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Abstract 15 

Increasing popularity of high-throughput phenotyping technologies, such as image-16 

based phenotyping, offer novel ways for quantifying plant growth and morphology.  These new 17 

methods can be more or less accurate and precise than traditional, manual measurements.  18 

Many large-scale phenotyping efforts are conducted to enable genome-wide association studies 19 

(GWAS), but it is unclear exactly how alternative methods of phenotyping will affect GWAS 20 

results.  In this study we simulate phenotypes that are controlled by the same set of causal loci 21 

but have differing heritability, similar to two different measurements of the same morphological 22 

character.  We then perform GWAS with the simulated traits and create receiver operating 23 

characteristic (ROC) curves from the results.  The areas under the ROC curves (AUCs) provide a 24 

metric that allows direct comparisons of GWAS results from different simulated traits.  We use 25 

this framework to evaluate the effects of heritability and the number of causative loci on the 26 

AUCs of simulated traits; we also test the differences between AUCs of traits with differing 27 

heritability.  We find that both increasing the number of causative loci and decreasing the 28 

heritability reduce a trait’s AUC.  We also find that when two traits are controlled by a greater 29 

number of causative loci, they are more likely to have significantly different AUCs as the 30 

difference between their heritabilities increases.  These results provide a framework for deciding 31 

between competing phenotyping strategies when the ultimate goal is to generate and use 32 

phenotype-genotype associations from GWAS. 33 

 34 

Introduction 35 

As image-based methods for quantifying plant phenotypes grow in popularity, they 36 

present the ability to measure phenotypes that previously could not be easily quantified as well 37 

as an alternative way to measure phenotypes that previously had to be manually quantified. The 38 

types of novel phenotypes enabled by image analysis include fractal dimension (Gage et al. 39 
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2017), principal component analysis of plant organ biomass (Miller et al. 2016) or shape 40 

(Chitwood et al. 2014), and topological methods for quantifying branching patterns (Li et al. 41 

2017).  Image-based phenotyping enables increases in resolution, such as in  Miller et al. (2016) 42 

scanning maize ears on a flatbed scanner at 1,200 dots per inch; it enables advances in accuracy, 43 

such as quantifying disease resistance (Bock et al. 2010); and it enables scalability and 44 

throughput, by building multiple imaging devices (Durham Brooks et al. 2010) or using a 45 

mobile imaging device (Men et al. 2012).  However, image-based phenotype measurements are 46 

not always as accurate as high quality manually measured phenotypes, though the decrease in 47 

accuracy may be paired with an increase in throughput or decrease in cost if high quality manual 48 

phenotypes are time consuming or expensive to measure.  Though it is not strictly an image-49 

based method of phenotyping, one example of the tradeoff of accuracy for efficiency is the use of 50 

near infrared reflectance spectroscopy (NIRS), which has been used for decades as a way to 51 

predict chemical composition of silage feedstock without costly, expensive, and sometimes  52 

hazardous wet lab assays (Park et al. 1998). 53 

Potential tradeoffs between measurement accuracy and throughput need to be carefully 54 

considered by scientists preparing for large-scale experiments.  In the fields of plant breeding 55 

and plant genetics, genetic mapping experiments are one example of the type of study where 56 

such considerations are crucial.  Genome-wide association studies (GWAS) involve measuring a 57 

phenotype, usually in a replicated population of hundreds to thousands of genetically distinct 58 

individuals, then scanning for statistical associations between individuals’ phenotype and their 59 

genotype at numerous genetic loci.  In such studies, the accuracy and precision with which a 60 

phenotype is measured will have a direct impact on the ability to detect genetic associations by 61 

GWAS. 62 

At its core, GWAS involves testing for a difference in phenotype between individuals with 63 

different genotypes at a particular single nucleotide polymorphism (SNP).  This process is 64 
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repeated separately for hundreds of thousands of SNPs across the genome.  Ideally, SNPs within 65 

or near genes that have some effect on the phenotype of interest will result in strong statistical 66 

associations.  As such, the precision and accuracy of phenotypic measurements influence the 67 

ability to detect statistical differences between groups of individuals with different alleles.  The 68 

heritability of a phenotype, defined as the ratio of genotypic variance to phenotypic variance, is a 69 

useful way to quantify the proportion of phenotypic variability that is attributable to genetic 70 

