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Summary 29 

Since its establishment in 2009, single-cell RNA-seq has been a major driver 30 

behind progress in biomedical research. In developmental biology and stem cell 31 

studies, the ability to profile single cells confers particular benefits. While most 32 

studies still focus on individual tissues or organs, the recent development of ultra-33 

high-throughput single-cell RNA-seq has demonstrated potential power in 34 

characterizing more complex systems or even the entire body. However, although 35 

multiple ultra-high-throughput single-cell RNA-seq systems have attracted 36 

attention, no systematic comparison of these systems has been performed. Here, 37 

we focus on three widely used droplet-based ultra-high-throughput single-cell 38 

RNA-seq systems, inDrop, Drop-seq, and 10X Genomics Chromium. While each 39 

system is capable of profiling single-cell transcriptomes, their detailed comparison 40 

revealed the distinguishing features and suitable applications for each system. 41 

 42 

 43 

Introduction 44 

Single-cell RNA-seq (scRNA-seq), which was first established in 2009 (Tang et al., 2009), 45 

has become one of the most powerful approaches for revealing biological heterogeneity. 46 

The ability to manipulate picograms of RNA in single cells has enabled the performance of 47 

studies with unprecedented temporal and spatial resolution. Based on the substantial data 48 

of the whole transcriptome, scRNA-seq has provided comprehensive information on 49 

landscapes of gene expression and their regulatory interactions at the finest resolution, 50 

enabling accurate and precise depiction of cell types and states (Grun and van 51 

Oudenaarden, 2015; Tanay and Regev, 2017; Wu et al., 2017). In the last decade, the 52 

sensitivity and precision of mRNA quantification through scRNA-seq have been greatly 53 

improved (Hashimshony et al., 2016; Picelli et al., 2014), leading to revolutionary 54 

discoveries in many fields, such as cell-type identification in various tissues or organs 55 

(Jaitin et al., 2014; Lake et al., 2016; Papalexi and Satija, 2018; Treutlein et al., 2014; 56 

Villani et al., 2017); tracing cell lineage and fate commitment in embryonic development and 57 

cell differentiation (Olsson et al., 2016; Semrau et al., 2017; Tirosh et al., 2016; Yan et al., 58 

2013); drawing inferences on transcriptional dynamics and regulatory networks (Deng et al., 59 
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2014; Dixit et al., 2016); and identifying the development, evolution, and heterogeneity of 60 

tumors (Patel et al., 2014; Treutlein et al., 2014; Venteicher et al., 2017).  61 

 62 

The experimental throughput is always a major concern in the design of scRNA-seq 63 

experiments. In some biological systems, such as early-stage embryos, only dozens of cells 64 

are required to achieve critical findings (Yan et al., 2013). However, owing to tissue 65 

complexity, the dynamicity of the cell cycle, or other intrinsic variations (Buettner et al., 66 

2015), as well as technical noise (Brennecke et al., 2013), RNA-seq data from a small 67 

number of cells are typically inadequate to reflect the state of biological samples 68 

comprehensively (Tanay and Regev, 2017). The sensitivity of transcriptome detection is 69 

known to become rapidly saturated with increasing sequencing depth (Svensson et al., 70 

2017). The shallow sequencing of massively sampled single cells can effectively reduce 71 

random variation and define cell types through clustering analysis, providing a more robust 72 

approach (Pollen et al., 2014; Streets and Huang, 2014; Svensson et al., 2018). For large-73 

scale scRNA-seq studies, a major technical hurdle is the cost of preparing a large number 74 

of cDNA libraries. Laboratory automation can overcome the laboriousness of this approach, 75 

but the reagents are still expensive (Jaitin et al., 2014). A few recently reported microfluidic 76 

approaches have demonstrated various advantages in scRNA-seq (Prakadan et al., 2017). 77 

For example, small-volume reactors may improve reaction efficiency and reduce technical 78 

noise when coupled with appropriate chemistry (Streets et al., 2014; Wu et al., 2014). 79 

Moreover, lab-on-a-chip operations have also made single-cell isolation much easier than 80 

manual cell picking (Shalek et al., 2014). Microwell-based scRNA-seq methods (Fan et al., 81 

