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ABSTRACT Understanding the genetic basis of phenotypic adaptation to changing environments is an essential goal of
population and quantitative genetics. While technological advances now allow interrogation of genome-wide genotyping data in
large panels, our theoretical understanding of the process of polygenic adaptation is still quite limited. To address this limitation,
we use extensive forward-time simulation to explore the impacts of variation in demography, trait genetics, and selection on the
rate and mode of adaptation and the resulting genetic architecture. We simulate a population adapting to an optimum shift,
modeling sequence variation for 20 QTL for each of 12 different demographies for 100 different traits varying in the effect size
distribution of new mutations, the strength of stabilizing selection, and the contribution of the genomic background. We then
use random forest regression approaches to learn the relative importance of input parameters for statistics of interest such
as the speed of adaptation, the relative frequency of hard sweeps and sweeps from standing variation, or the final genetic
architecture of the trait. We find that selective sweeps occur even for traits under relatively weak selection and where the
genetic background explains most of the variation. Though most sweeps occur from variation segregating in the ancestral
population, new mutations can be important for traits under strong stabilizing selection that undergo a large optimum shift.
Additionally, we find that deleterious mutations are more strongly influenced by the strength of stabilizing selection. We also
show that population bottlenecks and expansion impact overall genetic variation as well as the relative importance of sweeps
from standing variation and the speed with which adaptation can occur. We then use the matrix of effect sizes and allele
frequencies in each population as a target for machine learning and find that demography and the effect size of new mutations
have the largest influence on present day genetic architecture. Because a variety of parameter combinations can result in
relatively similar genetic architectures, we conclude that it is not straightforward to infer much about the process of adaptation
from the genetic architecture alone. Overall, our results underscore the complex population genetics of individual loci in even
relatively simple quantitative trait models but provide a glimpse into the factors that drive this complexity.
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Introduction

Adaptation

Understanding molecular adaptation is essential for the study of evolutionary processes, genetic diseases and plant
and animal breeding. The process of adaptation is often divided into three separate modes: hard selective sweeps,

soft selective sweeps and polygenic adaptation. In recent decades many empirical population genetic analysis have
focused on hard selective sweeps because these leave a distinct molecular trace that can be readily detected in genomic
data. Hard sweeps result from the reduction of genetic diversity at neutral sites linked to a new beneficial mutation that
rapidly fixes (Smith and Haigh 1974). In recent years, other forms of selection that play an important role in evolution
and adaptation have begun to receive increased attention, although these are more difficult to detect in empirical data.
For instance, sweeps from selection on standing genetic variation leave a less distinct pattern on diversity than hard
selective sweeps because the beneficial variant has had more time to recombine onto multiple genetic backgrounds
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(Hermisson and Pennings 2005, 2017). In addition to processes involving sweeps at individual loci, polygenic adaptation
— in which selection acts on a quantitative trait with complex genetic architecture — is frequently regarded as a third
mode of adaptation and can lead to rapid phenotypic change via relatively minor shifts in allele frequencies (Pritchard
and Di Rienzo 2010).

Although well-studied traits such as human height (Berg et al. 2017), coat color in mice (Vignieri et al. 2010) and
grain yield in crops (Wallace et al. 2014) follow patterns consistent with the polygenic pattern, the dynamics and genetic
architecture of polygenic adaptation are not well understood. Polygenic adaptation has only gained importance in
population genetics relatively recently, but the field of quantitative genetics is based on the idea that traits are controlled
by large numbers of loci (Barton and Keightley 2002). Population genetics and quantitative genetics drifted apart with the
appearance of the first molecular data allowing empirical evaluation of single locus population genetic models, while the
analysis of effects of single sites in quantitative genetics has long relied on large numbers of phenotypes (Wollstein and
Stephan 2014). The increasing availability of high density SNP sets and whole genome sequencing for tens of thousands
of individuals, however, is now providing the opportunity to test both population and quantitative evolutionary genetic
hypotheses in empirical data (e.g. Sanjak et al. 2017).

One important model of polygenic traits is stabilizing selection, in which there is an optimum trait value and selection
acts against extreme deviations from this optimum (Johnson and Barton 2005). Under such a model, an individual’s
fitness is given by its phenotypic distance from the trait optimum and the strength of stabilizing selection. Within this
framework, recent attention has focused on the dynamics of polygenic adaptation to a new nearby phenotypic optimum
(Jain and Stephan 2017; Kopp and Hermisson 2009; Chevin and Hospital 2008; Lande 1983; de Vladar and Barton 2014;
Barton and Keightley 2002). In this scenario, genetic variance in the population decreases when most effect sizes are small,
because many sites fix. In contrast, when most mutations have large effect sizes, the genetic variance increases because
large effect loci increase in frequency but do not fix (Jain and Stephan 2017; de Vladar and Barton 2014). Quantitative
genetic analyses have also revealed that selective sweeps are prevalent during polygenic adaptation (Pavlidis et al. 2012;
Chevin and Hospital 2008). These studies have developed important theoretical background for the understanding of
polygenic adaptation and have documented the dynamics of a small number of loci during the course of adaptation. Each
of these studies shows in detail how a small number of parameters influences adaptation, but the complex interplay of
mutation, selection, and demography across a large parameter space has not yet been explored. For example, population
growth has been shown to influence the contribution of low frequency alleles to trait variance (Lohmueller 2014), but
the interaction of demography with parameters such as the distribution of effect sizes of new mutations needs further
investigation.

Here, we take a simulation approach to study a population adapting to an optimum shift, modeling sequence variation
for 20 QTL for each of 12 different demographic models for 100 different traits with varying effect size distribution of
new mutations, strength of stabilizing selection, and the contribution of the genomic background. After detailed analysis
of a single scenario, we use machine learning to extract parameter importance for the input parameters. Our results
illustrate that selective sweeps are common under most scenarios, even for mutations of relatively minor effect. We
employ machine learning on genetic architecture matrices and find that demography and the effect size of new mutations
have the largest influence on present day genetic architecture. After identifying general parameter importance, we use
maize domestication as an example and investigate two diverging traits in a population that underwent a population
bottleneck and exponential growth (Beissinger et al. 2016), showing how these traits adapt to the changing optimum and
comparing our findings to archaeological and genetic data (Xue et al. 2016; Benz et al. 2006).

