
1 
 

Criticality in Tumor Evolution and Clinical Outcome

Erez Persi1,2,*, Yuri I. Wolf2, Mark D.M. Leiserson1, Eugene V. Koonin2,*, Eytan Ruppin1,*

1 Center for Bioinformatics and Computational Biology, Institute of Advanced Computer Studies, 

Department of Computer Science, University of Maryland College Park, Maryland 20742, USA
2 National Center for Biotechnology Information, National Library of Medicine, National Institutes of 

Health, Bethesda, MD 20894, USA

* Correspondence to: E.P. (erezpersi@gmail.com), E.V.K. (koonin@ncbi.nlm.nih.gov) or E.R.

(eruppin@gmail.com) 

Abstract

How mutation and selection determine the fitness landscape of tumors and hence clinical 

outcome is an open fundamental question in cancer biology, crucial for the assessment of 

therapeutic strategies and resistance to treatment. Here we explore the mutation-selection phase-

diagram of 6721 primary tumors representing 23 cancer types, by quantifying the overall somatic 

point mutation load (ML) and selection (dN/dS) in the entire proteome of each tumor. We show 

that ML strongly correlates with patient survival, revealing two opposing regimes around a 

critical point. In low ML cancers, high number of mutations indicates poor prognosis, whereas 

high ML cancers show the opposite trend, due to mutational meltdown. Although the majority of 

cancers evolve near neutrality, deviations are observed at extreme MLs. Cancers with the highest 

ML evolve under purifying selection, whereas those with the lowest ML show signatures of 

positive selection, demonstrating how selection affects cancer fitness. Moreover, different cancers

occupy specific positions on the ML-dN/dS plane, revealing a diversity of evolutionary 

trajectories. These results support and expand the theory of tumor evolution and its non-linear 

effects on survival.
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Significance Statement

It remains an open fundamental question how mutation and selection co-determine the course of 

cancer evolution. We construct a selection-mutation phase diagram, using tumor mutation load 

and selection strength as key variables, and assess their association with clinical outcome. We

demonstrate the existence of a biphasic evolutionary regime, whereby beyond a critical ML, the 

fitness of tumors decreases with the number of mutations, while the proteome evolves near 

neutrality. Deviations from neutrality in extreme ML elucidate how positive and purifying 

selections maintain tumor fitness. These results empirically corroborate the existence of a critical 

state in cancer evolution predicted by theory, and have fundamental and likely clinical 

implications.
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Introduction

The paradigm of tumor clonal evolution by acquisition of multiple mutations has been firmly established 

since the landmark work of Knudson (1), Cairns (2) and Nowell (3). Similarly to microbial populations

(4-6), tumors evolve under constant selective pressure, imposed by the microenvironment as well as by 

therapy, such that surviving tumor cell lineages harbor mutations that confer selective advantage and 

resistance to treatment. This has been demonstrated both in space, showing intratumor branched 

evolution across different anatomical sites (7), and in time, showing the existence of a population 

bottleneck following treatment, and rapid emergence of resistant phenotypes (8). Under this paradigm, 

the evolutionary trajectories of cancers can be viewed as different realizations of the same evolutionary 

process, shaped by the specific microenvironment, the genomic makeup of each tissue and individual, and 

the unique history of mutations in each clone (3, 9).

Notwithstanding the importance of epigenetics, tumor evolution is marked by a wide range of genomic 

aberrations and instabilities. These genomic changes occur at every length scale and accumulate in a 

highly non-linear manner, as exemplified by local elevated mutation rates (Kataegis) (10), complex short 

insertions and deletions (11), hypermutation and microsatellite instability (12), punctuated equilibrium 

and chromosomal rearrangements (Chromoplexy) (13), and biased distribution of mutations across 

different genomic regions (14). Eventually, these somatic aberrations provide for the ability of cancers to 

proliferate, invade and metastasize (15) by affecting a plethora of cellular functions (16).

Although recent advances in cancer genomics have greatly improved our understanding of how somatic 

genomic aberrations are linked to tumor progression and patient survival (17-20), the fundamental 

question how mutation and selection jointly determine the clinical outcome remains open (21-23). The

population-genetic theory of tumor evolution predicts that there exists a critical mutation-selection state

that corresponds to a transition between evolutionary regimes (24-25). Below the critical state, mutations 

that increase tumor fitness, known as cancer drivers (26-28), are the main factors of tumor evolution, 

whereas above the critical state, accumulation of (moderately) deleterious passenger mutations 

outcompete the drivers, eventually leading to tumor regression through mutational meltdown (25), a 

process known in population genetics as Muller’s Ratchet (29). However, the rarity of spontaneous tumor 

regression, coupled with strong evidence of increased cancer risk at high mutational loads in 

hypermutator genotypes (30), contest the existence and relevance of such criticality in clinical outcome.
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Furthermore, recent studies indicate that the bulk of cancers and most genes in tumors evolve neutrally

(31-33). Conversely, somatic evolution of some normal tissues appears similar to that detected in certain 

cancers (34), in particular, showing comparable signatures of positive selection (35). Together, these 

findings prompt the fundamental question how different mutation-selection regimes of tumor evolution 

determine cancer fitness and ultimately patient survival. Here we address this problem by exploring the 

dependence of tumor fitness and clinical outcome on mutation load and selection, and demonstrate the 

existence of criticality in tumor evolution.

Results

Population Genetics Approach for Assessing Tumor Evolution and Fitness. To study the 

inter-relationship between mutation, selection and clinical outcome on a large scale, we quantified the 

evolutionary state of 6721 primary tumors that represent 23 different cancer types from The Cancer 

Genome Atlas (TCGA) database (Methods and Figure S1). The time of tumor initiation and the non-

linearity in the accumulation of mutations during its evolution to a primary state are unknown. Further, 

although the number of cancer-stem cells that confer tumorigenic renewal potential is believed to be 

small, their actual prevalence and impact on the fitness of tumors remains incompletely understood (36-

37). Thus, from the available data that typically present a single snapshot in time of primary tumor states,

the effective population size (Ne) cannot be reliably determined. Therefore, we define the evolutionary 

status of each tumor by the overall mutation load (ML), i.e. the sum of non-silent (N) local somatic 

genomic alterations including point mutations, small deletions and insertions, and the strength of selection 

(dN/dS), i.e. the ratio of non-synonymous to synonymous nucleotide substitution rates, acting on the 

entire protein-coding exome (hereafter, proteome) (Methods and Figure S2).

Respectively, dN/dS and ML can at least conceptually serve as proxies for the effective population size 

(Ne) and the mutation rate (μ), the key variables that are conventionally used in population genetics (21),

which determine the evolutionary fates of all organisms (38). This is the case because dN/dS and Ne are 

inversely related (39), so that high Ne implies dominance of purifying selection, a common evolutionary 

regime in prokaryotes and unicellular eukaryotes, whereas low Ne implies the dominance of neutral 

evolution by genetic drift, a typical scenario in at least some groups of multicellular eukaryotes (40-41).

The case of ML, an important clinical measure, is somewhat more complicated. It represents the 

integration of all non-silent somatic point mutations across the proteome over an unknown but defined 
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time interval. Because some mutations could have accumulated prior to tumor initiation (42), this interval 

can be defined as the time from the birth of the cell that eventually transformed into a neoplastic cell to 

the primary tumor state. Thus, ML represents the product of the mutation rate and an effective 

evolutionary time; nonetheless, it can be translated into mutation rate under simplifying assumptions, as 

we discuss below.