differences between individuals.  All other components held equal, heritability will increase as 71 

precision of phenotypic measurement increases, due to decreasing phenotypic variability from 72 

measurement error.  Two methods of measuring the same ‘true’ phenotype with differing 73 

precision will have different heritability, and thus different power to detect SNPs that are 74 

statistically associated with the ‘true’ phenotype of interest.  For the remainder of this study we 75 

will refer to the ‘true’ phenotype of an individual as its character, and will refer to different 76 

measurements of a character as traits. 77 

In addition to heritability, another parameter that affects power in GWAS is the number 78 

of loci that control a character.  For two characters measured with the same heritability, one 79 

controlled by fewer loci will have on average a larger proportion of variance explained by each 80 

locus.  Power to detect an association at a particular locus is positively related to the proportion 81 

of phenotypic variance explained by that locus (Visscher 2008).  Thus, phenotype-genotype 82 

associations for characters controlled by a large number of small-effect loci tend to be more 83 

difficult to detect. 84 

Increased throughput of image-based phenotyping methods can make it possible to 85 

collect measurements of more traits on more individuals than by manual measurement, which 86 

makes image-based phenotyping an attractive way to generate phenotypic data for GWAS.  We 87 

can consider the manual measurement and the image-based measurement of an individual 88 

character to be two traits with differing heritability but the same exact set of causative loci.  As in 89 
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the NIRS example above, researchers may sometimes prefer a less precise method for 90 

measuring a character because it is cheaper, faster, or otherwise more desirable.  It is unclear 91 

just how much loss in precision (decrease in heritability) can occur before GWAS results begin 92 

to suffer.  Part of the answer to this question lies in the goals and risk tolerance of the 93 

researcher: if the goal of the experiment requires identification of few, strong signals then 94 

perhaps lower power to detect associations will still be tolerable; if instead the goal is to identify 95 

many small-effect loci, then even small reductions in heritability could negatively impact the 96 

outcome of the study.  In this experiment, we use simulations to investigate the relationship 97 

between trait heritability and the ability to detect genetic regions associated with a character.  98 

We use receiver operating characteristic (ROC) curves to characterize detection of causative loci. 99 

Previous studies have used ROC curves or similar visual aids to evaluate the efficacy of different 100 

GWAS methods (e.g., Wang et al. 2014; Liu et al. 2016). In this study, however, we use ROC 101 

curves to evaluate GWAS results for simulated traits, and test for differences between those ROC 102 

curves using the area under the curve (AUC).  Using AUC to distill GWAS results to a single 103 

statistic enables direct comparison of GWAS results from traits with differing simulation 104 

parameters.  We use a test statistic for differences between two AUCs to construct a null 105 

distribution from simulated traits with the same parameters, and use that distribution to predict 106 

whether real traits measured manually and by image analysis have significantly different AUCs.  107 

These results provide a framework for evaluating how differences in heritability between two 108 

measures of a character can impact the efficacy of GWAS for identifying loci associated with the 109 

character of interest. 110 

 111 
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Results 112 

Manual and image-based phenotypes are highly correlated 113 

Empirical phenotypic data used in this study comes from morphological measurements 114 

of the male inflorescence of maize, known as the tassel.  Four tassel morphological characters 115 

were measured manually and by image analysis in the Wisconsin Diversity panel, a population 116 

of 942 diverse inbred maize lines (WiDiv-942).  The manually measured traits were tassel length 117 

(TL), spike length (SL), branch number (BN), and tassel weight (TW), and their image-based 118 

counterparts are referred to as TLp, SLp, BNp, and TWp, respectively.  TL, SL, and BN were 119 

measured in replicated experiments over three years, while the other five traits were measured 120 

in a replicated experiment in one year.  Best linear unbiased predictors (BLUPs) for manually 121 

measured traits are highly correlated with BLUPs for the corresponding image-based traits, with 122 

Pearson’s correlation coefficients ranging from 0.81 to 0.9 (Figure 1) (Gage et al. 2018).  123 