Materials and Methods

Model

We simulated a quantitative trait under stabilizing selection with an optimum of 0 that adapted to a discrete optimum
change to a value of 10. The population was diploid and mated randomly. Phenotypes followed a purely additive model
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Table 1 Parameters and variables

Variable Description

Nanc Population size at equilibrium

N f inal Population size after 0.1 * Nanc
generations

Nbottlenck Population size during bottleneck

ψ Proportion of phenotype due to
genetic background

σm Standard deviation of effect sizes
of new mutations

VS Strength of stabilizing selection

VG0 Genetic variance at equilibrium

in which the genotypic values at a given locus with an allele of effect size s were 0, 0.5s and s for homozygous ancestral,
heterozygous and homozygous derived genotypes. We modeled 20 QTL resembling 50kb regions, each with a 4 kb
“genic” region centered in a 46 kb “intergenic” region. In the intergenic region non-neutral mutations appeared with 1%
probability of the genic region, leading to approximately 10% of mutations in intergenic regions and 90% in the 4kb genic
regions. Starting with a neutral substitution rate of 3 x 10−8 per site per generation (Clark et al. 2005), we then assumed
that only 1% of all mutations affect the trait of interest, resulting in a mutation rate of 3 x 10−10 per site per generation
and a total per gamete mutation rate of 3 x 10−4 per generation. Regions were unlinked (50 cM distance), and within
regions the recombination rate was 5 x 10−8 per site per generation (0.05 per gamete).

Fitness We used a Gaussian fitness function in which an individual’s fitness w was modeled as:

w = exp[−
(z− zopt)2

2VS
] (1)

where z is the trait value of an individual, zopt is the population optimum trait value and Vs modulates the possible
deviation from the optimum. This standard model for traits under stabilizing selection is well suited for populations at
equilibrium (Bürger 2000, chapter 7). Under strong disruptive selection, however, this model greatly amplifies fitness
differences among individuals in the tails of the phenotypic distribution. During the adaptive phase of the simulation,
we calculated individual fitness following equation 1, but then apply truncation selection by assigning a fitness of 1 to the
top 50% of the distribution of w and 0 for the remaining 50%. We stopped truncation selection once the population mean
reached the new optimum, returning the population to stabilizing selection using fitness values calculated in equation 1.

Initial genetic Variance The genetic variance at equilibrium can be approximated by the house of cards (HoC) approxi-
mation (Turelli 1984; Bürger 2000):

E(VG) = 4µVS (2)

We simulated five different values of VS (1, 5 10, 20, 50) to modulate the genetic variance of the equilibrium population.

Effect size of new mutations We used a Gaussian distribution around zero for the effect size of new mutations and
five different standard deviations (σm = 0.01, 0.05, 0.1, 0.3, 0.9) to create traits with different effect sizes. Given a fixed
optimum of 10, this distribution of effect sizes in combination with VS effectively parameterize the distance to the new
optimum, from a minimum z-score of 11.5 to a maximum of 158.2.

Polygenic adaptation 3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2018. ; https://doi.org/10.1101/313247doi: bioRxiv preprint 

https://doi.org/10.1101/313247
http://creativecommons.org/licenses/by-nc-nd/4.0/


Background Computational limitations do not allow simulation of an entire eukaryotic genome, so we added a heritable
background (ψ) to our simulations to account for the adaptive potential of the rest of the genome.

GB ∼ ψ ∗ N (Gmp, σ2) (3)

where GB is the value of the genomic background of an individual, ψ is the proportion of trait variation represented
by background, Gmp is the mid-parent genotypic value and σ2 is the variance of the parental trait values (Lynch and
Walsh 1998, chapter 17). Hence, GB is drawn from a normal distribution around the mid-parent value and shrunk by
the background proportion. The trait value of an individual P is then given by the sum of its genetic value G and the
genomic background GB. We modeled four different background levels (ψ = 0, 0.1, 0.5, 0.95).

Demography To study the effect of population bottlenecks and expansion, we simulated a total of 12 different demo-
graphic scenarios with varying strength of a single bottleneck and subsequent growth (Figure S1). In scenarios with
a bottleneck, an instantaneous reduction in population size occurs immediately after the burn-in and is followed by
exponential growth over the length of the simulation (0.1x Nanc generations).

Simulations

Using the above described parameters we simulated 100 replicates each of 25 different equilibrium traits using fwdpy11
v1.2a (https://github.com/molpopgen/fwdpy11), a Python package using the fwdpp library (Thornton 2014). These 25 traits
differed in their combination of VS and σm and were run for a burn-in of 10 Nanc generations (Figure S3). Subsequently,
each of the 1,200 parameter combinations was run for 0.1 Nanc starting from these equilibrium traits.

To simulate a trait in a population of 100,000 individuals for 10,000 generations, we scaled population size and
generation time down and mutation and recombination rate up by a factor of 10 (based on values above), thus simulating
a population of 10,000 individuals for 1,000 generations after a burn-in of 100,000 generations to reach equilibrium.

The population mean trait values and variances were recorded every generation and entire populations, including
individual trait values, mutations and effect sizes, were recorded every 10 generations for the first 100 generations after
burn-in and then every 100 generations thereafter.

Analysis

Sweeps To identify selective sweeps, we used binomial sampling to simulate the sojourn time of neutral alleles arising in
populations undergoing each of the demographic models described above. Mutations that were lost or that fixed before
the end of the burn-in were ignored. We ran 10,000 replicates for each of the 12 demographic models and recorded the
time it took a mutation that fixed within the last 0.1N generations (similar to our selection model) to fix in this random
model. These simulations provided a null distribution to which we compared selected mutations in our quantitative trait
simulation (Figure S2). We defined as a sweep any mutation that fixed faster than 99% of neutral alleles and categorized
them as hard or from standing variation depending on whether the mutation arose before or after the optimum shift.

Machine learning For each of the 120,000 simulations we calculated various summary statistics using the pandas version
0.21.0 and numpy version 1.12.1 Python libraries (McKinney 2010; Walt et al. 2011). These include statistics related to
adaptation, selective sweeps, segregating sites, and fixed mutations; Table S1 contains a full list of parameters used for
prediction and importance estimation.

To identify the importance of input variables we trained a random forest and extracted the relative importance of
the input parameters. We employed the RandomForestRegressior of sklearn 0.19.0 (Pedregosa et al. 2011) with 100 trees
to extract parameter importance by training the model using input parameters as features and predicting a summary
statistic. The prediction accuracy for all parameters was then estimated by 10-fold cross validation (training using 80% of
the data) as well as root-mean-square deviation normalized by the range of values observed (NRMSD), and the process
repeated for each summary statistic of interest (Table S1).
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To compare the genetic basis of traits between scenarios we define the genetic architecture as the matrix of allele
frequencies and effect sizes for each simulation. Allele frequencies were split into 7 discrete bins (0 - 10−4, 10−4 - 10−3,
10−3 - 10−2,10−2 - 0.1, 0.1 - 0.5, 0.5 - 0.9, 0.9 - 1) and effect sizes were split into 9 quantiles, as absolute effect sizes were
strongly dependent on the input effect size. Relative occurrence frequencies (summing to 1 over the whole matrix) of
segregating sites in each frequency-effect size combination were calculated for each simulation. These values were used
to train a random forest model and extract parameter importance. Parameter importance was estimated by predicting
frequencies of each effect size bin from the input parameters. Prediction accuracy was again assessed by 10-fold cross
validation. Additionally, we calculated pairwise correlations of genetic architecture matrices in the final generation
between all possible pairs of scenarios using the mean of all simulation replicates.