Assuming that the survival of patients is inversely proportional to the fitness of tumors, we explored how 

ML and dN/dS correlate with survival, using the semi-parametrized Cox regression analysis and the 

empirical Kaplan-Meier (KM) log-rank test as two complementary approaches, to increase the 

significance of the analysis (Methods). These tests were applied to both clinical overall survival (OS) and 

disease free survival (DFS) times.

Criticality in Clinical Outcome as Function of Mutation Load. First, we explored how ML

correlates with clinical outcome. To estimate ML, we considered all non-silent (N) somatic mutations in 

each patient, including missense (82.3%), in and out of frame insertions and deletions (8.6%), nonsense 

(5.8%) and splice-site/region (3.2%) variants (Figure S1). The distribution of ML across the 23 cancer 

types is in full accord with the well-known ordering of cancers (27-28) in which Thymoma and Acute 

Myeloid Leukemia (AML) have the lowest ML, whereas Lung and Melanoma exhibit the highest ML

(Figure 1A, top).

We performed a univariate Cox analysis for each cancer type separately. To ensure that the hazard ratios 

(HR) associated with the different ML variables are comparable across cancer types, the values of the ML

within each cancer type were normalized to 0-1 (Methods). The Cox analysis of both the OS and DFS of 

each cancer type reveals two opposing trends of clinical outcome (Figure 1A, bottom). Among the low 

ML cancers (first 8; median ML<40), those that have accumulated higher numbers of N mutations, on 

average, have poorer prognosis than those with lower numbers of N mutations ( , where is the 

coefficient of the Cox analysis such that HR=e ; see Methods for details). However, the relationship 

between ML and survival reverses in high ML cancers (last 8; median ML>70), where a higher number of 

N mutations corresponds to a better prognosis ( <0). Cancers with medium ML (#9 to #15) do not show a

significant association with survival ( ~0) except for Ovarian (#9, median ML=40) and Liver (#15,

median ML=70) at the two sides of the mutation “watershed”, where the pattern of ML distributions

flattens (ML medians ~50). The complementary KM analysis, where we compared the prognosis for 

patients with low and high ML values within each cancer, also captures this transition in the clinical 

outcome (Figure 1A and Figure S3). Notably, ovarian cancer behaves as a typical high ML cancer type,
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whereas liver cancer behaves as a low ML cancer type, indicating that the mutation watershed represents a 

critical point in the ML-survival dependency. Viewing the flat mutation watershed as a point in ML, it is 

conceivable that cancers in its vicinity can swap positions, such that liver exhibits characteristics of a low 

ML cancer type, whereas ovarian cancer exhibits characteristics of a high ML cancer type.

Figure 1A depicts a striking overall correlation between the behavior of and ML across cancer types.

Nonetheless, because the Cox and KM analyses of some individual cancers are not statistically 

significant, presumably due to the small number of patients, we further tested the existence of opposite 

regimes, by increasing the statistical power of the analysis (Figure 1B and Table 1). To this end, we

compared between two groups of cancers below and above the watershed. We performed two

comparisons of these groups, either including or excluding cancers at the edges of the watershed: 1)

comparing the low ML cancers (#1-8) including liver (#15) (L1) with the high ML cancers (#16-23)

including Ovarian (#9) (H1), and 2) comparing the low ML cancers (#1-8) (L2) with the high ML cancers

(#16-23) (H2), excluding cancer types at the edges of the watershed (i.e., liver and ovarian). The results 

of the KM tests for the first comparison clearly demonstrate the existence and significance of the

transition in clinical outcome (Figure 1B). Further, to account for differences between cancer types, we

performed complementary Cox regression analyses, in which the data were stratified by the cancer types

in each group (Methods). The results of this analysis further substantiate the significance and existence of 

opposing regimes in low versus high ML cancers, and demonstrate that the results are robust to the 

inclusion or exclusion of a particular cancer type in the analysis of either group (Table 1).

Robustness and Validation of Criticality in Clinical Outcome. To test how robust is the 

distinction between the opposite cancer evolution regimes with respect to ML, we estimated ML using 

different sets of genes, including known cancer-genes and random sets (Methods). The emergence of 

opposite evolutionary regimes around the watershed was highly robust to the choice of the set of genes

compared (Figure S4). This robustness stems from the high correlation between ML values estimated for 

different sets of genes, which results in similar associations of the ML of each set of genes with patients’ 

survival. Thus, the existence of criticality does not seem to depend on a particular set of mutations or 

genes, but is rather a consequence of the overall accumulation of diverse mutations in the proteome.

Given that the overall ML represents summation over different types of mutational events, it appears 

likely that other somatic aberrations could provide a comparable signal predictive of survival. Thus, we 

tested how copy-number alterations (CNA) predict survival. We used two standard estimators (linear and 

gistic) to evaluate the overall CNA as well as the overall level of deletions and amplifications in each 
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proteome (Methods). We found that CNA and ML are moderately correlated (Spearman =0.44) (Figure 

S5). However, Cox analysis applied to each cancer type showed that, although at low ML, high CNA

corresponds to poor prognosis ( ), it does not predict the transition in clinical outcome around the 

mutation watershed (Figure S5). Thus, the Muller’s Ratchet effect at high ML, most likely, is caused 

primarily by point mutations and other small scale mutational events. These observations were confirmed 

with a stratified Cox analysis comparing low with high ML cancers (Table 1). Further, we tested the 

association of the commonly used variable, DNA burden, defined by the fraction of genes affected by 

CNA, finding that it displays similar behavior to the overall CNA (Table 1). The contrast between the 

substantial effect of CNA in low ML cancers and the lack of such effect in high ML cancers (Table 1 and 

Figure S5) suggests nonlinearity, whereby the positive effect of increased CNA on tumor fitness is 

diminished as ML increases, consistent with previous findings indicating the association of intermediate 

copy-number DNA burden values with better prognosis (20).

Testing for the effects of possible confounding factors, including age, stage and grade, by building

stratified multivariate Cox regression models (Methods), established that ML is the only factor 

responsible for the transition in clinical outcome (Table S1). Advanced age and stage, and to a lesser 

extent grade, were significantly associated with poorer clinical outcome ( , both in low and high ML

cancers. However, the transition between the low ML cancers ( ) and high ML cancers ( was 

observed only for ML (Table S1), in agreement with the results shown in Table 1.

Lastly, we validated the existence of the transition in clinical outcome by analyzing an independent recent 

cohort of ~10,000 patients (43) (see Methods and Figure S6). Although in this data set, only ~400 genes 

were sequenced, which limits the attainable statistical significance, compared to the TCGA pan-cancer 

data set, we observed that for low ML cancers, the prognostic factor was always positive, whereas in 

most of the high ML cancer types, was negative (Figure S6). Thus, the results of this analysis on an 

extended data set largely recapitulate the transition in clinical outcome as function of ML.

Dominance of Neutral Evolution in the Pan-Cancer Data Set. We next estimated the selection 

(dN/dS) acting on the entire tumor proteome in each patient (Methods). Because of the highly variable 

rates of mutations across a tumor genome and the small overall number of mutations, a conventional 

direct estimation of selection at the gene level is impossible, unless integration of mutations across 

patients is permitted (Figure S2). Therefore, to explore the potential link between the selection at the 

patient level (rather than the gene level) to the survival of the respective patient, we estimated the 

selection that affects the entire proteome in each patient (Methods and Figure S2). Specifically, we
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calculated the ratio between the number of non-synonymous mutations per non-synonymous site (pN) and 

the number of synonymous mutations per synonymous site (pS) across all genes, considering the 

proteome (or a large group of genes) as a single sequence. The ratio pN/pS was used as a proxy for 

selection (dN/dS). In cancer, pN/pS is a valid approximation of dN/dS, assuming that a site is not mutated 

more than once during tumor evolution, such that correction for multiple mutations that effectively 

transforms pN/pS into dN/dS, is unnecessary (Methods).

