD
was proposed in [22], while for iBoS we set a higher threshold due to the less competitive nature of
this game.

with pure strategies (i.e., having 0 or 1 entries only, with no account for mistakes) and a memory
spanning three previous rounds [19].

2. Challenger takes the form (1, 1, 0, 1) in the simultaneous iBoS. When two players with this strat-
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egy meet, they initiate a “challenge”: both insist until one of the players makes a mistake (that
is, accommodates). Then, the player making the mistake (looser) submits and continues accom-
modating, while the winner continues insisting. This period of unfair coordination beneficial
for the winner ends when the next mistake of either player (the winner accommodating or the
loser insisting) triggers a new “challenge”. This strategy is encoded by (11b*;****;*1**) and
has two variants: Challenger “obeys the rules” and does not initiate the challenge after losing
(b ≤ 0.1), while Aggressive Challenger may switch to insisting (0.1 < b ≤ 1/3). Challenging
strategies were theoretically predicted to be successful in simultaneous iBoS [28,29].

3. The Leader-Follower (L-F) strategy s = (1, 1, 1, 1; 0, 0, 0, 0; 1, 1, 1, 1) was not considered previ-
ously. In a game between two players with this strategy, the faster player insists and the slower
player accommodates. In simultaneous game, this strategy lapses into inefficient stubborn in-
sisting since all players consider themselves leaders, but in transparent settings with high psee
this strategy provides an effective and fair cooperation (because of the, on average, equal reac-
tion times). When the whole population adopts an L-F strategy, most entries of the strategy
vector become irrelevant since (i) only IA and AI states are visited and (ii) the faster player
never accommodates. Therefore, we classify all strategies encoded by (*11*;*00*;****) as L-F.

4. Challenging Leader-Follower is simply a hybrid of Challenger and L-F strategies encoded
by (11b*;0c0*;*1**), where b > 1/3, c ≤ 1/3.

The results of the simulations are presented in Table 2. The entries of the averaged over all runs
strategy established in the population (Fig. 4) show considerably different profiles for various values of
psee. Challengers, Turn-takers, and Leader-Followers succeeded for low, medium and high probabilities
to see partner’s choice, respectively.

psee 0.0 0.1 0.2 0.3 0.4 0.5
Turn-taker 37.5 41.2 37.5 37.5 24.9 0.0
Challenger 62.5 42.7 3.4 0.5 0.0 0.0
Aggressive Challenger 0.0 14.4 30.7 3.3 0.0 0.0
Challenging Leader-Follower 0.0 1.1 25.2 31.8 0.0 0.0
Leader-Follower 0.0 0.1 2.5 26.1 74.6 100.0

Table 2: Frequencies of stable strategies in the Bach-or-Stravinsky game for different
transparency levels. The frequencies were computed over 109 generations in 80 runs; strategies
were counted as stable if they survived for more than 100 generations after they emerged in the
population. The frequency of the most successful strategy for each psee value is shown in bold.

To provide additional insight into the results of the iBoS simulations, we studied how various strategies
perform against each other (Supplementary Fig. 2). As with the iPD, this analysis helps to understand
why different strategies were successful at different transparency levels.

In contrast to iPD, for iBoS high visibility results in a more effective cooperation, which is consistent
with the notion that cooperation in the iBoS game rests on effective coordination (rather than trust
in the good intentions of the partner). Indeed, for psee ≥ 0.3 non-cooperative Challengers no longer
constituted the majority of the population. The break of cooperation at psee = 0.4 was caused by a
transition from turn-taking to leader-following. Note that for psee = 0.5 cooperation thrives and is
established much faster than for lower transparency (Fig. 3b) thanks to the Leader-Follower strategy.