Estimated heritability for the traits ranges from 0.95 to 0.97 for manually measured traits and 124 

from 0.79 to 0.86 for image-based traits (Table 1) (Gage et al. 2018).  TL, SL, and BN were 125 

measured in three environments, and all image-based traits as well as TW were measured in a 126 

single environment.  The difference in number of environments could inflate the heritability 127 

estimates of the image-based traits, making it reasonable to conclude that the image-based 128 

heritability estimates represent an upper bound for their true heritabilities.  As such, it is 129 

reasonable to conclude that image-based measurements are less precise than the manual 130 

measurements. 131 

 132 

Power in GWAS of simulated traits varies with heritability and number of causal loci 133 

To create a framework for comparing traits measured manually and by image analysis, 134 

we first performed simulations to examine the impact of heritability and number of causative 135 

loci (NCL) on GWAS results.  We first simulated a number of traits with different heritability 136 
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and NCL.  Phenotypes were simulated as being controlled by single nucleotide polymorphisms 137 

(SNPs) from the WiDiv-942, which was genotyped at 529,018 SNPs discovered by RNA 138 

sequencing.  Simulated phenotypes were controlled by varying NCL: 10, 100, or 1,000 randomly 139 

selected SNPs were randomly assigned effect sizes drawn from a normal distribution.  For each 140 

of the three values for NCL, traits were simulated with heritabilities ranging from 0.1 to 0.9 in 141 

increments of 0.1. Each combination of NCL and heritability was simulated ten times.  GWAS 142 

were performed on all simulated phenotypes, and empirical ROC curves were created with the 143 

results from each GWAS.  ROC curves plot the proportion of true positives (true positive rate; 144 

TPR) against the proportion of false positives (false positive rate; FPR), as the threshold for 145 

labeling an observation as positive moves from stringent to more liberal.  The ROC curve for a 146 

test with very good ability to identify true positives without too many false positives will rise 147 

steeply from the origin and approach the point (0, 1), before flattening out and continuing on to 148 

the point (1,1), producing an AUC close to 1.  A test that is no better than randomly guessing 149 

which observations are positives will yield an ROC curve that follows a line with slope equal to 150 

one from the origin to (1,1), producing an AUC of 0.5.   151 

ROC curves are typically constructed by classifying a number of individuals as either 152 

cases or controls, based on some continuous predictor variable.  The TPR and FPR are 153 

calculated at different levels of the predictor variable to create the curve.  To create ROC curves 154 

for GWAS results each SNP is treated as an individual, the true status of which is either 155 

causative (case) or non-causative (control).  The continuous predictor variable is the –log10(p-156 

value) for each SNP from GWAS. 157 

Our empirical results show that for any given NCL, simulated traits with higher 158 

heritability generally had better ROC curves, as measured by AUC (Figure 2).  This was 159 

expected, as greater heritability implies greater genetic variance relative to error, which makes it 160 

easier to identify associations between phenotypic values and genotypic groups at causal loci.  161 
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However, higher heritability does not guarantee better ROC curves as there are ROC curves with 162 

different heritability that intersect, particularly when the NCL is low (Figure 2).   163 

For any given heritability, the NCL plays an even larger role in the shape of the ROC 164 

curve, with traits controlled by more loci having worse ROC curves than those with fewer loci 165 

(Figure 2).  This result was also expected.  The effect sizes of individual loci become smaller as 166 

NCL increases, making detection of true associations more difficult. 167 

 168 

Heritability and number of causal loci influence ability to detect differences between ROC curves 169 

The AUC can be interpreted as the probability that, given a randomly selected pair of one 170 

causative and one non-causative SNP, the predictor variable [-log10(p-value)] for the causative 171 

SNP will be greater than or equal to the predictor variable for the non-causative SNP (DeLong et 172 

al. 1988).  AUCs provide a way to describe an ROC curve with a single value, and can be used for 173 

testing differences between ROC curves. The empirical AUC of an ROC curve is equivalent to the 174 

statistic generated by a Mann-Whitney test on the predictor scores of the cases and controls, or 175 

in the context of this study, the causative and non-causative SNPs. Therefore, treating the AUCs 176 

of two empirical ROC curves as Mann-Whitney statistics permits non-parametric testing of the 177 

difference between two AUCs, the test statistic of which (Z) follows a standard normal 178 

distribution (DeLong et al. 1988).  However, because we cannot be certain that the GWAS 179 

results from this study satisfy the assumptions of a Mann-Whitney test or the assumptions for 180 

testing the difference between AUCs, we still use the Z statistic but do not make the assumption 181 

that the distribution of Z is normal.  We assume that ROC curves created from GWAS results on 182 

traits with the same parameters (i.e., NCL and heritability) should not be significantly different 183 

from each other.  Therefore, the empirical distribution of Z when the difference in heritability 184 