Estimation of the number of mutations in the entire proteome of each patient shows that, in accord with 

many previous observations on evolving organisms (44), the numbers of non-silent (N) and silent (S)

mutations are highly correlated and display a linear relationship, albeit with different ratios across cancer 

types, suggesting some diversity of evolutionary regimes (Figure 2A). To ensure that our estimate 

yielded a stable measure of selection, characteristic of the diversity among cancer types, we examined the 

dependency of dN/dS on the number of genes used for the estimation. The median dN/dS value in each 

cancer type reached a plateau rapidly as more genes were included, and the variance across patients in 

each cancer type was low (Figure 2B). Thus, the median dN/dS across an entire proteome appears to be 

an adequate measure for a pan-cancer comparative analysis. The distributions of dN/dS indicate a (near) 

neutral evolutionary regime, where for most cancer types, dN/dS values were distributed around 1 across 

patients (Figures 2B and 2C). This observation was robust to using only missense point substitutions,

instead of all non-silent mutations, for the dN/dS estimation (Figure S7).

This result is consistent with those of three recent studies, each using a different approach to estimate 

selection in tumors (and genes), but all coming to similar conclusions on the prevalence of neutral 

evolution in the pan-cancer data: (i) an integrative approach which fits the distribution of subclonal 

mutations in each patient to a 1/f power law model, by accurate calling of the allele frequencies (f) (31), 

(ii) an integrative approach which infers the selection acting on genes, by a applying a Bayesian 

framework to the overall distribution of mutations (32), and (iii) inference of the exact substitutions rates 

in different mutational contexts, using a model with 192 parameters (33). Although some differences 

exist among the methods and conclusions of these studies (see Methods), all of them show that the 

majority of tumors (and genes) evolve close to neutrality.  The convergence of all these studies on the 

predominantly neutral regime of tumor evolution additionally indicates that, at least at the entire proteome 

level, measures of selection capturing neutral evolution are insensitive to the exact characteristics of 

mutations (e.g., clonal vs. subclonal) or the distinct (non-linear) dynamics by which different mutations 

accumulate in the proteome (e.g., variable substitution rate and allele frequency).
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Deviations from Neutrality at Extreme Mutation Loads. Notwithstanding the prevalence of 

neutral evolution (dN/dS~1), Figure 2 also reveals deviations from neutrality at extreme mutation loads. 

In Thymoma, the cancer type with the lowest ML, the median of dN/dS is greater than 1, and more 

generally, heavier tails of dN/dS>1 are observed in low ML but not in high ML cancers, indicative of 

positive selection at low ML. In contrast, in Melanoma, the cancer type with the highest ML, dN/dS was 

distributed completely below 1 (except for a few patients), which is indicative of purifying selection 

acting on the tumor proteome. These observations were robust to using only missense point substitutions

(Figure S7).

To elucidate how these deviations from neutrality emerge across the proteome and to assess their 

significance, we performed a detailed inspection of the distribution of mutations, across different groups 

of genes, in Acute Myeloid Leukemia (AML) (Figure 3A) and Melanoma (Figure 3B), which represent 

the cancer types with extreme ML values. AML was selected as an example of a low ML cancer to 

analyze the heavy tails that are indicative of positive selection although on average it appears to evolve 

neutrally. The analysis of AML patients (n=163) shows that 64 patients had dN/dS , and 63 had 

dN/dS<1 (Figure 3A), leading to the observed median of dN/dS=1. The remaining 36 patients harbored 

many N mutations, but not a single S mutation (i.e., dN/dS=Inf, which is discarded from analysis); hence,

the heavy tail in AML patients (cf. Figure 2C) is underestimated. The signature of positive selection 

(dN/dS>1), manifested by heavy tails of the dN/dS distributions, was detected in AML samples that 

harbored numerous mutations, and therefore could not be an artifact caused by the small number of 

mutations in low ML cancers. Furthermore, dN/dS<1 in AML patients was a consequence of the large

number of S mutations (and not of increased statistical power). In contrast, in the case of Melanoma, 

dN/dS values were below unity in the vast majority of samples, and sharply dropped with the increasing 

number of mutations in the proteome, in a clear sign of purifying selection correlated with the ML

(Figure 3B).

To assess the evolutionary pressures that affect different classes of genes in tumors, we compared the 

dN/dS distributions for the known cancer genes (26) (n=585) and house-keeping genes (45) (n=3518) 

(Methods). The results of this analysis could not be as significant as those for all genes, due to the 

relatively small number of genes in each set (especially, the cancer genes). Despite this limitation, dN/dS

in the cancer genes across all cancer types was significantly higher than in randomly selected genes, 

which was not the case for the house-keeping genes (Figure S8). Thus, the cancer genes appear to be 

subject to stronger than average positive selection. Nonetheless, the accumulation of many N mutations

outside of the set of known cancer genes indicates that positive selection can affect diverse genes in 
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tumor, with the implication that many cancer-related genes remain to be discovered. In contrast, in 

Melanoma, purifying selection (dN/dS<1) was found to act on large portions of the proteome (Figure 

S8). This signature of purifying selection reflects the fact that, as the ML increases, the number of S

mutations grows faster than the number of N mutations across the proteome (Figure 3B). Coupled with

the observation of better prognosis ( ) in these Melanoma patients (cf. Figure 1A), this expansion of 

mutations across the proteome appears to be a sign of a looming mutational meltdown.

Proteomic measures of selection can provide information on the evolutionary regimes of different groups 

of genes but not of individual genes (Methods). Nevertheless, the results of our analysis are concordant 

with previous findings (32), showing that in AML more genes are subject to positive than to purifying 

selection, whereas in Melanoma, the opposite is the case. Furthermore, in Melanoma, the number of genes

under purifying selection was found to be greater than in any other cancer type.

Clinical Outcome Weakly Depends on Selection. To determine whether any of the selection 

regimes in tumors affect survival, we tested the potential link between dN/dS and prognosis. First, we 

performed KM analysis in each cancer type, comparing positive vs. purifying selection (Figure S9). All 

of these tests failed to detect a significant predictive signal of differential survival. A complementary Cox 

regression, comparing between the two groups of cancer types with low and high ML, stratifying the data

by cancer types in each group, verified the lack of association of purifying or positive selection at the 

proteome level with clinical outcome (Table 1). Nonetheless, KM analysis shows that, in certain cancer 

types (Gbm, Cesc, Lusc, Skcm), intermediate values of selection around neutrality (dN/dS~1) were 

associated with poorer prognosis than either positive or purifying selection (Figure S10). Indeed, neutral 

evolution was associated with poorer prognosis than either type of selection when the comparison was 

performed across all cancer types although this connection was less significant for disease-free survival 

(Figure 4).