2015; Han et al., 2018) have also exhibited advantages in terms of low cost and high 82 

throughput. However, owing to the lack of commercially available instruments or detailed 83 

protocols, microwell-based scRNA-seq has not been widely adopted.  84 

 85 

Droplet microfluidics can achieve rapid compartmentation and encapsulation at a frequency 86 

of up to dozens of thousands of droplets per second and be easily scaled to produce 87 

millions of droplets, each having a nanoliter volume to accommodate single-cell reactions 88 

(Agresti et al., 2010). The microfluidic pipeline layout is very simple, consisting mainly of 89 

microchannels introducing/collecting reagents and samples (Duncombe et al., 2015). This 90 

droplet strategy greatly increases the reaction throughput and dramatically reduces the 91 

cost. Currently, there are three prevalent droplet-based systems for high-throughput 92 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 15, 2018. ; https://doi.org/10.1101/313130doi: bioRxiv preprint 

https://doi.org/10.1101/313130


 4 

scRNA-seq, namely, inDrop (Briggs et al., 2018; Klein et al., 2015; Wagner et al., 2018; 93 

Zilionis et al., 2017), Drop-seq (Farrell et al., 2018; Macosko et al., 2015), and 10X 94 

Genomics Chromium (10X) (Zheng et al., 2017). All of these have been demonstrated to be 95 

robust and practical in generating cDNA libraries for thousands of cells in a single run at 96 

acceptable cost. All three methods use similar designs to generate droplets, use on-bead 97 

primers with barcodes to differentiate individual cells, and apply a unique molecular 98 

identifier (UMI) for bias correction (Kivioja et al., 2011). Despite these similarities, they 99 

involve different approaches for bead manufacturing, barcode design, and cDNA 100 

amplification, and thus have different experimental protocols. Given these differences in 101 

system specifications and potentially in the results of transcriptome analysis (Ziegenhain et 102 

al., 2017), there is a need for a systematic and unbiased comparison among these 103 

methods.  104 

 105 

Here, we compare the performance of these three approaches using the same sample with 106 

a unified data processing pipeline. We generated two to three replicates for each method 107 

using the lymphoblastoid cell line GM12891. The mean sequencing depth was around 108 

50,000–60,000 reads per cell barcode. We also developed a versatile and rapid data 109 

processing workflow and applied it for all datasets. Cell capture efficiency, effective read 110 

proportion, barcode detection error, and transcript detection sensitivity were analyzed and 111 

compared. The results reveal strengths and weaknesses in each system and provide 112 

guidance for the selection of the most appropriate system in future research. 113 

 114 

 115 

Results 116 

System overview 117 

Among the three systems, inDrop and Drop-seq have been extensively described in the 118 

literature, whereas 10X is a commercial platform whose design details have not been fully 119 

disclosed. We here attempt to dissect these systems to the best of our ability based on the 120 

information that we could collect. In all three systems, the cell barcodes are embedded in 121 

microbead-tethered primers (Figure 1A). The DNA sequences of on-bead primers share a 122 

common structure, containing a PCR handle, cell barcode, UMI, and poly-T. The primer on 123 

the inDrop beads also has a photo-cleavable moiety and a T7 promoter. However, the 124 

beads are fabricated with different materials. The beads used in 10X and inDrop systems 125 
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are made of hydrogel, while Drop-seq uses brittle resin. Normally, beads and cells are 126 

introduced at low concentration to reduce the chance of forming doublets; that is, two cells 127 

or two beads are encapsulated in a single droplet. Therefore, for Drop-seq that uses small 128 

hard beads, encapsulation of one bead and one cell in the same droplet follows a double 129 

Poisson distribution. The hydrogel beads are soft and deformable, closely packed in the 130 

microfluidic channel, and their encapsulation can be synchronized to achieve a super-131 

Poissonian distribution (Figure 1A) (Abate et al., 2009). Although 100% single-bead 132 

occupancy is very difficult due to inevitable variation in bead size, the cell capture efficiency 133 

can reach markedly higher levels in 10X and inDrop approaches. 10X is reported to have 134 

~80% bead occupancy and a cell capture rate of ~50% (Zheng et al., 2017).  135 

 136 

The material of the beads may also influence the quantity and density of DNA primers. The 137 

use of a hydrogel for 10X and inDrop allows the immobilization of primers throughout the 138 

beads, whereas the smaller Drop-seq beads can only carry primers on the surface. After 139 

encapsulation, the entire beads from 10X are dissolved to release all of the primers into the 140 

solution phase to boost the efficiency of mRNA capture. inDrop also mobilizes the primers 141 

by UV-irradiation-induced cleavage. In contrast, Drop-seq uses surface-tethered primers to 142 

capture the mRNA molecules, which could reduce the capture efficiency compared with that 143 

for 10X and inDrop.  144 

 145 

Reverse transcription is carried out within droplets for 10X and inDrop before 146 

demulsification. Instead, Drop-seq only captures the transcripts without cDNA conversion. 147 

