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ABSTRACT 37	

 38	

Background: Several promising live attenuated virus (LAV) dengue vaccines are in 39	

development, but information about innate immune responses and early correlates of protection 40	

are lacking.  41	

Methods:  We characterized human genome-wide transcripts in whole blood from 10 volunteers 42	

at 11 time-points after immunization with the dengue virus type 3 (DENV-3) component of the 43	

NIH dengue vaccine candidate TV003 and from 30 hospitalized children with acute primary 44	

DENV-3 infection. We compared day-specific gene expression patterns with subsequent 45	

neutralizing antibody (NAb) titers.   46	

Results: The transcriptional response to vaccination was largely confined to days 5-20 and was 47	

dominated by an interferon-associated signature and a cell cycle signature that peaked on days 48	

8 and 14, respectively. Changes in transcript abundance were much greater in magnitude and 49	

scope in symptomatic natural infection than following vaccination (maximum fold-change >200 50	

versus 21 post-vaccination; 3,210 versus 286 transcripts with significant fold-change), but 51	

shared gene modules were induced in the same sequence. The abundance of 131 transcripts 52	

on days 8 and 9 post-vaccination was strongly correlated with NAb titers measured 6 weeks 53	

post-vaccination. 54	

Conclusions:  LAV dengue vaccination elicits early transcriptional responses that mirror those 55	

found in symptomatic natural infection and provide candidate early markers of protection against 56	

DENV infection. 57	

 58	

Clinical Trial Registration Number: NCT00831012 (available at clinicaltrials.gov) 59	

Keywords:  dengue; vaccine; innate immune response; gene expression; microarray; correlates 60	

of protection; interferon; neutralizing antibody 61	
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BACKGROUND 63	

Each year, the four dengue virus serotypes (DENV-1-4) infect an estimated 390 million 64	

individuals globally [1]. While most of these infections are asymptomatic, approximately 100 65	

million individuals develop clinically apparent disease, from uncomplicated fever to life-66	

threatening illness. Despite the high disease burden, there are no licensed therapeutics for 67	

DENV infection. Several promising candidate dengue vaccines are in Phase III clinical trials, 68	

and the live attenuated chimeric dengue vaccine Dengvaxia™ was recently licensed for use in 69	

children 9 years of age and older in DENV endemic areas. However, the efficacy and duration 70	

of protection were limited or uncertain, and DENV-naïve vaccine recipients were hospitalized for 71	

dengue and severe dengue at a higher rate than placebo recipients, possibly due to antibody-72	

dependent enhancement (ADE) [2].  73	

Studies of natural DENV infection and flavivirus LAVs have identified immune responses 74	

needed for protection against dengue disease.  Pre-existing neutralizing antibody (NAb) titers 75	

correlate with a lack of symptomatic disease in subsequent infections [3–6] and are used as the 76	

primary measure of candidate vaccine immunogenicity. However, the risk of severe disease is 77	

elevated after a second infection with a heterotypic dengue virus [7]. The recognition of effective 78	

homotypic immunity after natural infection has led to a common vaccine development strategy 79	

of inducing homotypic NAbs to all four serotypes simultaneously. 80	

Little is known about the role of early innate immune responses in enhancing NAb 81	

production and promoting protective immune memory against dengue. Studies of innate 82	

immunity have been hampered by the difficulty in identifying individuals with early infection, 83	

when innate immune responses are most active, particularly those with mild or subclinical 84	

infections. Trials of LAVs provide a unique opportunity to examine early immune responses in a 85	

setting where the time, dose, and viral serotype are known. Genome-wide transcript responses 86	

to vaccines have provided important clues about early steps in the generation of humoral and 87	

cellular immunity [8–13]. Transcript profiling of peripheral blood also incorporates information 88	
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from cell populations that are difficult to examine in clinical settings, and has led to signatures 89	

associated with dengue disease severity, identified links between innate responses and humoral 90	

immunity in secondary DENV infection, and illustrated the dynamic nature of these responses 91	