(D) between two traits equals zero is the distribution of Z under the null hypothesis that the 185 

AUCs of two ROC curves are the same.   186 
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We hypothesized that as D between two traits increased so would the Z score, 187 

corresponding to a difference between AUCs of the two traits.  We tested all 90 AUCs with the 188 

same NCL (10 replications times nine levels of heritability) against each other, resulting in 4,005 189 

test statistics for each NCL (comparisons were only made in one direction).  The goal of this 190 

study is to assess how differing heritability of two measurements of the same underlying 191 

character affects GWAS results.  Because manual and image-based measurements of a character 192 

have equivalent underlying genetic structure, we limited our comparisons to AUCs of simulated 193 

traits with the same NCL. 194 

The Z scores for each pairwise test of two traits were regressed against D (Figure 3).  As 195 

expected, the Z values get more extreme as D gets larger – this is a reflection of higher 196 

heritability traits generally having larger AUCs than lower heritability traits.  Note that the tests 197 

were always done in a consistent direction; therefore we mostly observed results with positive Z 198 

scores.  The relationship between D and Z is more extreme for simulated traits with greater 199 

NCL.  Practically, this indicates that within the assumptions of these simulations, heritability 200 

plays a smaller role in the ability to detect GWAS associations when the trait is controlled by a 201 

small NCL.  ROC curves for traits with more complex genetic architectures, however, deteriorate 202 

more quickly as heritability declines. 203 

 204 

Alternative measurements of real phenotypes are not predicted to have differing AUCs 205 

Having established an empirical relationship between Z and D for different NCL, we then 206 

used the results from our simulations to predict whether there is a significant difference 207 

between the AUCs of manual and image-based traits of a real character.  We used the estimated 208 

heritabilities of manual and image-based measurements of TL, SL, BN, and TW to predict 209 

whether AUCs for the two measurement methods will be significantly different.  We fit a 210 

regression between Z scores and D values for each different NCL and used that regression to 211 
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obtain a predicted value of Z for each trait pair based on D estimates for manual measurements 212 

and image-based measurements.  The estimates of D for real trait pairs were 0.1 (TW), 0.14 213 

(BN), 0.16 (TL), and 0.17 (SL), with the manually measured trait always having higher 214 

heritability than the image-based trait (Table 1).  The predicted values of Z for each trait ranged 215 

from 0.15 to 0.26 when NCL=10, from 0.47 to 0.75 when NCL=100, and from 0.70 to 1.10 when 216 

NCL=1,000 (Figure 3).  For each NCL we used the distribution of Z scores when D=0 and set the 217 

2.5th  and 97.5th  percentiles as thresholds for significance to test the null hypothesis of  Z=0 at 218 

α=0.05. The thresholds were (-1.26, 1.09) for NCL=10, (-1.49, 1.25) for NCL=100, and (-1.44, 219 

1.60) for NCL=1,000.  Regardless of NCL, predictions of Z for all four tassel traits fall within the 220 

thresholds for significance (Figure 3).  Therefore, under the assumptions made in these 221 

simulations the manual and image-based measurements are expected to have AUCs that are not 222 

significantly different from each other.  223 

 224 

Discussion 225 

In this study, we use AUCs of ROC curves constructed from GWAS results of simulated 226 

traits to test for significant differences in the ability to detect common genetic signal underlying 227 

traits with differing heritability.  Our results show that as D increases, the test for differences 228 

between the traits’ AUCs becomes more significant.  Though there is a strong relationship 229 

between D and Z, there is also substantial variability for Z scores at a given value of D.  We 230 

predicted Z scores for real tassel morphological traits using the relationship between D and Z of 231 

simulated traits.  Because each tassel trait was measured by manual and image-based methods, 232 

we predicted Z using D from the estimated heritabilities of the two measurement methods.  233 

Regardless of NCL, the predicted values of Z for real tassel traits were within the thresholds for 234 

significance that were calculated from the null distribution of Z.  Based on these results, we 235 
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conclude that there is unlikely to be a significant difference between AUCs of measurements 236 

made by different methods for any of the four tassel morphological phenotypes studied.   237 