Reverse transcription in droplets can confer more uniform results due to the isolation of 148 

many local reactions and the reduction of reaction competition. It is also known that the 149 

performance of a reaction in a limited volume such as a droplet enhances the specificity of 150 

cDNA conversion and relative yield (Streets et al., 2014). The three systems adopt different 151 

strategies for cDNA amplification. InDrop employs CEL-Seq (Hashimshony et al., 2012), 152 

whereas 10X and Drop-seq follow a template-switching protocol (Macosko et al., 2015; 153 

Zheng et al., 2017) similar to the popular Smart-seq chemistry (Ramskold et al., 2012). The 154 

in vitro transcription step in inDrop extends the library preparation time beyond 24 h, while 155 

both Drop-seq and 10X pipelines can be completed within a day.  156 

 157 

Experimental design and data processing 158 
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We used GM12891, a human lymphoblastoid cell line, for our comparative study. Biological 159 

replicates were set up for all three systems, with various cell inputs on different days and in 160 

different batches (Figure 1B). We adjusted the sequencing depth to obtain comparable 161 

numbers of reads per cell barcode across the three systems.  162 

 163 

Each system has its own data processing pipeline. However, none of them can directly 164 

handle data generated by other systems due to differences in read structures. Each 165 

analysis pipeline has to cope with system-dependent data characteristics, for example, the 166 

tolerance of cell barcode errors. Besides, the analysis pipelines use different strategies in 167 

some key processes such as gene tagging. All of these differences may introduce bias in 168 

gene quantification, which is not ideal when attempting to perform a fair comparison among 169 

the systems. To solve this problem, we developed a versatile pipeline that accepts data 170 

from all of these systems and generates matrices of UMI counts (Figure 1C). We applied 171 

this pipeline to our data and conducted comparisons on sensitivity, precision, and bias in an 172 

objective way. 173 

 174 

The script of the pipeline is freely available online (https://github.com/beiseq/baseqDrops) 175 

for download. It was designed to accept paired-end sequencing data with one end (read 1) 176 

containing the cell barcode and UMI, and the other end (read 2) containing the transcript 177 

sequence. The pipeline first identifies cell barcodes in read 1 raw data. After removing cell 178 

barcodes with read counts that are too low (miscellaneous barcodes), the pipeline corrects 179 

cell barcode errors (see Methods for details). These errors may have been introduced 180 

during on-bead primer synthesis and also during PCR or sequencing steps. Reads with the 181 

same cell barcodes are aggregated, and invalid cell barcodes are removed after filtering by 182 

read counts. For 10X and inDrop in which barcodes are not completely random, the pipeline 183 

further filters the cell barcodes based on manufacturers’ whitelists. 184 

 185 

Read 2 sequences are mapped to the human reference genome (hg38) using STAR (Dobin 186 

et al., 2013) and then tagged to the corresponding genes. We also processed the datasets 187 

with each protocol’s official pipeline. We then compared the obtained results with those 188 

from our versatile pipeline. The expression levels of the majority of genes and the UMI 189 

counts in each barcode were found to be highly consistent among the different data 190 

processing methods (see Methods, Figure S2A, B). To confirm the accuracy of transforming 191 
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aligned reads to the corresponding genes, we performed simulation by generating around 2 192 

million reads based on the cell line’s gene expression profile (ref. f). More than 99% of the 193 

reads (2,229,156 out of 2,251,529) were tagged to the correct gene (see Methods, Figure 194 

S2C). The remaining 1% of ambiguous reads were mainly derived from genes with 195 

paralogs or overlapping genes, such as RPL41/ AC090498.1 or IGHA1/IGHA2 (Table S2). 196 

After read-to-gene assignment, the reads for each gene in each cell were grouped and their 197 