[14–20]. 92	

In this study, we characterized the transcript response to rDEN3Δ30/31, the DENV-3 93	

component of TV003, a tetravalent live attenuated vaccine candidate developed by NIH. TV003 94	

is a single-dose vaccine that has proven to be both safe and immunogenic and is being 95	

evaluated in a Phase III efficacy trial [21,22]. We examined temporal changes in transcript 96	

abundance and identified early signatures correlated with NAb titers measured six weeks post-97	

vaccination. We also compared these results with transcript patterns we observed in patients 98	

with symptomatic wild-type primary DENV-3 infection. Despite the anticipated differences in the 99	

magnitude of expression, we observed the induction of common gene expression programs in 100	

the same temporal sequence, with a similar relationship to the induction of NAb. These results 101	

reveal candidate biomarkers of early protective DENV immune responses against dengue and 102	

suggest a path towards validation and deployment. 103	

 104	

METHODS 105	

Vaccine study population.  Samples for this study were collected from a Phase I clinical trial of 106	

the live attenuated dengue vaccine rDEN3Δ30/31-7164 (DENV-3), described previously [23].  107	

Briefly, healthy, flavivirus-naïve adult volunteers were randomized to receive a single 0.5 ml 108	

subcutaneous dose of 1,000 PFU of DENV-3 vaccine or a placebo (0.5 ml of vaccine diluent). 109	

Blood samples including whole blood for RNA profiling were collected immediately prior to 110	

vaccination and on days 2, 5, 6, 8, 9, 12,14, 20, 29, 42 and 180. Samples from each of these 111	

time-points were available from nine of ten vaccinees and from all placebo recipients. Subject 9 112	

had samples available for all days except days 8 and 12; 166 samples in total were used for 113	

analysis. Serum virus titers (viremia) were measured using a standard plaque assay as 114	
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described previously [24].  Serum NAb titer was determined by 60% plaque reduction (PRNT60) 115	

[25].  Seroconversion was defined by a >4-fold increase in PRNT60 on study day 28 or 42 116	

relative to day 0 and corresponds to a post-vaccination titer >10 [23]. 117	

 118	

Dengue patient population. Patients (6 months to 14 years old) presenting with fever and 119	

suspected dengue during the 2010 dengue season were enrolled at the Hospital Infantil Manuel 120	

de Jesús Rivera in Managua, Nicaragua. Inclusion criteria, recruitment, and laboratory testing 121	

have been described previously [26] (see Supplementary Information). Blood samples from 122	

healthy subjects were collected as part of a separate prospective cohort study in which healthy 123	

children in the same general population were enrolled without regard to dengue status [27].  124	

 125	

Ethics statement.  The trial of rDEN3Δ30/31 was approved by the Committee for Human 126	

Research at the University of Vermont, and written informed consent was obtained from all 127	

subjects following a review of risks and benefits and a comprehension assessment. The study in 128	

Nicaragua was approved by the Institutional Review Boards of the University of California, 129	

Berkeley, and the Nicaraguan Ministry of Health, and by the Stanford University Administrative 130	

Panel on Human Subjects in Medical Research. For further details, see Supplementary 131	

Information.  132	

 133	

RNA sample processing and transcriptome analysis. PAXgene RNA was amplified and 134	

hybridized to Human Exonic Evidence Based Oligonucleotide microarrays [14]. Microarray data 135	

were submitted to the Princeton University MicroArray database for normalization and gene 136	

filtering and are deposited at Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/; 137	

accession numbers GSE96656 and GSE98053). A full description of both sample processing 138	

and analysis steps is available in the Supplementary Information. 139	

 140	
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RESULTS 141	

 142	

Temporal patterns of the transcriptional responses to live dengue vaccination 143	

To identify the temporal pattern of the early human transcriptional response to dengue 144	

vaccination, we examined changes in genome-wide transcript abundance in serial whole blood 145	

samples from 10 volunteers infected with 1,000 plaque forming units (pfu) of rDEN3∆30/31, the 146	

dose included in TV003, and four volunteers inoculated with placebo (L-15 medium). Nine of ten 147	

vaccinees seroconverted 28 days post-vaccination, defined as a 60% plaque reduction 148	

neutralization titer (PRNT60 ) >10 (Table 1).  Four of the vaccinees had low-level viremia on one 149	

or more days within the first 10 days post-vaccination, five developed a mild maculopapular 150	

rash, and none were febrile. The four placebo recipients remained seronegative for DENV 151	

serotypes.  152	

We collected whole blood for isolation of RNA immediately before vaccination (day 0), 153	

and on days 2, 5, 6, 8, 9, 12, 14, 20, 29, 42 and 180 post-vaccination from all volunteers and 154	

measured genome-wide transcript abundance levels. Data were available for eight of the nine 155	

participants who seroconverted. For each of these eight subjects, we compared transcript 156	

abundances for each post-vaccination day with those for the matched pre-vaccination sample 157	