This conclusion is highly dependent on the assumptions made when creating simulated 238 

traits and performing subsequent GWAS.  Here, we assumed independent and randomly 239 

positioned causal SNPs, when in fact quantitative traits can be controlled in part by numerous 240 

causal variants clustered on the same locus (Allen et al. 2010).  Additionally, by choosing causal 241 

SNPs directly from the WiDiv-942 genotypic data, we are assuming that the causal variants are 242 

SNPs that are part of our genotypic data.  The 529,018 SNPs used in this study are a small 243 

sample relative to the 60 million variants identified in the maize HapMap3 (Bukowski et al. 244 

2015), and do not include other variant types that can affect quantitative traits such as 245 

insertion/deletion and copy number variants.  By selecting causative SNPs from our genotyped 246 

SNPs, we make the true associations easier to find by GWAS.  In reality, causative variants may 247 

not be genotyped and therefore can only be identified by linkage disequilibrium with genotyped 248 

SNPs.  For simplicity’s sake, we drew the simulated effect sizes at each causal SNP from a 249 

normal distribution.  Previous work by Hayes and Goddard (2001) has shown that quantitative 250 

traits in livestock appear to follow a gamma distribution with a large number of very small effect 251 

loci; they posit that there may be even more small effect loci than predicted by their 252 

distributions.  This idea can be seen in its most extreme form in the omnigenic model proposed 253 

by Boyle et al. (Boyle et al. 2017) which is based on Fisher’s infinitesimal model (Fisher 1919).  254 

By drawing our effect sizes from a normal distribution, we may be creating more large-effect 255 

variants than is realistic, therefore increasing our ability to detect causal variants by GWAS. 256 

Though our choices for location and effect size of causative SNPs may be increasing the 257 

probability of detecting associations, we also assume that only identifying an exact chosen 258 

causative SNP counts as a true positive.  In reality, identifying associations with SNPs that are 259 

within the same gene as, or a small distance away from, the true causative SNP may be close 260 
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enough.  GWAS often serves as an initial sweep to find regions of interest for further study, and 261 

associations that lead to fruitful downstream analysis may still be considered a ‘success’.  This is 262 

reflected in software that calculate power of GWAS by considering associations within a certain 263 

distance of the causative variant to be true positives (Liu et al. 2016).  By only considering the 264 

exact causative SNPs as true positives we make the true positives more difficult to identify, 265 

partially counteracting the assumptions above that make the detection of associations easier. 266 

By trying to predict the Z score for the difference between AUCs of real traits, we also 267 

make some assumptions about the tassel morphological traits that we use.  Our estimates of 268 

heritability are not exact; they are population- and experiment-specific.  Because the image-269 

based traits and TW were measured in one environment, whereas TL, SL, and BN were 270 

measured in three, their estimates of heritability may have differing accuracy.  By predicting Z 271 

scores for the real traits for NCL set to 10, 100, and 1,000, we were able to predict how Z scores 272 

changed as NCL changed.  The true NCL for tassel morphological traits likely numbers in the 273 

hundreds or higher, with an upper limit of the total number of expressed genes (tens of 274 

thousands), as posited in the omnigenic model (Boyle et al. 2017).  If the true NCL is greater 275 

than 1,000, the relationship between Z and D will be even steeper, meaning that the small values 276 

of D for the real tassel morphological traits may in fact be responsible for significantly different 277 

AUCs. 278 

The use of AUC as a metric to quantify the success of GWAS is also accompanied by 279 

assumptions about the goals of GWAS.  ROC curves, and thus the AUC, consider both power and 280 

type I error, as measured by true and false positive rates.  Depending on the goals of the GWAS 281 

study, power and type I error may not both be of equal importance.  For genomic prediction or 282 

marker assisted selection, a high type I error rate is not particularly concerning as long as power 283 

is high and trait prediction is accurate.  On the other hand, studies using GWAS to choose genes 284 

for further molecular characterization have a large financial incentive to minimize type I error. 285 
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Using AUC to quantify the effectiveness of GWAS assumes that the entire ROC curve is of 286 

interest.  When NCL is low this assumption may be true, but as NCL increases, it may be the 287 

case that only the beginning of the ROC curve is of practical interest.  The simulated ROC curves 288 

for NCL=1,000 (Figure 2c) are close to the 1:1 line that would be achieved by randomly selecting 289 