UMIs were aggregated and counted by allowing a 1-bp mismatch, thus generating a gene 198 

expression UMI matrix. 199 

 200 

The processing speed of this pipeline was optimized by reducing the read/write payload, 201 

which is a common bottleneck. For example, ~50% of reads from inDrop data have an 202 

invalid sequence structure. By removing these reads, we can increase the data processing 203 

efficiency. Furthermore, the reads are split into multiple (typically 16) files, based on the cell 204 

barcode prefix, which enables parallel processing. 205 

 206 

Quality of primers on beads 207 

The barcode library size determines the maximum capacity for a single experimental run 208 

using droplet-based scRNA-seq. A small cell barcode library might result in barcode 209 

collision and artificial doublets. In the information accompanying the three systems, 210 

theoretical cell barcode library sizes of 1.47×105 (inDrop), 1.6×107 (Drop-seq), and 211 

7.34×105 (10X) are claimed. However, the effective barcode library size may be smaller 212 

than the designed value. We estimated the proportion of effective barcodes by analyzing 213 

the barcode collisions between multiple runs from each system (see Methods). The 214 

likelihood analysis demonstrated the relative probability of observing such a number of 215 

collisions at different effective barcode fractions (Figure 2A). For inDrop, our results suggest 216 

an effective barcode proportion of around 30%, although 100% effectiveness is also 217 

possible with smaller possibility. The analysis is less powerful for larger libraries, but we can 218 

still determine the lower bound for Drop-seq (~10%) and 10X (~40%). The likelihood of an 219 

effective barcode proportion smaller than the lower bound is relatively low. Thus, by rough 220 

estimation, the effective barcode size is ~5×104 for inDrop and at least 1×106 for Drop-seq 221 

and 3×105 for 10X (see Methods).  222 

 223 
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One-barcode-one-bead is the key requirement for all three systems. However, owing to the 224 

imperfection in the chemistry of DNA synthesis, asynchronous base addition is inevitable. 225 

Inconsistency in the sequences of cell barcodes could thus arise within the same bead. 226 

Such presence of errors in cell barcodes would result in inflation of the number of detected 227 

single cells, which requires careful correction. We aggregated the cell barcodes within 1 228 

Hamming distance. For each valid cell barcode, the proportion of the corrected reads 229 

(which contains errors in raw barcode sequences) to the total reads after correction is 230 

calculated as the cell barcode error rate (Figure 2B), which reflects the general quality of 231 

on-bead DNA primers. 10X beads showed few mismatches in cell barcodes, indicating 232 

good quality control in bead fabrication. In contrast, more than half of the cell barcodes 233 

contained obvious mismatches in the other two systems. Specifically, about 10% of Drop-234 

seq beads contained a one-base deletion in cell barcodes, which also required extra care 235 

during data analysis (see Methods). 236 

 237 

We further analyzed the base composition of UMI, which could reflect its synthesis and 238 

usage bias (Figure 2C, Table S1). All systems showed bias or preference for poly-T due to 239 

its affinity to the poly-A tail of mRNA. We also found the enrichment of poly-C in inDrop, and 240 

of poly-G in Drop-seq and 10X. Such patterns, predominantly due to DNA synthesis bias, 241 

may cause system-dependent skewness of the RNA-seq results.  242 

 243 

The primary filtering criterion for valid cell barcodes is based on the total number of raw 244 

reads, which largely reflects the abundance of cellular mRNAs. A cell barcode with more 245 

reads is more likely to originate from a real cell. The cell barcodes were sorted and 246 

visualized by their read counts, and we observed different features in the three systems 247 

(Figure 2D). For 10X, a sharp cliff indicated the distinct difference in read counts between 248 

barcodes from healthy cells and others. For inDrop, there was a similar but subtler cliff. For 249 

Drop-seq, however, there was no obvious cliff on the read-count curve for a clear cut-off. 250 

This might have originated from the wide size distribution of beads used by Drop-seq. We 251 

noticed that the size of beads used in inDrop or 10X was more uniform than that in Drop-252 

seq (Figure S1), probably due to the difficulties in size control when fabricating resin beads.  253 

 254 

Data processing steps and results 255 
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It is challenging to accurately determine the cell number, represented by cell barcodes, in 256 

each sample. This is due to the large dispersion in cellular mRNA molecular counts and 257 

their capture efficiency. We attempted multiple strategies to estimate the valid cell numbers 258 