(see Supplementary Information). Almost all significant changes in transcript abundance 158	

occurred 5-20 days after vaccination, with a peak of 161 and 156 transcripts changing in 159	

abundance (days 8 and 9, respectively), and 286 transcripts with a significant change in 160	

abundance on at least one day (Figure 1). Fewer transcripts met criteria for significance when 161	

comparing vaccinees to placebo recipients (n=131), but the direction of change for 271 of the 162	

286 transcripts from vaccinees was the same whether the comparison was with day-matched 163	

placebo recipients or each subject’s baseline sample (Supplementary Figure 1). 164	

To infer the functional implications of these changes in transcript abundance, we used 165	

hierarchical clustering to organize the transcripts and compared gene membership in Gene 166	
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Ontology and the KEGG pathways using the DAVID bioinformatics resource [28]. Gene 167	

transcripts were grouped in three clusters (Figure 2 and Supplementary Figure 2). Transcripts in 168	

Cluster 1 were more abundant after vaccination (Figure 2C), peaked on days 8 and 9 post 169	

vaccination, and included canonical interferon-stimulated gene (ISG) transcripts; IFI44, IFI44L, 170	

IFI27, HERC5, IFIT1, USP18, and ISG15 transcripts all increased 10- to 22-fold compared to 171	

baseline. Cluster 1 was strongly enriched for genes involved in the innate immune response to 172	

viruses and highly enriched for genes we previously found to be expressed after treatment of 173	

PBMCs with type I interferon (p<1E-36) [29]. 174	

Gene transcripts in Clusters 2 and 3 showed maximal changes on day 14, with Cluster 2 175	

transcripts increasing and Cluster 3 transcripts decreasing in abundance from baseline (Figure 176	

2A and 2B). Cluster 2 included TYMS, CEP55, CCNA2, and NEK2, whose genes products are 177	

involved in DNA replication and cell division, and other genes associated with mitosis (p<2E-9, 178	

Figure 2C). Genes in Cluster 3 were enriched in both reticulocytes (p=1E-20) and neutrophils 179	

(p=2E-7) [30]. We did not measure reticulocyte counts, but we did measure neutrophils and the 180	

relative neutrophil abundance in vaccinees did not change significantly with time (p=0.55, paired 181	

t-test), suggesting that decreased expression of these genes was not due to decreased 182	

neutrophil abundance. 183	

 184	

Changes observed after vaccination are a subset of those observed in natural 185	

symptomatic DENV-3 infection 186	

To establish which features of the early response to vaccination are shared with the 187	

response to natural symptomatic infection, we examined transcript responses in Nicaraguan 188	

children hospitalized with acute dengue. We previously demonstrated that a history of previous 189	

DENV exposure is the most prominent source of variation in gene expression in dengue 190	

patients [14]. To ensure that DENV immune status, as well as serotype, did not confound our 191	

analysis, we identified 30 children diagnosed with acute primary DENV-3 infection during a 192	
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single year (24 with dengue fever and 6 with dengue hemorrhagic fever; Supplementary Table 193	

1), and compared transcript abundance in whole blood with measurements from 9 healthy 194	

individuals. Principal components analysis confirmed previous findings that there are significant 195	

day-to-day changes in the transcript response to natural infection [14,31] (Supplementary Figure 196	