Discussion

The results of the present analysis can be best interpreted by projecting ML and dN/dS onto an empirical 

mutation-selection phase-diagram, which emphasizes the existence of distinct evolutionary regimes 

(Figure 5A). Under the assumption that cancer fitness and patient survival are inversely related, this 

diagram shows how ML and dN/dS jointly determine cancer fitness (Figure 5B). In low ML cancer types,

tumor fitness increases with the number of mutations ( ). In this regime, some tumors appear not to 
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have acquired a sufficient number of driver mutations, and therefore, positive selection (dN/dS>1)

promotes driver mutations to increase or maintain the tumor fitness (e.g., Acute Myeloid Leukemia). In 

contrast, at high ML, cancer fitness decreases with the number of mutations ( ), due to the 

accumulation of deleterious passenger mutations. In the cases of extremely high ML, this expansion of 

mutations can lower the fitness of tumors, such that purifying selection (dN/dS<1) acts to remove

deleterious mutations, thus avoiding tumor collapse by mutational meltdown (Muller’s ratchet), as we 

observed in Melanoma. In Melanoma, dN/dS is below unity in samples with large ML but turns towards 

unity in patients with lower ML (Figure 5A) that on average have a worse prognosis (Figure S10).

In contrast to the clear dependency on ML, tumor fitness is only weakly correlated with dN/dS, such that 

the majority of cancers evolve near neutrality (Figure 2), consistent with previous findings (31-33). This 

lack of detectable proteomic-level selection signatures is likely due to the fact that tumor fitness mostly 

depends on a small number of drivers, whereas the bulk of the fixed mutations are neutral or slightly 

deleterious. Indeed, more detailed analysis (Figure 3 and Figure S8) demonstrated significant differences 

in selection between groups of genes, in particular, positive selection in cancer genes, with an overall 

neutral effect on the entire proteome. Only at extremely high ML, as in Melanoma, tumor fitness depends 

on the accumulation of a critical mass of (deleterious) mutations across the entire proteome, so that these 

tumors evolve under purifying selection. Thus, in summary, under neutrality, a sufficient number of 

drivers can accumulate whereas the overall deleterious effect of passengers is balanced, explaining the 

weak association of neutrality with poor prognosis (Figure 4). Taken together, our results corroborate the 

theory of tumor evolution that predicts the existence of a critical mutation-selection state (24-25). 

Nonetheless, the existence of tumors with high ML, some of them with poor prognosis, suggests that other 

somatic aberrations could increase or maintain tumor fitness, to compensate for the passengers deleterious 

effect. This seems to be the case of microsatellite instability. In many hypermutation tumors, 

microsatellite instability is associated with better prognosis, thus apparently reducing tumor fitness (12).

Further, high ML tumors across different cancer types on average have low microsatellite instability (46).

Thus, a compensatory relationship appears to exist between point mutations and microsatellite instability 

with respect to tumor fitness.

In addition to these general trends, examination of the empirical dN/dS-ML plane reveals a diversity of 

tumor evolution regimes. For example, in kidney renal clear cell carcinoma, we identified a cluster of 

patients with high ML and dN/dS>1, suggesting that the specific microenvironment and other factors, 

such as competition between subclones (21, 47), could be important for understanding the precise 

relationship between ML, dN/dS and survival. Hence, coupled with the overall weak association of 
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selection with survival, selection appears to maintain cancer fitness in diverse microenvironmental 

conditions, genomic contexts and phases of evolution, leading to a diversity of roughly equally successful 

evolutionary strategies (with respect to dN/dS) of extant cancers, while the neutral evolutionary regime 

dominates overall.

Our analyses indicate that the overall mutational load is a key determinant of patient survival. The ML

counts all N mutations, wherever they occur in the tumor genome (including portions involved in 

structural variation, such as gene duplication), and whenever they emerge during the lifetime of tumor 

cells. Given that the survival dependency on ML captures the transition in the clinical outcome, the effects 

of various mutations appear to be context-dependent, and in a given genomic state could lead to either an 

increase or a decrease in tumor fitness, such that all mutations should be included to assess clinical 

outcome. Therefore, the total ML becomes a key variable for clinical assessment, which is not sensitive to 

cellularity, ploidy, clonality and other specific features of tumors. The high correlations between ML of 

different classes of genes (Figure S4) as well as between ML values for different mutation classes 

(Figure 2A and Figure S7), with all these values being tissue-specific as in (27-28), suggest that ML is a 

stable measure that reflects effective (tissue-specific) evolutionary time of a tumor (weighted by the 

respective variable mutation rates). This is consistent with recent observations showing that the tissue-

specific cell division rate is a key determinant of cancer risk and the mutational load in diverse tissues,

whereby about 2/3 of the mutations accumulate at random due to replication errors (48-49). This is also 

consistent with the observation that both genetic and epigenetic characteristics of the original cell are key 

determinates of the mutational spectrum of the respective cancer cell (50).

The criticality observed around the mutation watershed corresponds to the transition in the clinical 

outcome at ML of ~50 N mutations per tumor proteome. Under certain simplifying assumptions, this 

value can be linked to previous results. Data-driven theoretical studies suggest that, for ~60 passengers 

(P=N+S-D; P, total number of passenger mutations; D, number of drivers among the N mutations), there 

are ~10 drivers (24). Thus, for the critical point as identified here, N~50, S~20 and D~10. To accumulate 

10 drivers, it takes ~5-50 years with a cell division rate of ~4 days (i.e., the number of cell generations 

G=450-4500) (24). Thus, we can estimate that the range of mutation rates (per locus per cell division) 

associated with N~50 is μ~5x10-9-5x10-10(μ =N/Ns/G; Ns, the total number of N sites in the proteome).

This range of mutation rates closely matches the lower range of rates where a non-monotonic 

accumulation of passengers vs. drivers starts to be detectable, leading to the effect of Muller’s Ratchet

predicted by theory (25). Further, if D~10 and each clone in a tumor harbors a small number of drivers 
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(~2-3), then the critical number of clones for tumor progression is ~3-4, in agreement with recent findings 

(20).

Concluding remarks

To summarize, in addition to known genomic markers (18, 20), our results reveal major, global features 

of cancer genome evolution that affect tumor fitness and accordingly, clinical outcome. In accord with 

theoretical predictions, we show that the dependency of tumor fitness on the mutational load is non-

monotonic, with a critical region where the evolutionary regime changes, empirically corroborating the 

theory of tumor evolution, as a tag of war between driver and passenger mutations (25). In contrast, the 

dependency of tumor fitness on proteome-level selection is weak. We conclude that tumor fitness and 

clinical outcome strongly depend on the total ML and that most tumors evolve under a predominantly 

neutral regime, with relatively small contributions of both purifying and positive selection that become 

stronger only at extreme ML values. These conclusions are compatible with the well accepted view that 

tumors evolve and progress via random accumulation of a few driver mutations.

By analyzing proteomes of a broad range of cancers, we identify tumors that evolve in different regimes 

that are characterized by opposite effects of ML. Knowledge of the evolutionary status of a given tumor 

could have implications for therapy that would aim to either increase or decrease the ML, depending on 

the position of the given tumor on the dependency curve. This might be particularly important for 

immunotherapy, where ML plays a critical role (51). Our results further imply that targeted therapy can 

be effective in low ML, where few drivers determine the course of tumor evolution, whereas at high ML,

alternative strategies, such as immunotherapy, are likely to be more effective, consistent with the well-

known success of immunotherapy in melanoma (52-53). The present analysis could also serve as a

framework for future research to study how the transition from the primary to the metastatic state and 

how therapy could change the status of tumors in the ML-dN/dS- hyperplane.