Discussion

In this paper, we introduced the concept of transparent games which integrates the visibility of the
partner’s actions into a game-theoretic settings. Specifically, we considered iterated dyadic games
where players have probabilistic access to the information about the partner’s choice in the current
round. When reaction times for both players are equal on average, the probability psee of accessing
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Figure 4: iBoS strategies present in the final population. Strategies entries a s1, . . . , s4, b
s5, . . . , s8 and c s9, . . . , s12 are taken for the 109-th generation and averaged over all runs. II, IA, AI
and AA stand for the outcomes “both players insisted”, “self insisted, partner accommodated”, “self
accommodated, partner insisted” and “both accommodated”, respectively. The decrease of the s2/s3
and s10/s11 ratios reflects the transition of the dominant strategy from challenging to turn-taking
for psee = 0.1, . . . , 0.4. For psee = 0.5 the triumph of the Leader-Follower strategy is indicated by
s2 = s3 = 1 and s6 = s7 = 0.

this information can vary from psee = 0.0 (corresponding to the canonical simultaneous games) to
psee = 0.5 (corresponding to sequential games with random order of choices).

The value of psee strongly affects the evolutionary success of strategies. In particular, for the iterated
Prisoner’s Dilemma (iPD) we have shown that for psee > 0 the Generous tit-for-tat strategy is un-
successful and Win–stay, lose–shift becomes an unquestionable evolutionary winner. For psee = 0.5, a
new strategy, Leader-Follower triumphs. In the Bach-or-Stravinsky game (iBoS) even moderate psee
helps to establish cooperative turn-taking, while high psee again brings the Leader-Follower strategy
to success.

Despite the clear differences between the two games, predominant strategies evolving in iPD and iBoS
for various levels of transparency have some striking similarities. First of all, in both games, Leader-
Follower appears to be the most successful strategy for high psee. This can be explained as follows: in
a group where the behaviour of each agent is visible to the others and can be correctly interpreted,
group actions hinge upon agents initiating these actions. The exact role of the initiators can vary:
in some cases, these agents reap special benefits (for instance, dominant male baboons despotically
initiate group movements to the foraging locations that are beneficial for themselves [30]), but in other
cases they also carry the burden. Accordingly, in our study, Leaders enjoy maximal payoffs in the
transparent iBoS game, but have to sacrifice their own payoff for the mutual success in the transparent
iPD. Although counter-intuitive at first glance, the cooperativeness of Leaders in the L-F strategy
corresponds to the behaviour of individuals that agree to do a necessary but risky or unpleasant job
without immediate benefit. Examples include volunteering in human societies and acting as sentries
in animal groups – watching out for predators while conspecifics forage for food [31, 32], see [33] for
further examples. Note, however, that it is still debated how altruistic sentinel behaviour actually
is [31,32,34,35]. Such situations are formalized in game theory by a Volunteer’s Dilemma [33,36,37],
but here we emphasize the aspect of visibility: the L-F strategy becomes dominant only when the
probability that one of the players sees the choice of the other is close to one (that is for psee close
to 0.5). Thus self-sacrificing behaviour is only useful when others can interpret and utilize it, which
is the case both for sentry animals and for human volunteers. Our results for the transparent iPD
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demonstrate that altruistic behaviour for the sake of the species success may evolve in a population
even without direct reciprocity.

For low and moderate values of psee the similarities of the two games are less obvious. However,
the Challenger strategy in iBoS follows the same principle of “Win – stay, lose – shift” as the pre-
dominant strategy WSLS in iPD, but with modified definitions of “win” and “lose”. For Challenger
winning is associated with any outcome better than the minimal payoff corresponding to the mutual
accommodation. Indeed, Challenger accommodates until mutual accommodation takes place and then
switches to insisting. Such behaviour is described as “modest WSLS” in [29, 38] and is in-line with
the interpretation of the “Win – stay, lose – shift” principle observed in animals [39].

The third successful principle in the transparent iPD is “Tit-for-tat”, embodied in Generous tit-for-tat
(GTFT) and Firm-but-fair (FbF) strategies. This principle also works in both games since turn-taking
in iBoS is nothing else but giving tit for tat. In particular, the FbF strategy, which occurs frequently
in iPD for psee ≥ 0.4, is partially based on taking turns and is similar to the Turn-Taker strategy in
iBoS. The same holds to a lesser extent for the GTFT strategy.