4); thus, we subsequently performed analyses stratified by day of fever. There were no 197	

significant differences in transcript abundance between children with dengue fever and children 198	

with dengue hemorrhagic fever after matching for sex and day of fever, which is generally 199	

consistent with previous studies in the same population [14,18], although the small sample size 200	

could affect the results of our analysis.   201	

Despite having fewer days available for comparison and lacking baseline samples for 202	

each patient, we identified many more transcripts with significant changes in abundance post-203	

infection compared to those found in vaccinees: among the 20,623 transcripts measured in both 204	

datasets, we identified 3,210 transcripts that differed significantly on at least one day of fever, 205	

compared with 278 transcripts following vaccination (Figure 3A, Supplementary Figure 5A). The 206	

magnitude of the maximum change in abundance post-infection was also nearly 10-fold greater: 207	

there was a 200-fold difference post-infection compared to a maximum 21-fold difference post-208	

vaccination (Figure 3B).  The transcripts with the greatest differences in relative abundance 209	

during natural infection were MT2A (242-fold) and USP18 (183-fold), both of which are 210	

interferon-induced; HESX1 (150-fold), which is expressed in activated dendritic cells; and 211	

SPAT2SL (137-fold), which may be involved in activation and differentiation of multiple cell 212	

types. 213	

Despite differences in response magnitude and number, the response following natural 214	

symptomatic infection included 90% (250/278) of transcripts that changed after vaccination, and 215	

the direction of change was the same for 96% of these transcripts (240/250) (Figure 3C). The 216	

transcripts that changed the most post-vaccination (IFI44, IFI44L, IFI27 and HERC5) were 217	

among the 20 transcripts with the biggest differences in abundance following natural infection, 218	
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and relative increases in transcript abundance were strongly correlated across the two groups 219	

(Spearman r2 = 0.75).  220	

 221	

Responses to dengue vaccination and symptomatic natural infection share a common 222	

temporal sequence 223	

We used gene set enrichment analysis and information from all measured transcripts to 224	

identify 141 blood transcript gene modules that changed in abundance following either 225	

immunization or infection [8] (FDR<1%).  Many of these modules demonstrated similar changes 226	

in both vaccinees and patients (Figure 4A). Modules enriched for ISG expression were elevated 227	

on days 5-14 post-vaccination and were also persistently elevated after natural DENV infection.  228	

Modules representing monocyte-associated transcripts were elevated on days 1-3 of natural 229	

infection and on days 8-9 post-vaccination, while modules associated with the mitotic cell cycle 230	

were elevated on later days in both groups, with the highest levels on day 5 of natural infection 231	

and on day 14 post-vaccination.  When we compared the overall profiles of the gene modules in 232	

the two groups, we found that the responses to natural infection on fever days 1-3 were most 233	

similar to responses to vaccination on days 8-9 (Pearson’s r ≥0.60; peak on day 9), while fever 234	

day 4 was most similar to vaccination day 12 (r>0.75, peak on day 12), and fever day 5 was 235	

most similar to vaccination day 14 and subsequent time-points (r≥0.70, peak on 14) (Figure 4B, 236	

Supplementary Dataset 1). Thus, the enrichment of common modules in the same sequence 237	

indicates a similar progression in the early host response to vaccination and to natural infection.   238	

We note there was also a cluster of 16 gene modules, six associated with platelet 239	

activation and cytoskeletal remodeling, that were elevated in natural infection but not vaccinees 240	

(Figure 4A, Supplementary Dataset 1). Previous studies have demonstrated that platelet 241	

activation and TGFβ expression are elevated in DENV infection and higher in patients with more 242	

severe disease [32]. TGFβ, which is expressed at high levels in platelets [33], was elevated on 243	
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fever days 1-2 in dengue patients but was never elevated post-vaccination (Supplementary 244	

Figure 6). 245	

 246	

Early transcriptional responses linked to neutralizing antibody production  247	

DENV-specific NAbs are the primary endpoint for assessing vaccine responses in clinical trials 248	

and are associated with protection from both symptomatic infection and severe disease [3–5]. 249	

To determine whether changes in host transcript patterns predicted differences in NAb titer we 250	

calculated the correlation between the change in abundance of each transcript on each day and 251	

the NAb titer on post-vaccination day 42, when NAbs are generally at peak titer (Table 1, 252	

Supplementary Figure 7A). During the first 6 days post-vaccination, we found no significant 253	

correlations with NAb titer, but by day 8, expression of the ISGs in Cluster 1 positively correlated 254	

with the day 42 NAb titer (p<0.01; Figure 5). This correlation was equally strong on day 9, and 255	