(see Methods, Figure S3). Many of these methods rely on certain assumptions about the 259 

read/UMI distribution or cell composition, which might not apply for all protocols or 260 

situations. We implemented a strategy that started from a certain number of cells 261 

determined experimentally, followed by strict quality control filtering (UMIs ≥ 1000 and 262 

nearest correlation ≥ 0.6). This strategy has been implemented by multiple groups in 263 

recently reported high-throughput scRNA-seq studies. For each run, the number of 264 

recovered cells could be roughly estimated by considering the number of input cells, cell 265 

capture ratio, and downstream reaction success ratio, in accordance with system-specific 266 

protocols. Then, the estimated cells were further filtered to satisfy the quality control criteria 267 

(see Methods).  268 

 269 

The reads split into each valid cell barcode are first aligned to the human genome to 270 

analyze the distribution of reads throughout the genome (Figure 3A). Drop-seq has more 271 

than 65% of the reads mapped to UTR (mainly 3’UTR) and exon regions, while this 272 

proportion in inDrop is only about 45%. After the tagging of reads that map to gene bodies, 273 

the numbers of detectable genes can be obtained (Figure 3B). The number of genes 274 

declines in accordance with the number of reads within a cell, except for several outliers in 275 

Drop-seq data. We use those detected genes to demonstrate the bias of read distribution 276 

along the gene body (Figure 3C). The reads were mainly derived from the 3′ end of the 277 

mRNA for all three systems, consistent with their library construction strategies. Drop-seq 278 

data showed a bimodal distribution, most likely due to the same PCR anchor sequences 279 

being used at both ends of cDNA molecules.  280 

 281 

We performed cell barcode filtering based on the total count of UMIs (transcripts) in each 282 

experimental run (Figure 3D). With a total UMI cut-off of 1,000, most of the cell barcodes 283 

passed the filter, which indicates that the estimated cell number is sound. To further remove 284 

possible artifacts caused by barcode errors, we checked the similarity of expression profiles 285 

between similar cell barcodes. If the expression profile of a cell barcode was markedly 286 

different from its closest cell barcode neighbor (Spearman’s correlation ≤ 0.6, see 287 

Methods), we discarded the barcode (Figure 3E, see Methods).  288 
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 289 

Through all of these steps, we obtained various numbers of cells in each experiment 290 

(Figure 3F). The proportion of effective reads (reads from valid barcodes) was ~75% for 291 

10X, ~25% for inDrop, and ~30% for Drop-seq (Figure 3G). The proportion of such reads 292 

should be maximized to reduce wastage of sequencing capacity.   293 

 294 

Sensitivity of UMI and gene detection 295 

The sensitivity of gene detection is a fundamental indicator of the performance of scRNA-296 

seq. It reflects the overall efficiency of a method for capturing a single mRNA molecule for 297 

reverse transcription, second-strand synthesis, and pre-amplification. It further influences 298 

and determines the precision and accuracy of gene expression quantification. With the 299 

same cell line as an input sample, the sensitivity can be depicted simply with the recovered 300 

UMIs and gene counts (Figure 4A). The UMI and gene numbers gradually become 301 

saturated for cell barcodes with increasing read counts (Figure S4A, B). We found that the 302 

log-transformed UMI count is highly correlated (Spearman’s correlation r>0.9) with the 303 

number of detected genes (Figure S4C). This shows that sequencing depth may influence 304 

the numbers of UMIs and genes detected. For a fair comparison among the three different 305 

systems, we normalized the dataset to achieve a uniform raw read level (36K/cell) before 306 

gene expression analysis (see Methods). The technical replicates from the same system 307 

showed high consistency and reproducibility. 10X had the highest sensitivity, capturing over 308 

17,000 transcripts from ~3,000 genes on average. This performance was consistent 309 

regardless of the number of input cells. Drop-seq detected ~8,000 transcripts from ~2,500 310 

genes. Meanwhile, the inDrop system had lower sensitivity, detecting ~2,700 UMIs from 311 

~1,250 genes. The read distribution is more skewed in inDrop and Drop-seq, for which the 312 

majority of cell barcodes have relatively low read counts (Figure 4B).  313 

 314 

Technical noise and precision 315 

Technical noise is a reflection of the variation conferred by experimental randomness, 316 

including transcript dropout in reverse transcription and the bias associated with PCR 317 

amplification. Precision can be assessed by the concordance of the transcriptome among 318 

technical replicates. The main purpose of performing single-cell RNA-seq is to cluster cells 319 

into different subgroups based on their gene expression profiles, typically for discovering 320 

and characterizing new cell types or states. Clustering is based on the similarities or 321 