Maize domestication We took a closer look at two sets of simulations that represent diverging traits under a demographic
model similar to that of maize domestication (Nbottleneck = 0.05xNanc; N f inal = 10xNanc). For these simulations we
assumed no genetic background (ψ = 0). Trait 1 represents a trait with new mutations of small effect (σm = 0.01) and
strong stabilizing selection (VS = 1), while Trait 2 has new mutations of large effect (σm = 0.9) and weaker stabilizing
selection (VS = 50).

Data availability

All scripts and code to reproduce the simulations and figures is available at https://dx.doi.org/10.6084/m9.figshare.6179219.
A detailed interactive graphical analysis of summary statistics is available at https://mgstetter.shinyapps.io/quantgensimAPP/

Results

We first simulated adaptive and stabilizing selection on a single quantitative trait in a randomly mating diploid population.
After a burn-in to equilibrium, we simulated an instantaneous shift in the optimal trait value from 0 to 10. The population
underwent truncation selection until reaching the new optimum, at which time stabilizing selection resumed. We
assumed an additive model with no epistasis, and simulated 20 unlinked QTL as well as a genomic “background” over a
range of parameters describing population demography and the trait, including the effect size of new mutations, strength
of stabilizing selection, distance to the new optimum, effects of genomic background and population, and bottleneck
severity and population expansion (Table 1).

Single simulation results

The adaptation of a quantitative trait to a sudden environmental change involves allele frequency shifts at many sites,
some of which result in selective sweeps. To build intuition around basic patterns seen in these simulations as a
population adapts to a new optimum, we first describe results of a single simulation with constant population size,
intermediate effect sizes of new mutations (σm=0.05) and strong stabilizing selection (VS=1). We present how such a
population adapts to the new optimum and how allele frequencies and effect sizes change during this process (Figure 1).

The population mean trait value increased linearly until shortly before the new optimum was reached within 0.011
(sd= 0.0004) Nanc generations (Figure 1A and C). As the population mean approached the optimum the rate of change
decelerated, presumably because some individuals now had phenotype values above the optimum such that alleles
which contribute positively to the trait are no longer uniformly beneficial to fitness. The trait variance increased after the
optimum shift and during the adaptation process. Though it declined once the new optimum was reached, it did not
return to the equilibrium variance by the end of the simulation (Figure 1C). This increase in variance is generated by the
increase in allele frequency of formerly rare, large positive effect alleles.

Following individual mutations shows that, at the onset of the optimum shift (generation 0) alleles with negative effect
sizes rapidly decline in frequency unless they were already near fixation (Figure 1B). Alleles with positive effects, on the
other hand, increase quickly in frequency and fix. Once the new optimum is reached, frequencies of both positive and
negative alleles changed slowly, but the number of small effect alleles increased. This shows how a population can adapt
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Figure 1 Population dynamics of a single parameter set A) Trait evolution after an optimum shift and B) allele fre-
quency dynamics during adaptation form a single replicate. The vertical line shows when the new trait optimum was
reached and line colors denote effect sizes, and time is shown on a log scale. C) The phenotypic distribution and D)
site frequency spectra of segregating mutations (black) and neutral expectation (red) from 100 independent replicates.
Panels show different generations including equilibrium prior to adaptation (0), during adaptation (0.005), just before
the new optimum is reached (0.01), after the new optimum has been reached (0.2), and the final generation (0.1). All
results are from a simulated population with constant population size, σm = 0.05, and VS = 1.

to a sudden environmental change by an increase of beneficial alleles and decrease of negative alleles in a relatively short
time.

Looking at the change in allele frequencies of all mutations helps to understand what drove the adaptation process in
the population (Figure 1D). At equilibrium, variants with larger effects are selected against, leading to an excess of rare
variants compared to neutral expectations. The site frequency spectrum (SFS) then changed quickly after the optimum
shift as selection fixed positive mutations. Directly before the new optimum was reached (0.01Nanc), 11% of mutations
were at very high frequencies (> 0.5) while after reaching the new optimum (0.02Nanc) only 8% of mutations were at such
high frequencies and the number of high frequency segregating sites further declined in consecutive generations. Under
stabilizing selection, extreme values are again selected against and alleles that have risen to intermediate frequency
during adaptation return to their equilibrium frequency. By 0.1 x NAnc generations the SFS again reflected an excess of
rare alleles, but also an excess of high frequency derived alleles. The observed high frequency derived alleles ((Figure 1D)
bottom) represent in fact their ancestral counterpart, which is at low frequency. These mutations increased in frequency
during adaptation, but both alleles have the same fitness effect after the equilibrium has been reached and the mutation
does consequently not decrease in frequency.

When a selected mutation increases in frequency quickly, it often reduces diversity in adjacent genomic regions,
leading to a pattern commonly referred to as a selective sweep. While we cannot assess diversity at linked neutral sites in
our model, we can nonetheless identify likely selective sweeps by comparing the sojourn time of individual alleles to that
of a neutral allele experiencing equivalent demographic processes (see Methods). Following these criteria, 72% of all
fixations in this simulation were selective sweeps. Of these, 73% were sweeps from standing variation. While there was
an overall negative correlation between the time a site was segregating in the population and its effect size on the trait,
there were a number of mutations that fixed later than expected given their effect size (Figure 2A).

Observing the frequency trajectories of sites that fixed after the new optimum had been reached shows that the speed
of frequency change for sites that fix after the new optimum had been reached slowed down substantially, but they
eventually drifted to fixation. When the new optimum has been reached, any increase or decrease in frequency of large
effect mutations takes the population away from the trait optimum and is selected against. The remaining change in
frequency is mostly stochastic and results from minor fluctuations in the trait mean due to frequency changes at other
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Figure 2 Selective sweeps A) Speed of fixation of selective sweep mutations. B) Dynamics of fixations that occur after
the new optimum was reached. C) Speed of fixation of sweeps from standing variation compared to their initial fre-
quency. D) The generation at which sweeps from standing variation fix. All results are from a simulated population
with constant population size, σm = 0.05, and VS = 1, and time is shown on a log scale.

sites (de Vladar and Barton 2014). Some mutations with negative effects that decreased in frequency under truncation
selection after the optimum shift can then increase in frequency again once the new optimum is reached and stabilizing
selection takes over (Figure 2B). Such mutations provide a good example of selection on a quantitative trait, which results
in selection coefficients that can vary in sign or magnitude depending on the background they fall into, its distance to the
optimum, and the details of when and what kind of selection occurred.