Materials and Methods

Datasets. The complete raw data form all TCGA studies (n=23) that included at least 100 patients each 

were downloaded from cBioPortal (54) (http://www.cbioportal.org/). For analysis, we considered all “3-way 

complete” samples (i.e., containing somatic point mutations, copy-number alterations and gene 

expressions data, relative to matched-normal samples; n=6721), and all human protein-coding genes for 

which we identified both SwissProt and NCBI-Entrez unique accessions (n=18179). This data matrix 
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(samples by genes) as well as patients’ clinical data were also downloaded from Firehorse 

(https://gdac.broadinstitute.org/) for comparison, verifying that there is little discrepancy between the two 

databases and that each mutation had at least 10 reads of the tumor variant (standard quality control) and 

are fully non-redundant (i.e., a variant in a given sample and gene are not counted more than once). Data 

from cBioPortal were downloaded also via Matlab application program interface (API), which routinely 

updates annotations of mutations, and were used to remove germline mutations from analysis. Clinical 

survival data included overall survival (OS) for 98.3% of the patients (n= 6609) and disease free survival 

(DFS) for 82% of the patients (n=5508). Distribution of patients’ race and age, tumor stage and grade as 

well as the distribution of variants across different mutational classes are provided in Figure S1.

Known cancer genes were downloaded from COSMIC database (26) (http://cancer.sanger.ac.uk/census).

House-peeping genes were extracted from a recent survey (45). For validation (Figure S6), a recent 

cohort of ~10000 patients with advanced cancer (MSK-impact-2017), where 43% of the samples originate 

from metastatic sites and 414 cancer genes were sequenced (43), was downloaded via cBioPortal. Data 

for all samples and genes, including all the information needed for full reproducibility of the results in this 

study, are provided in Supplemental Dataset S1 (Excel file).

Copy-number alterations (CNA). To estimate gene copy-number alteration (CNA), we extracted and 

analyzed both the ‘linear’ and ‘gistic’ measures. Linear measures provide continuous variables which 

represent the extent of amplification and deletions of each gene. The gistic measure implements 

additional computation inferencing the zygotic gain/loss using integers (-2 to 2). For evaluation of the 

overall level of CNA (Table 1, Table S1), we used summation over the ‘linear’ measure, verifying that it 

correlated with the summation over the ‘gistic’ values (Figure S5). The copy-number DNA burden was 

also calculated, using the ‘gistic’ measure, as the fraction of altered genes (gain or loss) in the proteome 

(Table 1).

Selection in Tumor Proteomes. Protein-level selection (dN/dS) at the molecular level is measured by 

comparing two sequences and computing the ratio between the non-synonymous substitution rate (dN)

and the synonymous substitution rate (dS) (55). Generally, this is done in two steps: (i) calculating the 

number of N sites (nN) and the number of S sites (nS) over the length of the compared sequences, and 

calculating the number N mutations per N sites (pN=N/nN) and the number of S mutations per S sites 

(pS=S/nS), and (ii) applying methods, such as Jukes-Cantor (56) or Goldman & Yang (57) that transform 

the counts pN and pS into the respective rates dN and dS, by considering the possibility that over time, a
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single locus mutates several times before fixation, in a context-dependent manner. Over long evolutionary 

distances, this second step is crucial. During cancer evolution, however, the likelihood for a particular 

locus to mutate more than once is low (9) and a considerable number of mutations might not be fixed, 

such that estimates of selections should be based on the integration of mutation counts rather than rates 

(58). Hence, we chose to approximate dN/dS by the ratio pN/pS.

Selection can be assigned and computed at different length scales (e.g., locus, domain, gene, etc.). In 

practice, the pan-cancer mutation data are highly sparse such that a gene in a patient rarely harbors both N

and S mutations (Figure S2). Thus, a direct estimation of dN/dS at the gene level is not feasible, and 

integration of mutations, either over patients providing estimates of selection in individual genes, or over 

genes, providing estimates of selection in individual patients, is necessary. Adequate measures of 

selection at the gene level have been recently developed, using both a Bayesian framework (32) and a 

context-dependent inference of substitution rates (33). Here, our goal was to investigate the link between 

the selection acting on the tumor proteome and the respective patient survival, so data from different 

patients should not be integrated. Therefore, we compute selection at the patient level, integrating 

mutations over genes (g) within in patient’s tumor proteome and treating them as a single concatenated 

sequence, such that there are sufficient numbers of N and S mutations for statistical inference of dN/dS:

 (1) = //
The dN/dS values were estimated using in Equation 1, for each patient, considering the mutations in the 

entire proteome (Figure 2), or groups of genes, such as known cancer genes or house-keeping genes 

(Figure S8). Practically, to calculate the dN/dS ratios, the canonical amino-acid sequences of all human 

proteins and their respective DNA coding sequences were extracted primarily from Ensembl (59) and 

from GeneBank for completeness. For each nucleotide sequence, translation into the exact respective 

canonical protein sequence in SwissProt was verified. The numbers of non-synonymous and synonymous 

sites (nN, nS) in each protein were calculated, considering all alternative nucleotides in each position. The 

full accord of the selection in entire proteomes (Figure 2) with previous studies (31-33), capturing the 

dominance of neutral evolution, independently validates the choice of Equation 1 for the large-scale 

comparative analysis across patients cancer types.
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Survival Analysis. To test the association of variables with survival, we used both Kaplan-Meier (KM) 

log-rank test (60-61) and Cox proportional hazard regression analysis (62), and applied these approaches 

to both OS and DFS clinical data. KM is a non-parameterized empirical test that compares the survival 

curves using long-rank test for censored data. In this analysis, groups of patients are defined and 

compared by splitting the tested variable. This approach allows flexibility in defining and testing different 

ranges of the tested parameter, albeit at the risk of losing robustness. Hence, to assess the stability of this 

test, we used several cutoffs as indicated for each analysis. Cox regression is a semi-parameterized 

approach that fits the survival clinical data to a hazard function (h(t)=-d[logS(t)]/dt, where S(t) is the 

survival probability at time t) and tests the effect of variables (X) under the ‘proportional hazard’ 

assumption (h(X,t)=ho(t)e ; ho the baseline hazard), namely, that the tested hazard functions are log-

linearly scaled by a constant factor beta ( ), which determines the Hazard ratio (i.e., HR=e ). This 

assumption, however, does not always hold for real data. Hence, the KM and Cox analyses are 

complementary.

Using Cox analysis, we normalized each tested variable (e.g., ML, dN/dS, CNA) in each test to 0-1, such 

that the results of different tests can be easily compared, (see also Ref: 20). Hence, in Figure 1A, ML is 

normalized in each cancer type to 0-1, and a univariate Cox analysis is performed in each cancer type 

separately. Similarly, when several cancer types were grouped (e.g., low or high ML in Table 1), the 

aggregated distribution of the MLs across patients in each group was normalized to 0-1, and the variables 

were stratified by the cancer types, to build stratified regression models for each group separately. 

To build stratified multivariate regression models (Table S1), testing the effects of possible confounding 

factors such as age, stage and grade, the categorical clinical data, stages I-IV and grades I-IV, were tested 

each using dummy indicator variables, relative to the reference category stage/grade I, respectively. 

Subcategories were grouped (e.g., Stages IA-IC were assigned Stage I). Any stage or grade outside the 

range I-IV (e.g., stage/grade ‘X’) were not included in this analysis, and were not given any value (i.e., 

Nan). Variables were stratified by cancer types. The constants of each Cox proportional hazard regression 

model ( , its error and the P-value) are provided in each figure and table for each test.