The success of specific strategies for different levels of psee makes sense if we understand psee as
a species’ ability to signal intentions and to interpret these signals when trying to coordinate (or
compete). The higher psee, the better (more probable) is the explicit coordination. This could mean
that a high ability to explicitly coordinate actions leads to coordination based on observing the leader’s
behaviour. In contrast, moderate coordination ability results in some form of turn-taking, while low
ability leads to simple strategies of WSLS-type. In fact, an agent utilizing the WSLS principle does not
even need to comprehend the existence of the second player, since WSLS “embodies an almost reflex-
like response to the pay-off” [22]). The ability to cooperate may also depend on the circumstances,
for example, on the physical visibility of partner’s actions. In a relatively clear situation, following
the leader can be the best strategy. Moderate uncertainty requires some (implicit) rules of reciprocity
embodied in turn-taking. High uncertainty makes coordination difficult or even impossible, and may
result in a seemingly irrational “challenging behaviour” as we have shown for the transparent BoS.
However, when players can succeed without coordination (which was the case in iPD), high uncertainty
about the other players’ actions does not cause a problem.

By taking the visibility of agent’s actions into account, transparent games can provide a simple
explanation for certain biological, sociological and psychological phenomena. Here, we illustrate the
potential of this approach with two examples. The first concerns authoritarianism, a personality
trait that manifests as uncritical acceptance of authority and is often associated with conformity.
The most prominent example of how it manifests is the Milgram experiment [40]. In a series of
studies presented as learning experiments, participants were tasked with punishing mistakes of another
participant with increasingly painful electric shocks, under the premise of helping to learn more
effectively. Some participants were willing to essentially electrocute the learner (who was a confidant
of the experimenter) by applying shocks of up to 400 V. In one particular version of this experiment,
where participants were urged to continue applying electro-shocks by a perceived authority figure
(i.e., the experimenter), the proportion of participants who were willing to go to maximal voltage
rose to about two thirds. Importantly, this conformity with authority occurred in a similar fashion
across gender and ages, suggesting that is may be a universal human trait. Most people wonder
why so many individuals show uncritical obedience to authorities, especially when considering how
it can lead to unethical behaviour. The transparent iBoS results hint towards a provocative answer:
a disposition for conformity might provide an evolutionary advantage because it allows for effective
coordination. Thus, the sometimes extreme conformity observed in social psychology [41, 42], might
– at least partially – rest in the evolutionary superiority of a Leader-Follower strategy.

Another application of transparent games is related to the burgeoning experimental research of social
interactions, including the emergent field of social neuroscience that seeks to uncover the neural basis
of social signalling and decision-making using neuroimaging and electrophysiology in humans and
animals [43–46]. So far, most studies have focused on sequential [47, 48] or simultaneous games [49].
One of the main challenges in this field is extending these studies to direct real-time interactions
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that would entail a broad spectrum of dynamic competitive and cooperative behaviours. In line
with this, several recent studies also considered direct social interactions in humans and non-human
primates [3–5, 50–55] during dyadic games where players can monitor actions and outcomes of each
other. Transparent games allow modelling the players’ access to social cues, which is essential for
the analysis of experimental data in the studies of this kind [21]. This might be especially useful
when behaviour is explicitly compared between “simultaneous” and “transparent” game settings, as
in [3,5,50,55]. In particular, the enhanced cooperation in the transparent iBoS for high psee provides
a theoretical explanation for the empirical observations in [5], where humans playing an iBoS-type
game demonstrated a higher level of cooperation and a fairer payoff distribution when they were able
to observe the actions of the partner while making their own choice. In view of the argument that true
cooperation should benefit from enhanced communication [21], the transparent iBoS can in certain
cases be a more suitable model for studying cooperation than the iPD (see also [56,57] for a discussion
of studying cooperation by means of iBoS-type games).