In our simulations, fixations from standing variation fixed either fast, because they were present at high frequency at
the onset of directional selection, or due to their large effect on the trait. However, there was no correlation between
the initial allele frequency and the generation in which the mutation fixed (Figure 2C and D). Large effect mutations
segregated at low frequency in the equilibrium population, while small effect sites were already at higher frequencies,
explaining why large effect and small effect mutations fixed at similar generations, despite the difference in speed of allele
frequency shift. Negative and effectively neutral mutations may also fix together with large effect positive mutations
presumably due to the effects of genetic hitchhiking (Figure 2).

Complex genetic architectures with demographic changes

The detailed analysis of a single population adapting to a sudden environmental change helps to build intuition on
the dynamics of a specific set parameters, but is far from the complexities of quantitative trait evolution in natural
populations. For example, most populations have experienced some form of fluctuation in population size, and traits
differ both in the strength of stabilizing selection as well as in their genetic architecture — the frequency and effect size of
mutations that cause variation in the phenotype. To understand the effect of these and other variables, we simulated
1,200 different combinations of parameter sets to examine the contribution of the strength of stabilizing selection, the
effect size of new mutations, population demography, and differences in genetic background on variation and adaptation
of the focal trait.
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Figure 3 Relative parameter importance Relative parameter importance inferred for four parameter categories. 1)
Adaptation: parameters describing adaptation speed and potential for future adaptation, 2) Fixations: summary statis-
tics for mutations that were fixed during trait adaptation, and 3) Segregating sites: descriptors of alleles polymorphic
in the final generation of the simulations. Top rows indicate prediction accuracy as calculated by 10-fold cross vali-
dation and NRMSE. Each bar is the result of an independent random forest learning and each color represents the
relative importance of the simulation input parameters (see Methods and Table S1 for summary statistics).

The combination of VS and σm led to different genetic variances at equilibrium ranging from 0.004 to 0.751, leading to
a distance of the new trait optimum between 11.5 and 158.2 z-scores (Figure S3). We calculate VG in every generation
during the burn-in and compared it to the expected genetic variance approximated with the House of Cards (HoC)
approximation (Turelli 1984). The majority of simulations are within the regime of HoC, though the approximation
underestimated VG for σm = 0.9 and VS = 1 and overestimated VG for large VS and small σm. All burn-ins had a mean
fitness close to one at equilibrium after 10xN and the mean VG was constant (Figure S4 and S3)

To understand the factors driving variation in particular aspects of the data, we employed a random forest machine
learning model (see Methods) to retrieve parameter importance.

Speed of polygenic adaptation An important factor for the survival of a population exposed to changing environments
is how fast it can adapt to new conditions. Our simulated populations varied widely in the time required to reach the
new optimum, from 0.001 to 0.99 Nanc generations. A total of 732 of the 120,000 simulations did not reach the new trait
optimum within the simulated time of 0.1 x Nanc generations, but all parameter combinations had at least 8 (of 100)
replicates reaching the new optimum. In general, simulations that did not reach the new optimum were those with a
strong bottleneck (reduction to 1% or 5% of Nanc). In particular, more than 70% of all simulations with the smallest σm

(0.01), no genetic background, 1% bottleneck, and a final size of Nanc did not reach the new optimum, regardless of their
strength of stabilizing selection (VS).

All three adaptation-related summary statistics were well predicted, with cross-validation accuracy over 90%. Overall,
the parameter contributing most to this variation is σm, with a relative importance of > 50% (Figure 4). This was followed
closely by the proportion of the trait explained by genetic background (ψ) at 31%, while demography and VS were of
relatively minor importance (Figure 3 and S5). We find that the rate of phenotypic adaptation was highest for populations
with small σm and large ψ, and these two factors explained the majority of the observed variation (Figure 4). The initial
genetic variance, a combination of VS and σm, was the best predictor for the genetic variance in the final generation, but
the strength of the bottleneck and ψ had a relative importance of 11% and 17%, respectively (Figure S5). The genetic
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Figure 4 Summary of trait adaptation and selective sweeps A) Time to reach new trait optimum B) Rate of change in
phenotype C) Genetic variance after 0.1xNanc generations. D) Total number of selective sweeps, separated by type of
sweeps. E) Proportion of sweeps compared to all fixations F) Proportion of sweeps from standing variation. Boxes are
split by major parameter importance as identified by our random forest model. Points in A-C and E-F show the values
of each of 1,200 parameter sets and are colored according to bottleneck size (Darker color indicate stronger bottleneck,
see legend in A). Interactive plots are available at https://mgstetter.shinyapps.io/quantgensimAPP/

variance in the final generation increased with increasing σm, with declining increase for larger σm (Figure 4).

Segregating sites after polygenic adaptation

We further investigated segregating sites in the final generation, which correspond to a modern population that has
experienced an optimum shift in the past. Cross validation prediction accuracies were for most summary statistics were
very high (<0.9). The mean effect size of segregating sites was predicted with less accuracy, however, as all values are
concentrated around zero leading to low R2 values in the CV. The NRMSD, shows that the accuracy for mean effect
size of segregating sites was high and that the validation data could be predicted, which allowed to infer parameter
importance even with lower CV accuracy.

While absolute numbers mostly depended on the final population size, other statistics showed more distinct patterns.
Allele frequencies of both negative and positive sites were strongly influenced by the demography of the population.
The proportion of negative sites segregating in the population was also most strongly influenced by the strength of the
bottleneck (Figure 3), but when VG0 (Figure S3) was used to train the model instead, VG0 explained most of the variation
(Figure S5). As VG0 is the result of the combination of VS and σm during the burn-in, this a strong interaction effect
between VS and σm which is partitioned when using VS as feature in the random forest.

Fixations and selective sweeps

Mutations in a population can rise in frequency and fix due to demographic events and stochastic sampling or as a
result of selection. The sudden change in trait optimum in our model imposed strong selection on sites with a postive
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effect, while mutations with negative effect values were deleterious until the new optimum was reached. Different
parameter combinations led to strongly varying numbers and patterns of fixations in our simulations. The effect size
of new mutations (σm) and ψ had the strongest influence on the absolute number of fixations and the effect size of
mutations that fixed (Figure 4, 3 and S5). Variation in the mean effect size of fixations depended mostly on σm, though VS

also contributed substantially for negative fixations. Consistent with fixations being driven primarily by selection, the
effect size of positive mutations that fixed was an order of magnitude larger than that of negative fixations (Figure S6).
Comparing results within each set of simulations with identical σm shows that stochastic sampling due to Nbneck played
an important role in determining the number of fixations even if the relative importance of Nbneck among all parameters
was only 3% (Figure S6A and 3).