Analysis and Code Availability. All the analyses were performed in Matlab R2016b, using only built-

in functions, under license to UMD/UMIACS/CBCB. Matlab files, including the datasets and analysis 

scripts, which fully reproduce the results as they appear in the manuscript, are available upon request 

from the authors.
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Figures

Figure 1: Mutational load criticality in clinical outcome across cancer types. A) Log distributions of the number 
of non-silent (N) mutations per proteome/sample in each cancer type; the corresponding results of Cox regression 
analysis are shown underneath the plot. The KM results (Figure S3) are superimposed; the cases where, low (L,
blue) or high (H, red) number of mutations was significantly associated with better survival ( ) are highlighted.
Statistical significance is indicated for two additional thresholds, P < 0.01 and P < 0.001. Grey letters (L or H) 
indicate an observed but not significant (P>0.1) correlation. B) The KM overall survival (OS) and disease free 
survival (DFS) rates for sets of cancer types with low mutation load (Left: #1-8 including #15) and high mutation 
load (Right: #16-23 including #9). For each set, samples with low numbers of mutations (blue; lower 20%) were 
compared to those with high numbers of mutations (red, upper 20%). Insets depict the 5-years survival rate at 
different cutoffs (upper/lower percentiles in the range 50%-20%). Arrows indicate the case of ±20% shown in the 
larger panels. Complementing Cox regression models stratified by cancer types in each group are summarized in 
Table 1. Oncotree codes: 1) Thym, Thymoma, 2) Laml, Acute Myeloid Leukemia, 3) Thca, Thyroid Carcinoma, 4) 
Pcpg, Pheochromocytoma and Paraganglioma, 5) Lgg, Brain Lower Grade Glioma, 6) Brca, Breast Invasive 
Carcinoma, 7) Prad, Prostate Adenocarcinoma, 8) Sarc, Sarcoma, 9) Ov, Ovarian Serous Cystadenocarcinoma, 10) 
Paad, Pancreatic Adenocarcinoma, 11) Kirc, Kidney Renal Clear Cell Carcinoma, 12) Kirp, Kidney Renal 
Papillary Cell Carcinoma, 13) Gbm, Glioblastoma, 14) Tgct, Testicular Germ Cell Cancer, 15) Lihc, Liver 
Hepatocellular Carcinoma, 16) Cesc, Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma, 17) 
Hnsc, Head and Neck Squamous Cell Carcinoma, 18) Stad, Stomach Adenocarcinoma, 19) Luad, Lung 
Adenocarcinoma, 20) Blca, Bladder Urothelial Carcinoma, 21) Esca, Esophageal Carcinoma, 22) Lusc, Lung 
Squamous Cell Carcinoma, 23) Skcm, Skin Cutaneous Melanoma.
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Figure 2: Proteomic selection (dN/dS) across cancer types. A) The relationship between the numbers of non-
silent (N) and silent (S) mutations per tumor proteome, where representative cancer types that span the different 
mutational load regimes are color-coded. B) Stability of the proteomic measure of selection for comparative analysis 
between cancer types. The median of protein-level selection (dN/dS) across patients is shown as function of the 
number of proteins considered for the evaluation of dN/dS, in each cancer type (grey). Selected cancer types are 
highlighted as in (A).C) Distributions of dN/dS in the tumor proteome across patients, for different cancer types.
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Figure 3: Distribution of mutations in different groups of genes, in cancer with extreme ML values. A) Acute 
Myeloid Leukemia patients (n=163). The number of non-silent (N) minus the number of silent (S) mutations (left y-
axis) indicates the excess of N mutations in each group of genes separately (color). The number of S mutations in the
entire proteome is superimposed (black). Patients are ordered by the dN/dS acting on the proteome (right y-axis). B)
Melanoma patients (n=287). In Aml, for more than half of the patients, dN/dS>1, and cancer genes harbor a 
substantial fraction of the N mutations. In Melanoma, dN/dS is below unity in the vast majority of patients, and 
dN/dS sharply drops with the number of mutations in the proteome which, coupled with , indicates mutation 
meltdown (Muller’s Ratchet).
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Figure 4: Selection versus survival in the pan-cancer data. KM overall survival (OS) and disease free survival 
(DFS) rates are compared across all studies for cases of neutral evolution (intermediate values around dN/dS=1,
blue) and cases of positive and negative selection (red). Insets depict the 5-years survival rates and the 
corresponding P-values of log-rank tests for each cutoff. The survival curves in the larger panels correspond to the 
case of dN/dS=1±0.2 as indicated by the arrows in the insets. Complementary Cox regression analysis, stratifying 
the by cancer types, is provided in Table 1.
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Figure 5: Empirical mutation-selection phase diagram of tumor evolution. A) Mutation-selection empirical 
diagram for all analyzed cancers (grey) and selected cancer types (color-coded) that show distinct evolutionary 
regimes depending on the mutational load. B) A schematic conceptual depiction of the emerging fitness landscape of 
tumors as function of the mutation load (top) and selection (bottom). Dashed curves are theoretical and solid curves 
are observed. Down-triangles (green) indicate purifying selection and up-triangles (orange) positive selection. The 
grey ovals show the critical area.
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Tables

OS DFS
Variables (Set) P-value P-value
ML (All) -1.63 (1.16) 0.1621 -1.14 (1.00) 0.2575
ML (L1) 4.41 (1.02) 1.62e-05 3.12 (0.76) 3.8e-05
ML (H1) -4.93 (1.75) 0.0048 -4.24 (1.73) 0.01452
ML (L2) 3.48 (1.46) 0.017 2.81 (0.89) 0.0015
ML (H2) -4.79 (1.73) 0.0057 -4.18 (1.73) 0.0155
CNA (All) 0.9 (0.19) 2e-6 1 (0.2) 7.3e-7
CNA (L1) 1.87 (0.3) 2e-10 1.42 (0.28) 2.7e-7
CNA (H1) 0.31 (0.26) 0.24 0.51 (0.3) 0.09
CNA (L2) 1.98 (0.31) 2e-9 1.35 (0.32) 1.8e-5
CNA (H2) 0.27 (0.22) 0.22 0.21 (0.25) 0.39
Burden (All) 0.48 (0.1) 2.5e-6 0.37 (0.11) 6.8e-4
Burden (L1) 1.15 (0.19) 3.3e-9 0.84 (0.18) 1.7e-6
Burden (H1) 0.15 (0.14) 0.3 -0.05(0.16) 0.76
Burden (L2) 1.17 (0.22) 1.9e-7 0.86 (0.21) 2.9e-5
Burden (H2) 0.14 (0.15) 0.35 -0.07(0.17) 0.71
dN/dS (All) -0.5 (0.4) 0.21 -0.12 (0.39) 0.76
dN/dS (L1) -0.42 (0.52) 0.43 -0.38 (0.51) 0.46
dN/dS (H1) 0.07 (0.52) 0.89 0.42 (0.54) 0.43
dN/dS (L2) -0.62 (0.55) 0.26 -0.54 (0.53) 0.31
dN/dS (H2) 0.48 (0.58) 0.41 1.08 (0.68) 0.11

Table 1: Stratified Cox regression analysis of ML, overall CNA, DNA Burden and dN/dS in different cancer 
groups. For each tested variable, the estimated scaling coefficient (i.e., HR = e ), its standard error (SE) and the 
corresponding P-value of the stratified Cox regression model are shown for overall survival (OS) and disease free 
survival (DFS). Significant trends are indicated by bold type and color ( >0 blue; <0 red). Cancer groups: Set#1
(L1, H1) corresponds to low ML (#1-8) and high ML (#16-23) cancer types, including the edges of the mutation 
watershed (i.e., #15, liver, is included in L1 set, and #9, ovarian, is included in H1 set). Set#2 (L2, H2) excludes
these tips. Oncotree codes are as in Figure 1. In each test/group, variables are normalized to 0-1, and are stratified 
by the cancer type (Methods).
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Supporting Information