In summary, transparent games provide a theoretically attractive link between classical concepts
of simultaneous and sequential games, as well as a computational tool for modelling real-world in-
teractions. We thus expect that the transparent games framework can help to establish a deeper
understanding of social behaviour in humans and animals.

Methods

Transparent games between two players

In this study, we focus on iterated two-player two-action games: in every round both players choose one
of two possible actions and get a payoff depending on the mutual choice according to the payoff matrix
(Fig. 1). A new game setting, transparent game, is defined by a payoff matrix and probabilities pi

see
(i = 1, 2) of Player i to see the choice of the other player, 0 ≤ p1

see, p
2
see ≤ 1. Note that p1

see + p2
see ≤ 1,

and (1− p1
see− p2

see) is the probability that neither of players knows the choice of the partner because
they act sufficiently close in time so that neither players can infer the other’s action prior to making
their own choice. The probabilities pi

see can be computed from the distributions of reaction times
for the two players, as shown in Supplementary Fig. 3 for reaction times modelled by exponentially
modified Gaussian distribution [58, 59]. In this figure, reaction times for both players have the same
mean, which results in symmetric distribution of reaction time difference (Supplementary Fig. 3b)
and p1

see = p2
see ≤ 0.5. Here we focus only on this case since for both games considered in this study,

unequal reaction times provide a strong advantage to one of the players (see below). However, in
general p1

see 6= p2
see.

To illustrate how transparent, simultaneous and sequential games differ, let us consider three setups
for an iterated Prisoner’s Dilemma (iPD):

1. If prisoners write their statements and put them into envelopes, this case is described by simul-
taneous iPD.

2. If prisoners are questioned in the same room in a random or pre-defined order, this case is
described by sequential iPD.

3. Finally, in a case of a face-to-face interrogation where prisoners are allowed to answer the
questions of prosecutors in any order (or even to talk simultaneously) the transparent iPD
comes into play. Here prisoners are able to monitor each other and interpret inclinations of the
partner in order to adjust their own choice accordingly.

While the transparent setting can be used both in zero-sum and non-zero-sum games, here we concen-
trate on the latter class where players can cooperate to increase their joint payoff. For the purposes
of this work, we define cooperation simply as joint actions towards mutually beneficially outcomes. In
various areas more specific definitions of cooperation are used (see, for example, [7,21] for a discussion
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of cooperation in animals). We consider the transparent versions of two classical games, the iPD and
the iterated Bach-or-Stravinsky game (iBoS). We have selected iPD and iBoS as representatives of
two distinct types of symmetric non-zero-sum games [18, 19]: maximal joint payoff is awarded when
players select the same action (cooperate) in iPD, but different actions in iBoS (one insists, and the
other accommodates). The games of iPD type are known as synchronization games; other examples of
synchronization games include Stag Hunt and Game of Chicken [19]. Games with two optimal mutual
choices are called alternation games [18,19]; as one of these choices is more beneficial for Player 1, and
the other for Player 2, to achieve fair cooperation players should alternate between these two states.

Another important difference between the two considered games is that in iBoS it is better to act
before the partner, while in iPD – after the partner. Indeed, in iPD defection is less beneficial if it can
be discovered by the opponent. Meanwhile in iBoS the player acting first has good chances to get the
maximal payoff of 4 by insisting: when the second player knows that the partner insists, it is better to
accommodate and get a payoff of 3, than to insist and get 2. Therefore, the optimal behaviour in iPD
is to wait as long as possible, while in iBoS a player should react as quickly as possible. Consequently,
evolution in these games favours species with marginal mean reaction times: maximal allowed reaction
time in iPD and minimal allowed reaction time in iBoS. Species with different behaviour are easily
invaded. Therefore we assumed in all simulations that the mean reaction times are constant, that is
pi

see is the same for all species and all players have equal chances to see the choices of each other.