131 transcripts were significantly correlated with day 42 NAb titer on both days. Among the 256	

individual ISG transcripts most strongly correlated with day 42 NAb titer on both days 8 and 9 257	

was IFI44, the transcript whose abundance changed the most post-vaccination (Supplementary 258	

Figure 7B).  IFI44 was also elevated at one time-point in each of two placebo recipients, but the 259	

timing of elevated expression was different and correlated with unrelated respiratory viral 260	

infections in each instance (Supplementary Figure 8). Twelve of the 131 transcripts were also 261	

associated with subsequent development of a rash, which was the only significant correlate with 262	

positive NAb titer in a clinical trial of TV003 [21] (Supplementary Figure 9). Interestingly, the one 263	

vaccinee who failed to develop neutralizing antibodies showed little evidence of increased 264	

abundance in Cluster 1 genes (Supplementary Figure 3).  The association of interferon-related 265	

transcript abundance and later NAb titer diminished on days 12 and 14, but BUB1 (r=0.86) and 266	

other transcripts associated with the mitotic cell cycle were correlated with subsequent NAb 267	

titers on day 14 (Figure 5, Supplementary Figure 7C).  268	
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When we performed similar comparisons for naturally infected patients, we found no 269	

transcript clusters significantly correlated with either convalescent or three month NAb titer 270	

(Supplementary Figure 5B and 5C).  However, the pattern of blood transcript module 271	

enrichment indicated a similar relationship between day-specific gene expression and later 272	

production of NAb; gene enrichment for both interferon-stimulated and cell cycle-associated 273	

gene modules was associated with higher NAb titer in both vaccinees and patients (Figure 6), 274	

albeit more weakly in patients, and cell cycle-associated modules were correlated with NAb titer 275	

later in both groups.  276	

There are at least three subpopulations of monocytes with distinct transcript profiles [34]; 277	

Kwissa et al. identified an increase in CD14+CD16+ intermediate-phenotype population after 278	

secondary DENV infection, and showed that in vitro these cells stimulated formation of the 279	

plasmablasts that secrete antibodies weeks after infection, mediated in part by secretion of the 280	

ISG cytokine BAFF [19]. In our study, gene set enrichment analysis indicated enrichment of 281	

transcripts for both intermediate and nonclassical monocytes at multiple time-points in both 282	

vaccinees and patients, while BAFF transcripts were most abundant on fever days 1 and 2 in 283	

the patients and days 8 and 9 in the vaccinees (Supplementary Figure 10). 284	

 285	

DISCUSSION 286	

In this study, we used intensive longitudinal sampling to characterize the transcriptional 287	

response to dengue vaccination, compared results with those from natural infection with the 288	

same DENV serotype, and identified early features that may predict a protective immune 289	

response.  We found that vaccination and natural infection induced common gene expression 290	

programs, and the abundance of individual interferon-stimulated transcripts 8 days post-291	

vaccination was correlated with NAb titers measured five weeks later, representing the earliest 292	

identified correlates of a protective adaptive immune response following dengue vaccination. 293	
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An interferon response signature has been observed in other studies profiling viral 294	

vaccine transcriptional responses. Inactivated influenza and meningococcal vaccines both 295	

induce a mild interferon response during the first week post-vaccination, but the response is 296	

particularly strong after vaccination with live attenuated vaccines [9,12,35]. We reported that 297	

ISG expression was much stronger in cynomolgous macaques infected with wild-type DENV 298	

compared to live attenuated virus [35]. Here, we found that ISG expression was much stronger 299	

in symptomatic dengue patients than vaccinees, presumably due to higher viral load after 300	

infection with wild-type virus. Expression of ISGs was correlated with viral load in the patients, 301	

as seen in other studies [19,36].  However, this association did not persist when patients were 302	

stratified by day of fever, highlighting the importance of temporal variation in the innate 303	

immune response and in viral load, and suggesting that factors in addition to viral replication 304	

influence ISG expression. Several studies have found stable inter-individual differences in the 305	

response to interferon, suggesting that genetic and environmental features may affect the 306	