Figures

Figure S1: Data Statistics: Primary tumor data downloaded from cBioPortal of all TCGA cancer types containing 
at least 100 patients each, covering 6721 patients across 23 cancer types. A) We analyzed all “3-way complete”
samples, for which gene expression, CNV and somatic mutations data exist, and considered all protein coding genes 
that have both unique NCBI-Entrez and SwissProt IDs (n=18179). B) Distribution of race and age across patients. 
C) Distribution of the number of mutations in the proteome associated with each mutation class across patients. D)
Distribution of stage across cancer types. E) Distribution of grade across cancer types.
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Figure S2: Integrative Measures of selection (dN/dS). A) Distribution of the number of non-synonymous (nN, red) 
and synonymous (nS, blue) sites, and their ratio (nN/nS, black) for all protein-coding genes (n=18179) as inferred by 
considering all alternative nucleotides in each position in each protein-coding sequence (Methods). Selection 
(dN/dS) in cancer is approximated by the ratio between the number of N mutations per N sites (pN=N/nN) and the 
number of S mutations per S sites (pS=S/nS). B) Illustration of the highly sparse mutation data, exemplified by 
(protein-sample pair) units that contain few mutations (e.g., protein ‘A’) and by the fact that in the vast majority of 
cases only one type of mutation (i.e., N or S) exists (e.g., protein ‘B’). Precisely, out of the 6721x18179 units 
(n=122181059), there are 963,048 cells with either N or S mutations, but only 35278 contain both N and S
mutations. C) Unit-based and group-based estimates of selection. In principle, dN/dS at the proteome level can be 
estimated either by taking the average of dN/dS across units (U), or by considering a group (G) of genes (sum over 
g; for example the set ‘C’ of cancer-genes) or a group of samples (sum over s), and estimating dN/dS based on the 
total number of mutations in the group. Given the highly sparse mutation data, Unit-based estimators are highly 
biased and inadequate for analysis, whereas Group-based estimators are adequate, as exemplified by their 
distribution around unity. For analysis and comparisons across patients, we measured the selection in each patient, 
exploiting the statistical power of the overall distribution of all mutations across the proteome (summing over 
genes), providing a measure of selection acting on the entire proteome for each patient.
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Figure S3: KM of mutation load (ML) in each cancer type. For each cancer type, survival rates were compared 
between patients with low (lower 20%) and high (upper 20%) number of non-silent (N) mutations (i.e., considering 
40% of the data). Cancer types are ordered by ML as in Figure 1 in the main text. At low ML (1-8), low number of 
mutations is associated with better prognosis in most cases, whereas at high ML (16-23), the opposite trend is 
observed (significant in Stad, Lusc, Skcm and to a lesser extent in Cesc and Blca). At the mutation watershed (9-15),
there is no obvious trend, and Ovarian (9) and Liver (15) cancers at the edges of the watershed behave oppositely,
similar to the Cox regression results summarized in Figure 1 of the main text. Imagining the watershed transition as 
a point, it is easy to imagine that Ovarian may belong to the high ML cancer type and that Liver may belong to the 
low ML cancer type (main text). See Figure 1 for the Oncotree codes of cancer types.
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Figure S4: Robustness of ML to the gene cohort used for estimation. A) The correlation between ML estimated
for the entire proteome and for cancer-genes (COSMIC) is extremely high and significant (left). Thus, it is not 
surprising that the pattern observed in Figure 1 of the main text is robust to the choice of genes that are used to 
estimate ML. B) Similar analysis, performed for random sets of genes. A larger set of random genes had to be used 
to achieve a number of mutations comparable to that in the COSMIC genes which, by definition, harbor more 
mutations. Nonetheless, for a sufficiently large set of random genes, ML is highly correlated with ML evaluated 
across the entire proteome, and thus captures the transition in the clinical outcome.
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Figure S5: Copy number alteration (CNA) analysis and comparison to ML. A) The distribution of non-silent 
(N) mutations across cancer types as in Figure 1 is shown, for the ease of visual comparison. B) Similarly to the 
mutation load, we estimate the overall CNA as the sum of the absolute values, using two standard measures: 
‘Linear’ (a continuous variable) and ‘Gistic’ (a rounded integer variable) (Methods). As these measures are highly 
correlated they provide comparable association with survival. Continuing with the ‘Linear’ estimator, we observe 
that the overall CNA deletions (|DEL|) and the overall CNA amplifications (AMP) are also correlated. Also, to a
lesser extent, the overall CNA (|CNA|) is correlated with the ML, i.e. the total number of non-silent (N) in each 

capture a similar 
prognostic signal to that of ML. C-E) However, although CNA predicts pooper survival in patients harboring large 
CNA at low ML, it does not capture any transition in the clinical outcome of the type observed for ML in Figure 1
of the main text. This is the case for the overall CNA (C) as well as deletions (D) and amplifications (E) each when 
tested separately. Complementary stratified Cox regression analysis of cancer in low and high ML verify these 
results, and show that also the copy-number DNA burden, measured as the fraction of altered genes (gain/loss) 
(Methods) behaves similarly to the overall CNA (Table 1).
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Figure S6: Validation by analysis of the MSK-impact-2017 cohort. A recent cohort of >10,000, which contains 
43% samples from metastatic sites across >30 cancer types, was analyzed (Methods). Only 414 genes were 
sequenced in this study, for which only calls of non-silent (N) mutations are available. Given that our measures are 
apparently insensitive to the exact set of genes used to estimate ML (Figure S4), using this cohort we sought to 
validate our main result in Figure 1, that is, the existence of a transition in clinical outcome at high mutation loads 
(ML). The survival times in this cohort are provided in days intervals corresponding to the time from procedure to 
last follow-up. A) As in the main text, this analysis centered on cancer types that included at least 100 patients (one 
type with 99 patients was included). Discarding the sample site (i.e., including both primary and metastatic sites), 
we find a comparable pattern of both the mutation distribution (top) and the transition in clinical outcome, using Cox 
regression (bottom). B) The analysis was then repeated for metastatic (M, red) and primary (P, green) sites 
separately. Under clonal evolution, a metastatic site, by definition, should contains at least all the mutations of the 
corresponding primary site when taken from the same individual. The upper panel shows that, in most cases,
metastatic sites indeed contain more mutations however this is not always the case because samples are taken from 
different individuals (top). Nonetheless, Cox regression indicates a transition in both cases although with lower 
significance compared to (A), presumably, because of the reduced number of patients.
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Figure S7: Robustness of ML and dN/dS to mutation class. The analysis presented in Figures 1-2 of the main text 
was repeated for missense mutations alone. A) ML and dN/dS each is highly correlated for all non-silent (N) and 
missense only (M) mutations. B) The transition in clinical outcome around the mutation watershed, where the 
distribution of ML is flat across cancer types (Figure 1) is recapitulated (Top). The distributions of dN/dS for 
missense mutations only slightly shifted toward lower dN/dS ratios (i.e., over-estimating purifying selection), 
compared with the neutral evolution depicted in Figure 1. The heavier tails of positive selection at low ML and the 
lack thereof at high ML, are evident (Bottom).
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Figure S8: Distributions of mutations and selection (dN/dS) across different groups of genes. We evaluated 
dN/dS across the cohorts of patients based on the mutations in different groups of genes: Cosmic (i.e cancer-related) 
genes (n=585), house-keeping genes (n=3518; 145 genes that overlapped the Cosmic set were removed from the 
original set of 3663 house-keeping genes) and the rest of the proteome (n=14076). For each set of genes, we 
generated a corresponding randomized set (for the Cosmic genes, the same set as in Figure S4 was used). A) 
Number of non-silent (N) mutations in Cosmic versus House-keeping genes across patients, showing the expected 
high correlation (top). Cosmic genes have higher mutation rate per unit length (F = N/L where L is the length of the 
concatenated coding sequence of the set of genes) (bottom). B) dN/dS distributions across patients evaluated for
cancer genes and house-keeping genes (top panels) and respective randomized sets of genes (bottom panels), 
shown for each cancer type (ordered as in Figure 1). Known cancer genes displayed a much higher dN/dS then the 
respective random set, across all cancer types. In low ML cancers, dN/dS in cancer genes could be evaluated only for 
a small number of patients (numbers shown in figure), while in the majority of patients cancer genes harbor only S
mutations, such that dN/dS=Inf and is discarded from analysis. Hence, cancer genes manifest signatures of 
positive selection across all cancers. In contrast, dN/dS ratios in house-keeping genes are distributed around unity 
in most cancer types, similarly to the respective randomized set. Thus, overall, selection acts differently across 
different parts of the proteome, with the sum of effects leading to neutrality in most cases except at extreme 
ML (Figure 2). In Melanoma, the cancer with the highest ML, purifying selection prevails in the entire proteome, 
and acts on each of the examined group of genes (except for cancer genes). C) For convenience, the distribution of 
mutations shown in Figure 3 for AML and Melanoma are displayed again.
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Figure S9: KM analysis of positive versus purifying selection in each cancer type. For each cancer type, overall 
survival was compared between patients with high dN/dS (upper 33%) indicating positive selection and patients with 
low dN/dS (lower 33%) corresponding to purifying selection. Cancer types are ordered by the mutation load (ML) as 
in Figure 1 of the main text. No significant differences are observed, consistent with the Cox regression results 
shown in Table 1 of the main text.
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Figure S10: KM analysis of neutral evolution versus positive/purifying selection for each cancer type. KM for 
each cancer type when overall survival was compared between neutral evolution (0.8<dN/dS<1.2) and positive or 
purifying selection (dN/dS>1.2 and dN/dS< 0.8, respectively).(OS). Cancer types are ordered by the mutation load 
(ML) as in Figures 1 of the main text. Significant differences are observed only in few a cases where neutral 
evolution leads to poorer prognosis (Gbm, Cesc, Lusc, Skcm). In Skcm, few patients follow neutral evolution 
(Figure 2 of main text), yet their survival is much pooper than that for the rest of patients with this cancer type. 
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Tables  