Not all fixations are due to positive selection, however, and even those that are due to selection would not necessarily
reduce linked diversity sufficiently to be detected as a selective sweep. To differentiate between neutral and strongly
selected fixations, we compared the fixation time of sites that fixed after the shift in trait optimum to single-locus neutral
simulations with identical demography (see Methods). Consistent with the higher total number of fixations exhibited,
populations with smaller σm also showed a higher number of sweeps. While the maximum number of sweeps was almost
300 (for σm = 0.01, ψ = 0, VS = 1, and a bottleneck), 13 parameter sets did not lead to any sweeps within the simulated
time, all with σm ≥ 0.3, ψ = 0.95 and VS ≥ 5. The proportion of sweeps to fixations ranged from 0 to 99% but was highly
variable and revealed strong interactions between σm, ψ and VS (Figure 4). Larger ψ led to a low proportion of sweeps to
fixations when VS and σm were small, but for large values of VS and σm almost all fixations were sweeps, scaling with
decreasing ψ (https://mgstetter.shinyapps.io/quantgensimAPP/). The proportion of sweeps from standing variation was also
highly variable, but differentiated more strongly by demography within each group of σm than the total proportion of
sweeps (Figure 4E). Population bottlenecks were the second most important parameter for the type of selective sweep
observed, while either σm or VG0 were the most important parameters 3 and S5).

Genetic architecture after adaptation

The genetic architecture of phenotypic traits that we observe in populations today was shaped by demographic history
and past selection. We evaluated the genetic architecture in the final generation of all 1,200 populations with their diverse
range of histories by comparing the combined allele frequency - effect size matrices (see Methods). These frequency
matrices were used as input for our random forest model to understand the contributions of input parameters to variation
in genetic architecture.

The extracted parameter importance showed that the variation in the genetic architecture depended most strongly
on NFinal and σm, but each of the other three parameters contributed at least 9% of the variation (Figure 5). The
strong interaction between parameters becomes apparent in Figure 5, where the fine structure beyond the major 2
parameters (σm and N f inal) can be seen on all levels of combinations. Among simulations with large σm and large
N f inal , however, all correlations are close to 1 and it is therefore not possible to easily distinguish parameter sets based
on their genetic architecture (individual genetic architecture plots for each parameter combination are available at
https://mgstetter.shinyapps.io/quantgensimAPP).

Maize domestication traits

After evaluating a wide parameter space using our machine learning models, we then investigated in more detail two
parameter sets that resemble diverging traits during maize domestication. Using simulations with demographic models
similar to that inferred for maize (bottleneck of 0.05xNAnc followed by exponential growth to 10xNAnc Beissinger et al.
2016), we selected one trait with strong stabilizing selection and small effect mutations (Trait 1; σm = 0.01 and Vs = 1)
and one trait with weak stabilizing selection and large effect mutations (Trait 2; σm = 0.9 and Vs = 50).

The two traits showed notably different patterns of adaptation (Figure 6, x-axis on log10 scale). Trait 1 increased almost
linearly for 0.0733xNAnc generations before asymptotically arriving at the new optimum. The genetic variance for this
trait declined for the first 0.0169xNAnc generations before it slowly increased, but did not reach the equilibrium value
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Figure 5 Genetic architecture in final population A) Genetic architecture matrices for two parameter combinations
(maize models, see Methods) differing in effect size of new mutations and strength of stabilizing selection. Effect size
bins are centered around zero with negative effect size quantiles on the left and positive quantiles on the right of the
central bin. Shown is the correlation coefficient between the genetic architectures. B) Pairwise correlation of genetic
architecture of all comparisons of 1,200 parameter combinations. Subplots display the combination of final population
size (N f inal ; 1, 3, 10) and effect size distribution (σm, 0.01,0.05,0.1,0.3,0.9) of incoming mutations. Each pixel displays
a pairwise comparison between two of the 1,200 scenarios. C) Relative parameter importance for genetic architecture
prediction.
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within the 0.1xNAnc generations simulated. Trait 2, on the other hand, adapted rapidly, reaching the optimum in only
0.002xNAnc generations. The genetic variance for Trait 2 increased during adaptation to a value higher than VG0, then
decreased after the optimum was reached but remained higher than VG0 (Figure 6A and B). The number of fixations was
100 times higher for trait 1 than for trait 2; the ratio of sweeps per fixation was also higher, and most sweeps in trait 1
were hard (Figure 6C). Though on average trait 2 exhibited fewer than 2 sweeps per simulation, 94 % of these were from
standing variation. The sojourn time for sweeps from standing variation was correlated with the initial allele frequency,
but also with the effect size of a mutation. Large effect positive mutations had a low initial frequency but fixed fast, while
negative alleles fixed slowly, despite their high initial frequency similar to the trait we described above (Figure 2). This
observation held particularly true for Trait 2, where only few small or negative effects fixed quickly (Figure 6 D and E).
The overall contribution of all sweeps to phenotypic change was also different between the two traits: the summed effect
size of all sweeps represents 45 % of the adaptation in trait 2, but only 18 % for trait 2.

Figure 5A shows the difference in genetic architecture between the two traits. While the adaptation of trait 1 led to an
equal distribution of effect sizes at low frequencies, trait 2 had a larger proportion of both very low frequency mutations
from the extreme tail of the distribution and small effect mutations at higher frequencies. Despite these differences the
correlation between the genetic architecture matrices was very high (0.96; Figure 5).

Discussion

Model choice

We use a combination of two different fitness functions to study the quantitative genetics of adaptation to a sudden
change to a new trait optimum far beyond observed trait values for any individual in the equilibrium population. During
the stationary phase before the shift and after reaching the new optimum we followed a Gaussian fitness function
appropriate for a trait under stabilizing selection (Johnson and Barton 2005). During the optimum shift, however, such a
model would be problematic, as only a few individuals in the upper tail of the fitness distribution would have extremely
high relative fitness, inducing a strong population bottleneck. Instead, we applied a model of truncation selection, first
calculating fitness under the Gaussian fitness function but then assigning a fitness of 1 to the top half of the population
and 0 to the bottom half. Such a model is reasonable for sudden shifts in trait optima that do not lead to the extinction
of a population, but where higher trait values are unambiguously advantageous and the maximum population size is
limited. In natural populations these factors can be observed when sudden changes in the environment favor a specific
phenotype for invasive species (Moran and Alexander 2014) or in semi-artificial populations in agroecosystems and
during domestication (Benz et al. 2006). Truncation selection is also common in evolve and re-sequence experiments
(Turner et al. 2011), crop populations (Dudley 2007) and during strong directional selection in natural populations(Crow
and Kimura 1979).