SNPs as putatively causative.  It is unlikely that a researcher would want or expect to identify 290 

every single causative locus when a trait is controlled by thousands of genes.  Instead, the 291 

interest is often in large-effect loci that are likely to be identified by a stringent significance 292 

threshold.  The ability to identify the most significant loci is characterized by the portion of the 293 

ROC curve close to the origin.  Thus, for highly complex traits, the AUC of a partial ROC may be 294 

more informative. 295 

In this study, we use AUC of ROC curves to characterize and quantitatively compare 296 

GWAS results from different traits.  Overall, our findings show an expected relationship between 297 

NCL, heritability, and AUC of ROC curves.  Greater NCL and lower heritability both reduce the 298 

AUC, while lower NCL and higher heritability can increase AUC.  Results suggest that there is no 299 

significant difference between AUCs from GWAS using manual and image-based measurements 300 

of typical maize tassel characters.  Creation of more nuanced simulation models and 301 

consideration of partial ROC curves may enable improvement upon the results presented in this 302 

study.  The results presented here provide a foundational framework that may facilitate 303 

decision-making for researchers weighing the benefits of different phenotyping methods.   304 

 305 

Materials and Methods 306 

Plant populations: phenotyping and genotyping 307 

The Wisconsin Diversity panel (WiDiv-942) is a set of 942 inbred maize lines that reach 308 

grain physiological maturity in the upper Midwest region of the United States (Mazaheri et al. 309 

2018, in press), and represents an expanded version of the 503 line diversity panel described by 310 
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Hirsch and colleagues (Hirsch et al. 2014).  Phenotypic measurements of tassel morphology in 311 

the WiDiv-942 were performed using both manual and image-based measurements.  Manual 312 

and image-based measurements are described in detail in (Gage et al. 2018).  Briefly, manual 313 

measurements included tassel length (TL), the distance (cm) from the lowest tassel branch to 314 

the tip of the tassel spike; spike length (SL), the distance (cm) from the uppermost tassel branch 315 

to the tip of the tassel spike; branch number (BN), the total number of primary tassel branches; 316 

and tassel weight (TW), the weight (g) of the dried tassel biomass above and including the 317 

lowest branch.  Image-based measurements were made using the output of the tassel 318 

phenotyping software TIPS (Gage et al. 2017).  The data output by TIPS are image-based 319 

measurements of tassel morphology and were used as explanatory variables in a partial least 320 

squares regression model that performs image-based predictions of TL, SL, BN, and TW 321 

(referred to as TLp, SLp, BNp, and TWp, respectively) (Gage et al. 2018).  The WiDiv-942 was 322 

grown using a replicated complete block design in three different environments: the University 323 

of Wisconsin Arlington Agricultural Research Station in the summers of 2013 and 2014, and the 324 

University of Wisconsin West Madison Agricultural Research Station in the summer of 2015.  325 

TL, SL, and BN were measured in all three environments, while TW, TLp, SLp, BNp, and TWp 326 

were measured only in 2015.  Best linear unbiased predictors (BLUPs) for each inbred line for all 327 

eight traits were calculated using random effects models to account for environment, genotype-328 

by-environment, and replication effects (Gage et al. 2018). 329 

The WiDiv-942 was genotyped at 899,784 SNPs discovered by RNA sequencing 330 

(Mazaheri et al. 2018, in press).  SNP data contained 30% missing data, which were imputed 331 

using fastPHASE (Scheet and Stephens 2006).  After imputation, 0.3% of SNP calls were 332 

missing, due to inability of the imputation program to call all missing SNPs.  The remaining 333 

missing data at any given SNP were imputed to the mean value for that SNP.  SNPs with a minor 334 

allele frequency of <0.02 were removed from the genotypic data, leaving 529,018 remaining 335 

SNPs. 336 
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 337 

Simulated phenotypes 338 

Heritability (ℎ!) is the ratio of genetic variability 𝜎!! in a population to overall phenotypic 339 

variability 𝜎!! =  𝜎!! +  𝜎!!, where 𝜎!! is all variance not attributed to differences between 340 

genotypes.  Thus, ℎ! = !!!