OS DFS
Model_Variables Cancer 

Set
P-value P-value

U_ML L1 4.41 (1.02) 1.62e-05 3.12 (0.76) 3.8e-5
M_ML L1 9.69 (2.67) 0.00028 6.61 (2.85) 0.02
M_Age L1 1.12 (0.70) 0.11 -0.4 (0.62) 0.52
M_Stage_II L1 0.32 (0.26) 0.22 0.71 (0.21) 0.00076
M_Stage_III L1 1.05 (0.23) 3.95e-06 1.01 (0.20) 6.2e-07
M_Stage_IV L1 1.52 (0.62) 0.01364 1.93 (0.62) 0.0017
M_Grade_II L1 0.16 (0.32) 0.61 0.35 (0.28) 0.21
M_Grade_III L1 0.22 (0.33) 0.50 0.35 (0.28) 0.21
M_Grade_IV L1 0.92 (0.55) 0.09 0.50 (0.53) 0.34
M_CNV L1 0.61 (0.71) 0.39 0.78 (0.63) 0.21
Chi-square (8 dof) P-value: 0 0
U_ML H1 -4.93 (1.75) 0.0048 -4.24 (1.73) 0.0145
M_ML H1 -9.12 (3.33) 0.00624 -8.53 (3.9) 0.0286
M_Age H1 2.07 (0.39) 9e-8 0.76 (0.43) 0.0753
M_Stage_II H1 0.08 (0.20) 0.71 0.05 (0.21) 0.81
M_Stage_III H1 0.64 (0.19) 0.00074 0.35 (0.21) 0.09
M_Stage_IV H1 0.99 (0.20) 1.4e-06 0.76 (0.22) 0.000662
M_Grade_II H1 0.35 (0.22) 0.11 0.41 (0.25) 0.095
M_Grade_III H1 0.40 (0.22) 0.07 0.54 (0.25) 0.033
M_Grade_IV H1 0.17 (1.03) 0.87 0.88 (1.04) 0.4
M_CNV H1 0.04 (0.38) 0.92 0.71 (0.43) 0.096
Chi-square (8 dof) P-value: 0 0
U_ML L2 3.48 (1.46) 0.017 2.81 (0.89) 0.0015
M_ML L2 7.42 (2.34) 0.002 -8.73 (13.34) 0.51
M_Age L2 3.73 (0.6) 5.35e-10 -0.03 (0.65) 0.96
M_Stage_II L2 0.47 (0.28) 0.09 0.14 (0.27) 0.60
M_Stage_III L2 1.30 (0.29) 5.6e-06 1.07 (0.26) 3.28e-05
M_Stage_IV L2 2.18 (0.35) 6.3e-10 1.83 (0.36) 4.28e-07
M_CNV L2 1.32 (0.51) 0.001 0.97 (0.57) 0.086
Chi-square (6 dof) P-value: 0 0
U_ML H2 -4.79 (1.73) 0.0057 -4.18 (1.73) 0.0155
M_ML H2 -7.72 (2.05) 0.000167 -5.98 (1.93) 0.002
M_Age H2 1.96 (0.3) 5.6e-11 1.37 (0.32) 2e-05
M_Stage_II H2 0.25 (0.12) 0.0378 0.13 (0.14) 0.34
M_Stage_III H2 0.66 (0.11) 1.1e-08 0.47 (0.13) 0.00027
M_Stage_IV H2 1.07 (0.14) 1.5e-14 0.99 (0.17) 3e-09
M_CNV H2 0.13 (0.23) 0.57 0.09 (0.26) 0.72
Chi-square (6 dof) P-value: 0 0

Table S1: Univariate versus multivariate stratified Cox regression analysis of the ML and confounding
factors. For each tested variable the estimated scaling coefficient (i.e., HR = e ), its standard error (SE) and the 
corresponding P-value of the stratified (by cancer type) Cox regression model are shown for overall survival (OS) 
and disease free survival (DFS). Univariate (U) results of Table 1 of main text are bolded and colored ( >0 blue; 
<0 red) and are compared to the results of a multivariate (M) Cox model, considering Age, Stage, Grade and 

overall CNA as confounding factors. Analysis is done for each of the 4 sets of cancers, corresponding to low (L) and 
(H) mutational load (ML) cancer types. Set#1 (L1, H1) corresponds to  low ML (L1) and high ML (H1) cancer types, 
including the tips of the mutation watershed (i.e., 9, Ovarian; and 15, Liver), and set#2 (L2, H2) excludes these tips. 
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In each test, variables are normalized to 0-1 within each group of cancers (Methods). Results of chi-square 
statistics, inferred by the difference in the log likelihoods of the Univariate versus Multivariate models, are shown 
below each test. In set#2, cancer grade is not available for the low ML cancers type (Figure S1); hence, it is 
removed from analysis as a confounding factor. The results verify ML to be the only variable which captures the 
transition in clinical outcome.

Datasets
Supplemental data, provided as Microsoft Excel file, contains the samples, genes, number of mutations 
and clinical data, allowing fully reproducibility of the results this study.
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