Evolutionary simulations for transparent games

For our evolutionary simulations we adopt the methods described in [22, 23]. Consider an infinite
population of players evolving in generations. For any generation t = 1, 2, . . . the population consists
of n(t) “species” defined by their strategies si = (si

k)12
k=1 and their frequencies xi(t) in the population,

n(t)∑
i=1

xi(t) = 1. Besides, the probability of a player from species i to see the choice of a partner from

species j is given by pij
see ∈ [0, 1] (in our case pij

see = psee for all species i and j, but in this section we
use the general notation).

Consider a player from species i playing an infinitely long iterated game against a player from species
j. Since both players use memory-one strategies, this game can be formalized as a Markov chain with
states being the mutual choices of the two players and a transition matrix M given by

M = (1− pij
see − pji

see)M0 + pij
seeM1 + pji

seeM2, (1)

where the matrices M0, M1 and M2 describe the cases when neither player sees the choice of the
partner, Player 1 sees the choice of the partner before making own choice, and Player 2 sees the
choice of the partner, respectively. These matrices are given by

M0 =


si

1s
j
1 si

1(1− sj
1) (1− si

1)sj
1 (1− si

1)(1− sj
1)

si
2s

j
3 si

2(1− sj
3) (1− si

2)sj
3 (1− si

2)(1− sj
3)

si
3s

j
2 si

3(1− sj
2) (1− si

3)sj
2 (1− si

3)(1− sj
2)

si
4s

j
4 si

4(1− sj
4) (1− si

4)sj
4 (1− si

4)(1− sj
4)

 ,

M1 =


si

5s
j
1 si

9(1− sj
1) (1− si

5)sj
1 (1− si

9)(1− sj
1)

si
6s

j
3 si

10(1− sj
3) (1− si

6)sj
3 (1− si

10)(1− sj
3)

si
7s

j
2 si

11(1− sj
2) (1− si

7)sj
2 (1− si

11)(1− sj
2)

si
8s

j
4 si

12(1− sj
4) (1− si

8)sj
4 (1− si

12)(1− sj
4)

 ,

M2 =


si

1s
j
5 si

1(1− sj
5) (1− si

1)sj
9 (1− si

1)(1− sj
9)

si
2s

j
7 si

2(1− sj
7) (1− si

2)sj
11 (1− si

2)(1− sj
11)

si
3s

j
6 si

3(1− sj
6) (1− si

3)sj
10 (1− si

3)(1− sj
10)

si
4s

j
8 si

4(1− sj
8) (1− si

4)sj
12 (1− si

4)(1− sj
12)

 .
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The gain of species i when playing against species j is given by the expected payoff Eij , defined by

Eij = y1P11 + y2P12 + y3P21 + y4P22, (2)

where Pij are the entries of the payoff matrix (P11 = 3, P12 = 0, P21 = 5, P22 = 1 for iPD and
P11 = 2, P12 = 4, P21 = 3, P22 = 1 for iBoS, see Fig. 1), and y1, y2, y3, y4 represent the probabilities of
getting to the states associated with the corresponding payoffs by playing si against sj . This vector
is computed as a unique left-hand eigenvector of matrix M associated with eigenvalue one [23]:

(y1, y2, y3, y4) = (y1, y2, y3, y4)M.

The evolutionary success of species i is encoded by its fitness fi(t): if species i has higher fitness than

the average fitness of the population f(t) =
n(t)∑
i=1

xi(t)fi(t), then xi(t) increases with time, otherwise

xi(t) decreases and the species is dying out. This evolutionary process is formalized by the replicator
dynamics equation, which in discrete time takes the form

xi(t+ 1) = xi(t) + fi(t)− f(t)
f(t)

xi(t) = fi(t)
f(t)

xi(t). (3)

The fitness fi(t) is computed as the expected payoff for a player of species i when playing with a
random player from the current population:

fi(t) =
n(t)∑
j=1

xj(t)Eij ,

where Eij is given by (2).