distances of gene expression patterns among cells. Large technical noise or variation will 322 
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distort the actual distances and obscure subtle biological differences between cells, thus 323 

lowering the resolution of cell grouping. Many efforts have been made to reduce the 324 

technical noise, such as the use of UMI to eliminate the quantification error caused by 325 

amplification bias.  326 

 327 

Although we here use an apparently homogeneous cell line, there is still intrinsic biological 328 

noise or heterogeneity (Prakadan et al., 2017). In our dataset, the total variation consists of 329 

technical and biological components, which are difficult to separate. Here, we assume that 330 

biological noise is consistent among samples and that technical noise dominates the 331 

variation in the datasets. The noise levels of housekeeping genes (which show a minimal 332 

level of biological noise) and other genes have similar distributions, which indicates the low 333 

level of biological noise compared with technical noise (Figure S5, see Methods). Thus, the 334 

overall total variation should reflect the technical noise level.  335 

 336 

The overall total variation is characterized as the nearest Spearman’s correlation between a 337 

specific cell barcode and every other cell barcode in the entire dataset (see Methods). 338 

Many clustering/classification strategies, such as k-means and hierarchical clustering, are 339 

based on the nearest correlation between the cells. To identify minor cell types, the nearest 340 

correlation among these minor cells should be high to enable their separation from other 341 

cells. To validate the effect of UMIs in reducing the PCR amplification noise of gene 342 

counting, we performed the analysis using UMI counts and raw read counts for the 343 

quantification of gene expression. The results (Figure 4C) show that 10X and Drop-seq 344 

have lower technical noise levels than inDrop. For all three systems, gene expression 345 

profiles characterized by UMI have reduced noise compared with those using raw counts, 346 

confirming the effectiveness of UMI in noise reduction. It is noteworthy that such noise is 347 

more severe in inDrop data, probably due to the use of random primers during library 348 

construction. For 10X, however, the usage of UMI does not dramatically reduce noise. This 349 

is probably due to relatively even amplification during 10X sample preparation. In addition, 350 

most UMIs were sequenced only two to three times, suggesting a less saturated 351 

sequencing depth. For deeper sequencing, the use of UMI can probably reduce the noise 352 

further. 353 

 354 
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The technical variation at the gene level can be measured by the coefficient of variation 355 

(CV) of normalized UMI (UMIs per million) counts across all cells (Figure 4D, see Methods). 356 

This provides a view of the technical noise on the whole gene expression profile. All 357 

systems show reduced variation for genes with higher expression levels. Generally, 10X 358 

has the lowest technical noise, followed by Drop-seq and then inDrop. Interestingly, many 359 

of the most highly expressed genes are quite noisy, especially in the 10X data. We 360 

examined these genes (normalized UMI ≥ 2,000, CV ≥ 0.5) and found that most of them 361 

were the cell line’s most highly expressed genes or mitochondrial genes (Table S3). High 362 

noise in these genes was probably introduced by the stochastic manner of bursts by which 363 

transcription occurs (Sanchez and Golding, 2013). 364 

 365 

Saturation of sensitivity and precision at low sequencing depth  366 

The ability to detect transcripts present at a low level could be enhanced by performing 367 

deeper sequencing. However, there is a trade-off between costs and sensitivity, especially 368 

for high-throughput experiments. Empirically, it has been shown that each cell gets 10,000–369 

100,000 reads in high-throughput scRNA-seq experiments, whereas for conventional 370 

scRNA-seq data the corresponding value is usually ~1 million reads per cell (Baran-Gale et 371 

al., 2017). A previous study based on a mathematical model suggested that shallow 372 

sequencing (1% of conventional depth) can also be informative regarding cell status 373 

(Heimberg et al., 2016). We randomly subsampled sequencing data and analyzed the 374 

corresponding changes in sensitivity and precision (Figures 5A, B and S6). The fitted 375 

saturation curves of UMI and gene counts help to determine a suitable sequencing depth 376 

for most applications.  377 

 378 

All of the systems show diminishing returns at higher depths. For more sensitive methods, it 379 

is possible to detect the same level of UMIs with fewer reads. All three methods can reach 380 

a threshold of 1000 UMIs with fewer than 10K reads. 10X can detect 10,000 UMIs with 381 

about 20K reads as a median, while for Drop-Seq the value is 50K. These both exceed the 382 

capacity of inDrop. We also evaluated how many reads per cell are needed to reach 80% of 383 

the total saturated UMIs for Drop-Seq (~80K) and inDrop (~60K) (Figure S6A). In contrast, 384 