In our model simulations we fixed the equilibrium optimum to 0 and the new optimum to 10, but change VS and σm.
As VS and σm change, the relative distance to the new optimum changed with respect to the initial VG (VG0). The wide
range of distances simulated resembles observations in nature and experimental populations. For example, in the Illinois
long term selection experiment in maize, 105 generations of selection for high oil resulted in a shift of over 40 standard
deviations (Dudley 2007), and large trait shifts have also been identified in other experimental and natural populations
(Oz et al. 2014; Hoekstra et al. 2001). Our results should therefore be relevant for a variety of traits that adapt to changing
environments.

While our modeling investigated a wide parameter space for a number of key variables, one key aspect we have
ignored is interaction among alleles (dominance) or loci (epistasis). Both forms of interaction are widely recognized to be
important at the molecular level (Carlborg and Haley 2004; Jiang et al. 2017), but the majority of variance for a wide array
of quantitative traits seems reasonably well explained under a simple additive model (Polderman et al. 2015; Zhu et al.
2015), but see (Mackay 2014; Wallace et al. 2014; Carlborg and Haley 2004; Forsberg et al. 2017). And although we do not
include any explicit simulation of interlocus interactions, our quantitative trait model is such that the effect of an allele in
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Figure 6 Maize specific adaptation procedure A) The evolution of trait value and B) genetic variance during adapta-
tion to a new trait optimum for two traits under maize demography with no genetic background. Time in both figures
is shown on a log scale, light shadows show standard deviations from the mean of 100 simulation replicates. Trait 1
(blue) with small effect mutations (σm = 0.01) strong stabilizing selection (VS = 1). Trait 2 (red) with large effect new
mutations (σm = 0.9) and weak stabilizing selection (VS = 50). Vertical lines denote the generation when 99% of the
new trait optimum is reached. C) Proportions of selective sweeps. D) Sojourn time of sweeps from standing variation
in Trait 1. E) Sojourn time of sweeps from standing variation in Trait 2. Scales in D and E are different due to strong
divergence of effect size values.

any given generation will depend on the genetic background. We predict that epistasis and dominance would absorb
some of the effect of σm for most statistics and have relatively little influence on demographic parameters. Further efforts
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should incorporate the effects of dominance and epistasis, especially for understanding phenomena such as heterosis
and inbreeding depression, where nonadditive effects are likely to play a significant role Charlesworth and Willis (2009).

How do organisms adapt to change

Rapidly changing environments, such as those faced by changing climate impose a threat to populations with narrow
genetic variance for important traits. Quantitative traits inherently provide adaptive potential to a population, because
of the genetic variance created by varying effect sizes at a number of alleles (Burger and Lynch 1995). However, the
speed and manner in which traits adapt depends on the initial variation and beneficial mutations entering the population
once the environment changes. In rapidly changing environments or during new colonization of habitats the time it
takes to reach the new optimum is critical as this might determine whether the population is first to occupy a niche.
We looked at two summary statistics — time to optimum and adaptation rate — to compare the adaptive behavior of
different traits. The speed to the optimum shows the absolute speed of a population to reach the new optimum, while the
adaptation rate is corrected for the genetic variance present. The absolute speed depends most on σm, but the adaptation
rate is more uniform across σm with even higher adaptation rates for small σm (Figure 4A and B). This shows that with
small effect mutations and strong stabilizing selection adaptation is mutation limited, but this is not the case when VS is
large. These two types of adaptation regimes have previously been described as mutation and environmentally limited
adaptation regime (Kopp and Hermisson 2009). Large adaptation rates are reached with the largest ψ (0.95) values,
because genetic diversity is maintained during the adaptation process. Populations with small σm and small ψ run out
of genetic variance, because most positive standing variation fixes and negative mutations get lost. The loss of genetic
variance is also apparent when comparing the initial genetic variance to the final genetic variance, which is smaller after
adaptation for most populations with σm = 0.01 (Figures 4 C, 6B and S3). The decrease in VG for small effect mutations
and the increase from large σm is consistent with previous results (Jain and Stephan 2017). The genetic variance after
historical adaptation is important in the face of climate change where recently adapted populations will be forced to
further adapt. Populations with a large initial genetic variance and large effects also have larger genetic variance in
the final population and are thus better prepared for future adaptation. The severity of population bottlenecks is an
additional factor influencing VG in the final generation as diversity is removed by genetic drift (Figure3 and S5).

Overall, it is little surprising that populations with the largest VG0 and largest σm adapt fastest to a new optimum, but
we also show the impact of population bottlenecks and the overlap between trait architectures (combinations of VS and
σm). Different trait architectures can result in similar adaptation speed and genetic variance depending on the population
history. This implies that for traits that are highly polygenic, it is of particular importance to prevent population declines
in order to maintain the adaptability of populations.

Selective sweeps during polygenic adaptation

Much of standard population genetic theory assumes mutations have a constant fitness effect s. This assumption has
led to a number of findings about selective sweeps, from the probability of fixation being ≈ 2s (Haldane 1927) to the
rule of thumb that mutations with fitness effects |2Ns| > 1 will be fixed or removed by natural selection, while those
with smaller effects will drift stochastically as effectively neutral alleles (Wright 1931). For quantitative traits, however,
the fitness effect of a mutation is conditional on the phenotypic distance of an individual to the trait optimum and the
correlation between the trait and fitness (Johnson and Barton 2005). At equilibrium this follows a Gaussian distribution
(Equation 1), but during directional selection it will depend on the distance of the population from the trait optimum.
The relationship between the phenotypic effect size of a mutation and its fitness effect is strongly positive at the onset of
selection, while the slope declines as the population trait mean approaches the new optimum and is even slightly negative
once the new optimum has been reached (Chevin and Hospital 2008, Figure S7). This shows that segregating large
effect positive mutations are beneficial when the population trait mean is distant from the new optimum, but become
disadvantageous once the population mean is close to the new optimum, as on average they will cause individuals to
overshoot the optimum.
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Most selective sweeps occur during the adaptation process before the new optimum has been reached, but the number
of fixations and sweeps is strongly dependent on the demography of the population. A strong population bottleneck
leads to more fixations, but most of these are fixed by drift rather then selection, and Nbottleneck is therefore more important
for the number of fixations than the number of selective sweeps (Figure 3 and S5). Population bottlenecks also decrease
the proportion of sweeps from standing variation and favor hard selective sweeps, because the bottleneck removes
segregating beneficial alleles (Figure 4).

The overall importance of selective sweeps for different traits depends on the initial genetic architecture: our two
example traits show that differences in the number of sweeps do not necessarily reflect their combined effect: while trait
1 exhibited 279 sweeps, these contributed to 42 % of the change in trait value, while for trait 2, only 2 sweeps contributed
22% (Figure 6C). This is consistent with previous results showing that allele frequency shifts of large effect alleles are
sufficient to reach the new optimum, but selective sweeps are more important when the new optimum is distant (Pavlidis
et al. 2012; Jain and Stephan 2017) Our results show even more extreme cases, for example trait 1 and simulations with
σm ≤ 0.05, in which the population exhausts standing variation and relies almost entirely on new mutations. In this case
hard selective sweeps are most common, as new positive mutations provide a strong relative fitness advantage (Figure 4
and 6).