Each run of simulations starts with five species having equal initial frequencies: n(1) = 5, x1(1) =
. . . = x5(1) = 0.2. Following [22], probabilities si

k with k = 1, . . . , 12 for these species are randomly
drawn from the distribution with U-shaped probability density:

ρ(y) = π
(
y(1− y)

)−1/2 (4)

for y ∈ (0, 1). Additionally, we require si
k ∈ [ε, 1 − ε], where ε = 0.001 accounts for the minimal

possible error in the strategies [22]. The frequencies of strategies xi(t) change according to the
replicator dynamics equation (3). If xi(t) < ε, the species is assumed to die out and is removed from
the population; we follow [22,23] in taking ε = 0.001. Occasionally (every 100 generations on average),
new species emerge in the population. The strategies for the new species are drawn from (4) and the
initial frequencies are set to xi(t0) = 1.1ε [22].

Evolutionary dynamics of two strategies

To provide an example of evolutionary dynamics and introduce some useful notation, we consider a
population consisting of two species playing iPD with strategies: s1 = (1−ε, ε, ε, 1−ε; 1−ε, ε, ε, 1−ε),
s2 = (ε, ε, ε, ε; ε, ε, ε, ε) (recall that for iPD si

9 = . . . = si
12 = 0) and initial conditions x1(1) = x2(1) =

0.5. That is, the first species plays WSLS, and the second uses AllD. We set p11
see = p12

see = p21
see =

p22
see = psee. Note that since p11

see, p
22
see ≤ 0.5 and p12

see + p21
see ≤ 1, it holds psee ≤ 0.5. Given psee we

can compute a transition matrix of the game using (1) and then calculate the expected payoffs for all
possible pairs of players ij using (2). For instance, for psee = 0 we have

E11 = 2.995,E12 = 0.504,E21 = 2.999,E22 = 1.003.
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This means that a player from the WSLS-species on average gets a payoff E11 = 2.995 when playing
against a conspecific partner, and only E12 = 0.504, when playing against an AllD-player. The fitness
for each species is given by

f1(t) = x1(t)E11 + x2(t)E12 = 2.995x1(t) + 0.504x2(t),
f2(t) = x1(t)E21 + x2(t)E22 = 2.999x1(t) + 1.003x2(t).

Since f2(t) > f1(t) for any 0 < x1(t), x2(t) < 1, the AllD-players take over the whole population after
several generations. Dynamics of the species frequencies xi(t) computed using (3) shows that this is
indeed the case (Fig. 5a). Note that since E21 > E11 and E22 > E12, AllD is garanteed to win over
WSLS for any initial frequency of WSLS-players x1(1). In this case one says that AllD dominates
WSLS and can invade it for any x1(1).

10 20 30 40
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Figure 5: Evolutionary dynamics of iPD-population consisting of species with WSLS and
AllD strategies. a Initially, both species have the same frequency, but after 40 generations the
fraction of WSLS-players x1(t) converges to 0 for probabilities to see partner’s choice psee = 0.0, 0.2
and to 1 for psee = 0.4, 0.5. b This is due to the decrease of the invasion threshold h1 for WSLS:
while h1 = 1 for psee = 0 (AllD dominates WSLS and the fraction of WSLS-players unconditionally
decreases), AllD and WSLS are bistable for psee > 0 and WSLS wins whenever x1(t) > h1. Arrows
indicate whether frequency x1(t) of WSLS increases or decreases. Note that h1 = 0.5 for psee = 1/3.
A detailed quantitative discussion of this fact is beyond the scope of this paper and will be provided
elsewhere.

As we increase psee, the population dynamics changes. While for psee = 0.2 AllD still takes over the
population, for psee = 0.4 WSLS wins (Fig. 5a). This can be explained by computing the expected
payoff for psee = 0.4:

E11 = 2.995,E12 = 0.628,E21 = 2.499,E22 = 1.002.