!!!
 is a measure of the strength of genetic signal in a particular population 341 

for a particular phenotype. Two different measures of the same character, for instance, TL and 342 

TLp, can be thought of as correlated traits with the same underlying genetic control but differing 343 

heritabilities.  The true value of the character for a particular individual cannot be measured 344 

perfectly, but both the manual and image-based measurements of the character represent a 345 

combination of true signal and some (differing) amount of measurement error. 346 

To simulate traits with similar behavior, effect sizes were randomly drawn from a normal 347 

distribution for a set of randomly chosen SNPs genotyped in the WiDiv-942, and the ‘true’ 348 

phenotypic value was calculated for each of the 942 individuals.  In a second step, noise was 349 

added to each individual’s true value in order to attain a desired heritability.  We varied both the 350 

number of causative loci (NCL), to simulate traits controlled by differing numbers of variants, 351 

and the heritability of simulated traits.  The NCL was set to 10, 100, and 1000, and h2 ranged 352 

from 0.1 to 0.9 in increments of 0.1.  The causative loci were randomly selected a single time 353 

from all SNPs genotyped in the WiDiv-942.  The phenotype for an individual i for a trait 354 

controlled by NCL=n SNPs and heritability h2 is 𝑦! = 𝑤!"𝑎!!
!!! +  𝜀!. The standardized 355 

genotypic value, 𝑤!" =
!!"!!!
!!(!!!)

 is the genotype 𝑔!" of individual i at SNP l, expressed as 0, 1, or 2 356 

copies of the major allele, centered by twice the major allele frequency, p, and divided by the 357 

standard deviation of the SNP.  The allelic effect 𝑎! is drawn from 𝑁(0, 10), and 𝜀! from 𝑁(0,𝜎!!) 358 

where 𝜎!! =
!!!

!!
−  𝜎!!.  The variance for allelic effects was set arbitrarily, but could be any 359 

reasonable number as the error variance is modified to ensure the desired heritability.  360 
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Genotypic variance 𝜎!! was calculated simply as the sample variance of the population’s true 361 

phenotypic values.  For each combination of n and h2, phenotypes were simulated 10 times.  The 362 

difference between each simulation with the same set of parameters is simply the 𝜀!, 363 

representing random draws from the same distribution each time.  In total, 270 traits were 364 

simulated: pairwise combinations of 3 levels of n and 9 levels of h2, each replicated 10 times. 365 

 366 

Genome-wide association studies 367 

Genome-wide association studies (GWAS) were conducted with the software GAPIT 368 

(Lipka et al. 2012), implemented in R (R Core Team 2016).  The same kinship matrix, calculated 369 

from 10,000 randomly selected SNPs by the VanRaden method in GAPIT (VanRaden 2008; 370 

Lipka et al. 2012), was used for all GWAS and no other covariates (e.g., principal component 371 

scores) were included in the model.  Compression was turned off by setting the group.to and 372 

group.from parameters to 9999.  GWAS was run separately for each of the 270 simulated traits. 373 

 374 

Receiver operator characteristic curves 375 

Receiver operator characteristic (ROC) curves are typically used to assess the ability of a 376 

particular method for identifying the true, binary status (case or control) of an individual based 377 

on various threshold levels of a continuous predictor variable.  The roc() function in the R 378 

package pROC (Robin et al. 2013) was used to construct ROC curves from GWAS results by 379 

considering each SNP as an ‘individual’ and coding the randomly selected causative SNPs as 380 

cases in the response, while all other SNPs were considered controls.  The –log10(p-value) of 381 

each SNP was used as the predictor variable.  A separate empirical ROC curve was fitted to the 382 

GWAS results for each of the simulated traits.  A representative ROC curve was estimated from 383 
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all 10 replicates of each parameter combination by calculating the mean of the sensitivities and 384 

specificities along the curve. 385 

The area under the curve (AUC) for an empirical ROC curve is equivalent to a Mann-386 

Whitney statistic calculated on the predictor scores of the case and control individuals (DeLong 387 

et al. 1988).  In addition, the AUC can be interpreted as the probability that for any pair of 388 

randomly selected case and control individuals (or in this case, causative and non-causative 389 

SNPs), the predictor value of the control individual will be less than or equal to the predictor 390 

value of the case individual (DeLong et al. 1988).  In this context, that is the probability that the 391 