We use a conservative definition of selective sweeps, with only those fixing faster than 99% of neutral fixations. Less
conservative cutoffs should not strongly influence the general result, as most mutations that sweep fix substantially
faster than neutral fixations and only few more fixations would be defined as selective sweeps. We call only sweeps from
mutations that arose after the optimum shift hard sweeps, but some sweeps from standing variation would be difficult to
distinguish from hard sweeps in genomic data, as their equilibrium frequency is very low (Berg and Coop 2015).

The effect of genetic background on focal QTL

Allele frequency shifts and selective sweeps in a focal QTL are dependent on the genetic background. Chevin and
Hospital (2008) showed analytical results for the behavior of a single locus with a polygenic background during the
adaptation to a new optimum. In our study, we simulate a more complex case: in addition to a genetic background (see
Eq. , we model 20 QTL each involving numerous loci. Moreover, in our model the QTL and the genetic background
are not independent, because the QTL in the parents contribute to their trait value but can themselves be inherited
as well. Nonetheless, our results broadly agree with Chevin and Hospital (2008), showing that when the effect of the
background and effects of mutations within the QTL are large, adaptation proceeds without selective sweeps (Figure 4).
We additionally show that the background explains considerable variation in many summary statistics, in particular
those related to fixations and selective sweeps (Figure 3). Together with empirical observations of varying fitness effects
for QTL in different backgrounds (Symonds et al. 2005; Doebley et al. 1995; Stitzer and Ross-Ibarra 2018), our results
highlight that evolutionary models of QTL cannot ignore the effects of genetic background.

Genetic architecture of quantitative traits after adaptation

The genetic architecture of a trait is an important feature in the study of adaptation, influencing both the response to
selection as well as the power to detect causal loci for a trait. Our two example traits show that different adaptation
processes lead to different patterns of the genetic architecture matrix. Because trait 1 only reached the new optimum
shortly before we assess the the genetic architecture, the values are distributed asymmetrically along the zero effect size
bin. Trait 2 reached the new optimum very early and therefore is more similar to an equilibrium genetic architecture
with effects sizes close to zero at higher frequency and larger effect sizes at very low frequencies. These differences even
between two highly correlated genetic architectures show that in addition to the input parameters, the time that passed
since the new optimum was reached has an influence on the genetic architecture we observe in a population.

Using a machine-learning approach that trained on a subset of our simulations, we were able to identify the parameters
that explained the largest proportion of variation among the genetic architectures studied (Figure 5). We found that
demographic change plays a key role in determining the present genetic architecture, explaining as much as 55% (growth
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and bottleneck combined) of the variation we observed. For example, recent population growth leads to an increased
number of low frequency mutations; this effect drives many of the observed differences between genetic architecture
matrices of different demographies. We observed a high correlation (0.83 – 0.99) between genetic architectures with
similar population demographies, suggesting that making inference about the process of adaptation from present day
genetic architecture will have greater power in situations where the demography can be independently inferred. The
result confirms the theoretical prediction that the combination of different allele frequency shifts at a large number
of loci lead to similar trait architecture (Lynch and Walsh 1998). However when other statistics, such as information
about fixations, effect size distributions observed in present populations, number and type of selective sweeps and the
demography are added as parameters to the modern genetic architecture, we can predict the evolutionary rate, sigmam,
and VS with 70% accuracy.

In addition to the effect of population growth, other input parameters do contribute substantially to variation in the
genetic architecture, including, including the strength of stabilizing selection. Simons et al. (2014) and Simons et al. (2018)
suggest that rare alleles are unlikely to contribute substantially to trait variance, but our models show that rare alleles
can explain a large proportion of the variation when effect sizes are large. This is more consistent with the findings of
Lohmueller (2014), who showed that population growth leads to an increase proportion of genetic variance explained by
rare alleles. The lack of consensus might result from differences in the models: while Simons et al. (2014) models selection
on fitness directly and Simons et al. (2018) a quantitative trait under stabilizing selection with pleiotropy, our models and
that of Lohmueller (2014) consider selection on traits that are directly correlated to fitness.

Maize domestication

Quantitative traits have been extensively studied in maize and breeders have made steady progress selecting traits for
ever increasing trait values. But despite decades of observation that many important traits in maize are polygenic and
work identifying QTL underlying domestication-related phenotypes (Briggs et al. 2007), there has been little attention to
the process of quantitative trait adaptation during maize domestication (but see Brown et al. 2011; Xue et al. 2016). Many
domestication traits, alike maize traits, are polygenic and controlled by a number of loci with varying effect sizes (Xue
et al. 2016). Archaeological records of maize domestication traits show that adaptation took several thousand years (Benz
et al. 2006). Our example trait 1 matches this pattern, representing an adaptation time of almost 10,000 years 6. Trait 1
also leads to a reduction in genetic variance compared to the equilibrium population (wild ancestor), again matching
observed data (Xue et al. 2016).

Trait 2, on the other hand, differs dramatically in a number of ways. It reached the new optimum extremely quickly,
and diversity in the present is actually slightly higher than at the time of the optimum shift (Figure 6). The behavior
of trait 2 most closely resembles that of resistance traits with few large effect QTL potentially (Poland et al. 2011). We
only look at the genetic variance of mutations that affect a single trait, the overall diversity of a population is based on
a combination of traits with different trait architectures and neutral parts of the genome. The reduction in diversity
could partly be due to the distant optimum shift and partly because of the population bottleneck experienced during
domestication.

The difference in trait adaptation and genetic variance trajectory can be partially explained by the fixations and
selective sweeps of beneficial alleles. The number of fixations revealed that as expected far more mutations fixed for trait
1 than for trait 2, as in trait 1 much more sites are segregating in the equilibrium population, but the number of sweeps
was also much higher. This is corrected for sites that fix due to genetic drift and shows that the larger relative distance to
the new optimum changes the pattern. In maize it has been shown that the domestication led to an accumulation of
deleterious alleles, which so far was mainly attributed to the domestication bottleneck because no increase in deleterious
alleles near major domestication genes was found (Wang et al. 2017). For quantitative traits the small deleterious fixations
could be distributed more uniformly across the genome and fix even without population bottlenecks. In general there
are only few hard selective sweeps observed in maize and 84% of fitness related SNPs were already segregating in
teosinte(Swarts et al. 2017). Our traits show that depending on the relative distance to the new optimum the type of
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selective sweeps changes. While for close traits mainly standing variation sweep for distant optima, more hard sweeps
are observed because the standing variation is exhausted. The overall pattern of selective sweeps in the maize genome is
a result of the selection on combination of traits and probably involves pleiotropic effects that can prevent fixation of new
mutations even if they have large effects on a trait.