relationship between viral infection and the interferon response [37,38].  We were not able to 307	

assess directly the impact of these features on transcriptional responses in this study, but their 308	

contributions to the differences between children with symptomatic infection and vaccinated 309	

adults are likely to be much less than the contribution of differences in virulence of vaccine and 310	

wild type viruses (see Supplementary Information).  311	

The links between type I interferon production and NAb production probably involve 312	

multiple cell types. Plasmacytoid dendritic cells (pDCs) contribute to B cell differentiation and 313	

antibody production after viral infection [39]. In this study, increases in monocyte-associated 314	

gene expression coincided with ISG expression, and we found features related to multiple 315	

monocyte phenotypes in both natural infection and vaccination. Gene module analysis also 316	

suggested that T cells were responsible for the increase in cell cycle-associated transcripts two 317	

weeks after vaccination that was linked to NAb titers. Future targeted studies of pDCs, 318	

monocytes, and T cell populations during the first two weeks post-vaccination will help clarify 319	
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their role in establishing long-lasting antibody responses. In addition, the link between an early 320	

interferon response and later NAb titer was only apparent in natural infection when we used a 321	

module analysis approach. This may indicate a plateau, or saturation effect, in the relationship 322	

between ISG expression and antibody titer. Alternatively, it may reflect the variability in 323	

pathogen dose, prior health status and/or days of infection absent in clinical trials but inherent in 324	

observational studies. 325	

Comparison with LAV vaccination also provides a framework for identification of features 326	

associated with pathogenic versus non-pathogenic infection. A recent study compared PBMC 327	

gene expression in asymptomatic and clinically significant secondary DENV infection and 328	

identified differences in antigen presentation and lymphocyte activation [36].  In this study 329	

examining whole blood gene expression during primary infection, we found an increased 330	

abundance of transcripts associated with platelet activation in natural (pathogenic) infection but 331	

not vaccination (non-pathogenic infection), consistent with the hypothesis that platelet activation 332	

contributes to dengue pathogenesis [40].  333	

Neutralizing antibody titers were used as an endpoint for these vaccine studies because 334	

many studies have shown that these antibodies play an important role in protective immunity. 335	

However, recent work has demonstrated that NAbs measured in vitro are an imperfect correlate 336	

of in vivo protection [37,38]. Immunity mediated by NAbs may be neither life-long nor sterilizing 337	

[43,44] and will be affected by the quality as well as the quantity of NAbs [5,26,45]. Recent 338	

studies also highlight a likely role for cytotoxic T cells in mediating protection against DENV 339	

reinfection and severe disease [46–49]. The NIH tetravalent vaccine, of which rDEN3Δ30/31 is 340	

a component, elicits CD4+ T cell responses similar to those seen in natural infection [50]. It will 341	

be important to establish whether the early transcript-based features we measured in this study 342	

are associated with DENV-specific responses in memory T cell populations. 343	

Our findings reflect the integration of data across multiple time-points and thousands of 344	

transcripts, and provide a robust basis for further investigation. We previously found that early 345	
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interferon-associated transcriptional responses were associated with antibody formation in non-346	

human primates exposed to a tetravalent dengue vaccine [35]. We believe it is likely that the 347	

same relationship will exist in humans immunized with tetravalent LAV dengue vaccines. The 348	

initiation of Phase 3 clinical trials of TetraVax-DV-TV003 provides an opportunity to validate the 349	

relationship between these early responses and NAb titers, and identify specific transcripts as 350	

early surrogate markers of both immunogenicity and protection. 351	
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Figure Legends 509	

 510	

Figure 1. Significant differences in transcript abundance post-vaccination (FDR<1%; minimum 511	

2-fold change compared to pre-vaccination sample). 512	

 513	

Figure 2.  Changes in transcript abundances over time in vaccinees. A)  Hierarchical clustering 514	

of the 286 transcripts whose abundance was significantly different from baseline on more 515	

than one day. Lines and numbers to the right of the heatmap mark sets of co-expressed 516	

genes (average cluster r>0.5). B) Change over time in abundance for each transcript in 517	

each gene cluster.  Heavy line indicates median expression of all genes in each cluster. C) 518	