Hence f1(t) > f2(t) for 0 ≤ x2(t) ≤ 0.5 ≤ x1(t) ≤ 0, which explains the observed dynamics. Note
that here E11 > E21, while E12 < E22, that is a conspecific partner wins more than a partner from
a different species when playing against WSLS- and AllD-players alike. In this case one says that
WSLS and AllD are bistable and there is an unstable equilibrium fraction of WSLS players given by

h1 = E22 − E12
E11 − E12 − E21 + E22

. (5)

We call hi an invasion threshold for species i, since it takes over the whole population for xi(t) > hi,
but dies out for xi(t) < hi. To illustrate this concept, we plot in Fig. 5b the invasion threshold h1 for
WSLS species playing against AllD as a function of psee.

One more possible type of two-species dynamics is coexistence, which takes place when E11 < E21,
E12 > E22, that is when playing against a player from any of the species is less beneficial for a
conspecific partner than for a partner from a different species. In this case the fraction of a species
given by (5) corresponds to a stable equilibrium meaning that the frequency of the first species x1(t)
increases for x1(t) < h1, but decreases for x1(t) > h1. We refer to [23] for more details.
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The empirical datasets generated during the current study and the source code used for this are
available from the corresponding author on reasonable request.
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Supplementary Figures
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Supplementary Figure 1: Invasion thresholds computed for iPD strategies playing against
each other. The thresholds indicated by dashed lines show minimal frequency of the given strategy
necessary for taking over the population against specific competitor strategies. The lower the threshold
the more resilient a strategy is against “invasions” of the competitor. Arrows indicate whether the
frequency of a strategy increases or decreases. In all strategies, 1 stands for 0.999 and 0 – for 0.001. a
WSLS (1, 0, 0, 1; 1, 0, 0, 1) has an advantage over GTFT (1, a, 1, a; 1, a, 1, a) with a = 1/3: the former
takes over the whole population even if its fraction is 0.25. WSLS even dominates GTFT for psee = 0.5.
b GTFT has a risk to be replaced by unconditional cooperation strategy, AllC (1, 1, 1, 1; 1, 1, 1, 1),
which is more successful for psee ≥ 0.1. c,d A modification of L-F (1, 1, 1, 0.005; 0, 0, 0, 0) outperforms
GTFT and AllD (0, 0, 0, 0; 0, 0, 0, 0) strategies, e but not WSLS, which dominates L-F for psee < 1/3.
However, WSLS may lapse into its treacherous version, (1, 0, 0, 1; 0, 0, 0, 0). This strategy dominates
WSLS for psee > 0 but is generally weak and cannot invade when other strategies are present in the
population for psee < 0.5. f Notably, when treacherous WSLS takes a part of the population for
psee = 0.5, it is quickly replaced by L-F, which partially explains L-F success.
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Supplementary Figure 2: Invasion thresholds computed for iBoS strategies playing against
each other. The thresholds are indicated by dashed lines when strategies are bistable, and by
solid lines when strategies coexist (see “Methods” section). Arrows indicate whether the frequency
x1(t) of the first strategy increases or decreases. In all strategies, 1 stands for 0.999 and 0 – for
0.001, the entries s9 = . . . = s12 = 1 are omitted. a Turn-taker (q, 0, 1, q; 0, 0, 0, 0) with q = 5/8
for psee > 0 outperforms Aggressive Challenger (1, 1, 0.2, 1; 0.5, 0.5, 0.2, 0.5), b but not Challenger
(0.9, 1, 0, 1; 0.5, 0.5, 0, 0.5). c Challenger can coexist with Aggressive Challenger for low transparency,
but is dominated for psee > 1/3. d,e,f Leader-Follower (1, 1, 1, 1; 0, 0, 0, 0) clearly outperforms other
strategies for high psee.
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Supplementary Figure 3: Distributions of reaction times (RT) of the players determine
their probability to see the partner’s choice. a RT distributions for two players modelled by
exponentially modified Gaussian distribution. b Distribution of RT difference ∆RT = RT2−RT1 and
probabilities to see the partner’s choice given by p1

see = Pr(∆RT < −∆T ) (Player 1 knows the choice
of Player 2 before making own choice, the blue area) and p2

see = Pr(∆RT > ∆T ) (vice versa, the red
area), where ∆T is a time interval required for a player to interpret and act on the partner’s choice.
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