–log10(p-value) of the non-causative SNP is less than or equal to the –log10(p-value) of the 392 

causative SNP.  Because the empirical AUC of an ROC curve acts as a Mann-Whitney statistic, 393 

the difference between AUCs of two ROC curves can be nonparametrically tested (DeLong et al. 394 

1988), yielding a statistic we refer to as Z.  Because our Z scores were not standard-normally 395 

distributed as expected (DeLong et al. 1988), we instead used the values of Z when the 396 

difference in heritability (D) between traits was 0 as a null distribution for a given NCL.  397 

Thresholds for significance at α=0.05 were calculated empirically from the 2.5th and 97.5th 398 

percentiles of the null distribution of Z. 399 

Z-scores were calculated for tests of the difference between all pairwise combinations of 400 

ROC curves with the same NCL using the roc.test() function in pROC with the method argument 401 

set to ‘delong’ (Robin et al. 2013). 402 

 403 

Estimating Z scores and confidence intervals for real phenotypes 404 

Because the relationship between Z and D for pairs of simulated traits was approximately 405 

linear, we fit a simple linear regression of Z against D separately for each value of NCL.  Using 406 

the differences between estimated heritability for each pair of real traits (TL and TLp; SL and 407 
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SLp; BN and BNp; TW and TWp), we predicted the value of Z for each character at different 408 

NCL using the fitted regressions.  Using the thresholds for significance derived from the 409 

empirical distribution of Z when D=0, we tested the null hypothesis Z=0 for each character at 410 

each NCL. 411 

 412 

Data Availability 413 

Genotypic data are available from doi: 10.5061/dryad.n0m260p (paper still under 414 

review; doi not publicly available as of submission).  Scripts for analysis can be found at 415 

github.com/joegage/GWAS_AUC 416 
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Figures 430 

Figure 1: Correlations between manual and image-based phenotypic values 431 

 432 

Scatter plots of best linear unbiased predictors (BLUPs) for manual vs image-based 433 

measurements of tassel length (TL; a), spike length (SL; b), branch number (BN; c), and tassel 434 

weight (TW; d).  Manually measured BLUPs are along the x-axis, while image-based 435 

measurements are on the y-axis.  Values in the upper left corner of each plot are the Pearson 436 

correlation coefficients for each trait. 437 

  438 
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Figure 2: Receiver operating characteristic curves for GWAS of simulated traits 439 

 440 

Receiver operating characteristic curves for GWAS results of traits controlled by 10 (a), 441 

100 (b), or 1000 (c) causal loci.  For each number of causal loci, simulation of traits with 442 

heritabilities ranging from 0.1 to 0.9 were replicated 10 times each.  Each curve represents the 443 

average of the ten replications for each combination of causal loci and heritability.  TPR: true 444 

positive rate; FPR: false positive rate; h2: heritability. 445 

  446 
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Figure 3 Results of testing area under the curve for simulated phenotypes 447 

 448 

The Z score for testing the difference of two AUCs plotted against the absolute difference 449 

in heritability (D) between the two traits.  Small gray dots represent the Z score from a single 450 

pairwise test between simulated traits, while horizontal gray bars represent the median Z score 451 

for a given D.  Larger colored dots represent the D estimates for real traits, plotted along the line 452 

that best fits the Z scores of the simulated data. Dashed lines represent the thresholds for 453 

significance at α=0.05 (i.e., 2.5th and 97.5th percentiles), calculated from the empirical 454 

distribution of Z when D=0.  BN: branch number; SL: spike length; TL: tassel length; TW: tassel 455 

weight.  456 
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 457 

Tables 458 

Table 1: Comparison of manual and image-based trait heritabilities 459 

Trait Name (unit) Abbreviation Heritability 
Manual Image-Based Manual Image-Based 

Tassel Length (cm) TL TLp 0.95 0.79 
Spike Length (cm) SL SLp 0.95 0.79 
Branch Number (count) BN BNp 0.97 0.82 
Tassel Weight (g) TW TWp 0.96 0.86 

Heritabilities for four different tassel morphological traits, measured both manually and 460 

using image-based methods.  TL, SL, and BN were measured in three environments, whereas 461 

TW, TLp, SLp, BNp, and TWp were measured in one environment. 462 

  463 
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