Gene ontologies associated with gene clusters described in (A) and (B). There were no 519	

significant gene ontologies for Cluster 3. 520	

 521	

Figure 3.  Comparison of post-vaccination and post-infection transcript abundance changes.  A) 522	

Transcripts with significant changes on days 2, 3, 4, or 5 of fever in patients with primary 523	

DENV-3 infection (blue circle) and on any day post-vaccination (green circle).  Numbers 524	

indicate transcripts unique to vaccination, infection, or shared (overlap, n=246). B) 525	

Maximum fold-change in transcript abundance following vaccination (red circles) or during 526	

infection (blue diamonds). C) Maximum fold-change in abundance for transcripts with 527	

significant changes post-vaccination or during infection.  Dotted diagonal line at equal fold 528	

change included for reference. 529	

 530	

Figure 4.  Gene modules affected by DENV vaccination and natural infection.  A) Blood 531	

transcript modules with transcripts that were significantly up- or down-regulated on at least 532	

one day (FDR <1%) were hierarchically clustered.  NES; normalized enrichment score.  533	

Vertical lines on right denote module clusters described in the text.  B) Hierarchical 534	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2018. ; https://doi.org/10.1101/314377doi: bioRxiv preprint 

https://doi.org/10.1101/314377


	

	 21	

clustering of each day post-vaccination or post-infection using the NES from (A).  Days in 535	

bold italics represent days of fever for infected patients; days preceded by “v” represent 536	

days post-vaccination. 537	

 538	

Figure 5.  Correlation of transcript abundance and day 42 PRNT60 among vaccine recipients.  A) 539	

Average fold change in abundance by day for all transcripts with significant differences 540	

from baseline post-vaccination.  Transcripts are ordered and clusters labeled as in Figure 541	

2. Asterisk marks IFI44. B) Spearman correlation of each transcript and day 42 PRNT60 542	

using a moving average of window size 9. Solid lines indicate days post-vaccination on 543	

which a significant correlation was identified (p<0.01, indicated by vertical dotted grey line). 544	

 545	

Figure 6.  Gene modules correlated with subsequent neutralizing antibody response.  A) Blood 546	

Transcript Modules that were significantly enriched for transcripts positively correlated with 547	

day 42 PRNT60 (vaccinees) or convalescent NT50 (patients) on at least one day (FDR<1%) 548	

were hierarchically clustered. NES; normalized enrichment score. Vertical lines delineate 549	

module clusters described in the text.  B) Significant modules (FDR<1%) are marked in red. 550	

Modules and samples are organized as in (A). C) Hierarchical clustering of gene module 551	

expression from each day post-vaccination or post-infection using the NES from (A). Day 552	

labels in bold italics represent fever day for infected patients; day labels preceded by “v” 553	

represent day post-vaccination.	554	
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Table 1. Characteristics of subjects in vaccine trial 

 

  Subject Age Sex Viremiaa Rashb 

Day 28 

PRNT60
c 

Day 42 

PRNT60
 c 

Day 180 

PRNT60
 c 

  1 (Vaccine) 19 F -- Days 12-20 54 70 30 

  2 (Vaccine) 26 F -- -- 22 15 <5 

  3 (Vaccine) 25 M Days 8-9 -- 52 106 22 

  4 (Vaccine) 20 M Days 8-9 Days 12-16 26 32 <5 

  5 (Vaccine) 20 M Day 6 Days 12-20 33 19 <5 

  6 (Vaccine) 22 M -- -- <5 <5 <5 

  7 (Vaccine) 19 M -- -- 18 8 8 

  8 (Vaccine) 22 F Days 5-8 Days 12-20 34 29 8 

  9 (Vaccine) 19 F -- -- 25 33 <5 

10 (Vaccine) 46 F -- Days 12-16 70 152 64 

11 (Placebo) 18 F -- -- <5 <5 <5 

12 (Placebo) 19 M -- -- <5 <5 <5 

13 (Placebo) 45 M -- -- <5 <5 <5 

14 (Placebo) 21 F -- -- <5 <5 <5 

 

a Virus detected in serum from tissue culture plaque formation assay  

b First and last day on which maculopapular rash observed  

c Reciprocal serum dilution providing 60% reduction in plaque formation 
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