Signature of polygenic adaptation in genomic data

The recently suggested omnigentic model predicts that regulatory networks are sufficiently interconnected that many loci
even outside the most biologically relevant genetic pathways can nonetheless affect a trait (Boyle et al. 2017). If indeed
many traits are omnigentic, a quantitative evolutionary model as employed in our simulations is well suited for making
inferences about observations in genomic data. Large sets of genomic and phenotypic data are becoming increasingly
available, facilitating the study of the role of polygenic adaptation. Our results help to understand the implications of
different theoretical parameters for the interpretation of such studies and provide targets for new selection tests that
explicitly test for polygenic adaptation and the underlying genetic architecture. We show, for example, that selective
sweeps can have a crucial role during polygenic adaptation and should be integrated into detection methods, as some
approaches to investigate polygenic adaptation from shifts in allele frequencies may lose power if large effect alleles are
fixed in the population in which effects are estimated (Berg et al. 2017; Forsberg et al. 2017; Crawford et al. 2017).

Inferring polygenic adaptation and the underlying parameters in empirical data can provide important insight into
the evolution of complex phenotypes. For experimental evolution scenarios in which the ancestral populations are
known, the distance between the initial and the final optimum can be inferred from phenotype data, but for natural
populations this may be more challenging. Our results indicate that the relative distance could be inferred from genomic
data via estimates of the genetic architecture if the demographic history is known. One current challenge of transferring
simulation results to empirical data is the computational limitation of simulating whole genome sequences in large
populations. Faster implementations will allow simulation of larger regions and include neutral sites (Kelleher et al.
2018), and could be used to train machine learning models in order to predict the evolutionary history of a population
from existing data coming from association studies. The implementation of machine learning trained on simulated data
has been successfully applied to identify a number of population genetic patterns (Schrider and Kern 2018), and is a
promising avenue for future work.
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Supplement

Figure S1 Demographies Bottlenecks and growth models

Polygenic adaptation 21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2018. ; https://doi.org/10.1101/313247doi: bioRxiv preprint 

https://doi.org/10.1101/313247
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.4

0.8

1.2

0.0 2.5 5.0 7.5 10.0
Time to fixation (x Nanc)

D
en

si
ty

Simulation
type

neutral
selection

Figure S2 Detection of selective sweeps Distribution of fixation times from neutral single locus simulations (red) and
forward simulations with selection (green). The grey area denotes the 99% confidence interval of neutral fixation time.
Fixations outside the confidence interval are considered selective sweeps.
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Figure S3 Genetic variance during burn-in The genetic variance in each generation over 10 Nanc generations for each
parameter set. The horizontal line denotes the House of Cards approximation of VG (Turelli 1984). Scenarios with
small σm and large VS do not reach the expected VG because mutations are too small to "fill up" the variance volume.
However, their equilibrium variance is higher than that approximated by Lande (1975) and is between those regimes.
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Figure S4 Equilibrium Fitness Fitness for each burn-in parameter combination after 10N generations.
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Figure S5 Relative parameter importance Relative parameter importance inferred by Random Forrest machine learn-
ing for three parameter categories. 1) Adaptation, trait related parameters describing adaptation speed and potential
for future adaptation. 2) Fixations, summary statistics for mutations that were fixed during trait adaptation and 3)
segregating sites in the final generation of the simulations. Top panel indicating prediction accuracy as calculated by
10-fold cross validation and normalized relative mean squared error
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Figure S6 Fixations A) Total number of fixations B) Mean effect size of fixations C) Mean effect size of positive fixa-
tions D) Mean effect size of negative fixations
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Figure S7 Fitness effect of mutations Fitness effect of mutations at the onset of directional selection (0.001-0.012N),
Before the new optimum is reached (0.001 - 0.012N) and after the new optimum has been reached (0.012 - 0.022N)
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Table S1 Predicted summary statistics for feature importance estimation
Parameter Description

Adaptation Trait related parameters

Time to optimum Generations until new optimum is reached

Adaptation rate (haldane) Adaptation rate until new optimum is reached. Calculated as rate(h) =
ln(x2)
sdx12

− ln(x1)
sdx12

t2−t1

Final genetic variance Genetic variance in the final generation

Fixations Mutations that fix after the optimum shift

From new mutations (#) Sum of fixed mutations in the final population that were already segregating before the optimum
shift

From standing variation (#) Sum of fixed mutations in the final population that arose after the optimum shift

Max. effect size Maximal effect size of all fixations

Mean effect size Mean effect size of all fixations

Mean effect size of negative fixations Mean effect size of negative mutations

Mean effect size of positive fixations Mean effect size of positive mutations

Mean emergence time Mean generation when a mutation arose that fixed in the last 0.1 N generations

Mean fixation time Mean generation in which a mutation fixed

Min. effect size Minimal effect size of all fixations

Negative (#) Sum of fixed mutations with negative effects in the final population

New/standing fixations Ratio of mutations from new mutations vs. standing mutations

Proportion negative Proportion of negative fixations from all mutations

Positive (#) Sum of fixed mutations with positive effects in the final population

SD of effect sizes Standard deviation of effect sizes of all fixations

SD of negative effect sizes Standard deviation of effect sizes of negative fixations

SD of positive effect sizes Standard deviation of effect sizes of positive fixations

Total (#) Sum of fixed mutations in the final population

Sweeps Mutations that fix faster than 99% of neutral fixations

Hard sweeps (#) Sum of selective sweeps from new mutations

Proportion of hard sweeps Porportion of hard selective sweeps of all selective sweeps

Proportion of sweeps from standing Proportion of selective sweeps from stainding variation of all selection sweeps

Sweeps (#) Sum of selective sweeps

Sweeps from standing variation (#) Sum of selective sweeps from mutations that were already segregating before the optimum shift

Sweeps/fixations Ratio of sweeps vs. fixations

Segregating sites Mutations that segregate in the final generation

Max. effect size Maximal effect size of segregating sites

Mean effect size Mean effect size of segregating sites

Mean effect size of negative sites Mean effect size of segregating sites with negative effects

Mean effect size of positive sites Mean effect size of segregating sites with positive effects

Mean frequency of all sites Mean allele frequency of segregating sites

Mean frequency of negative sites Mean allele frequency of segregating sites with negative effects

Mean frequency of positive sites Mean allele frequency of segregating sites with positive effects

Min. effect size Minimal effect size of segregating sites

Negative (#) Sum of segregating sites with negative effect

Positive (#) Sum of segregating sites with positive effect

Proportion of negative sites Proportion of segregating sites with negative effect of all segregating sites

Standard deviation of effect sizes Standard deviation of effect sizes of all segregating sites

Total (#) Sum segregating sites in the final generation
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