10X requires ~200K reads/cell to accomplish this due to the higher sensitivity. Detection 385 

sensitivity of gene numbers saturated faster. To reach the 80% saturation level, ~30K 386 
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reads/cell are needed for inDrop or Drop-seq, while ~80K reads/cell are needed for 10X 387 

(Figure S6B).  388 

 389 

Other than sensitivity, precision also determines a system’s resolution for making 390 

biological discoveries. Here, the precision is measured as the nearest correlation 391 

between one cell and the others, which also indicates the level of technical noise. 392 

We investigated how the precision level was affected by the sequencing depth 393 

and found that the precision index rapidly saturated with increasing read depth (≥394 

20,000 effective reads) for all three systems (Figure 5C).  395 

 396 

These results help us to establish appropriate empirical guidelines for 397 

experimental design. For the most commonly performed tasks such as cell typing, 398 

a median number of 20,000 reads/cell should be sufficient. However, it should be 399 

noted that these results are from a cell line with abundant mRNA. The desired 400 

sequencing depth should be considered based on both the sensitivity of protocols 401 

and the input RNA content. For cells with lower transcription activities such as 402 

primary cells, a lower level of sequencing depth could be sufficient for each 403 

protocol. 404 

 405 

Bias in gene quantification 406 

To comprehensively compare the transcriptomes depicted by different systems, we 407 

conducted dimension reduction with principal component analysis (PCA) and t-distributed 408 

stochastic neighbor embedding (tSNE) analyses (Figure 6A). Almost all of the cells were 409 

robustly separated and clustered according to their system of origin. Although there is 410 

biological and technical variation within cells from the same run, which results in great 411 

diversity in sequencing reads, and in gene and UMI counts, the bias between different 412 

systems still exceeds the level of these variations. As the replicates are processed in 413 

different batches and days, the batch effect is also obscure. Within the same system, 414 

different batches of data show a very homogeneous distribution (Figure S7).  415 

 416 

The separation of cells by system indicates that there is system-specific quantification bias 417 

at the gene level. Potential biases in the mRNA enrichment at the gene level could be 418 

related to three major factors: expression abundance (normalized to UMIs per million), gene 419 
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length, and GC content. We hence selected the top 100 marker genes (see Methods) from 420 

each method and analyzed the distribution of these factors (Figure 6B–D). These genes 421 

showed consistent expression intensity among biological replicates. We found that, 422 

compared with the other systems, 10X slightly favored shorter genes and genes with higher 423 

GC content, whereas Drop-seq better detected genes with lower GC content. This 424 

observation echoes a previous report describing that Drop-seq overestimates transcription 425 

of genes with low GC ratio or long sequence (Macosko et al., 2015).  426 

 427 

In summary, all of the methods appear to be very consistent and homogeneous among 428 

technical replicates from different batches. This indicates the validity of combining different 429 

datasets together from the same method. However, different protocols have obvious bias 430 

related to gene length and GC content. Thus, combining these datasets directly will 431 

introduce extra divergence.  432 

 433 

 434 

Discussion 435 

We have compared the three most widely used droplet-based high-throughput 436 

single-cell RNA-seq systems, inDrop, Drop-seq, and 10X, using the same cell 437 

sample and a unified data processing pipeline to reduce bias in experimental 438 

design and data analyses. Technical replicates were included to identify possible 439 

batch-dependent artifacts. For each system, we sequenced thousands of single 440 

cells. Through quantitative analysis of a few key parameters using our unified data 441 

processing pipeline, we have clarified the characteristics of each system. 442 

Generally, after filtering out artifacts and errors, all three systems produced quality 443 

data for single-cell expression profiling. The cell typing analysis indicated obscure 444 

batch effects, but noticeable clustering bias in association with the system of 445 

choice. This indicates that cell typing analysis using datasets from a mixture of 446 

systems is technically challenging and should be avoided.  447 

 448 

In this study, we chose a lymphoblastoid cell line for the analysis because cell line 449 

quality is highly controllable. At least for technical evaluation, we wished to reduce 450 

the variation of sample quality on the obtained results as much as possible. 451 

However, direct comparisons using primary cells, especially those with low mRNA 452 
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contents, would be more informative. To expand the scope of our study, we 453 

further processed HEK293 cells with 10X system and included some datasets 454 

produced by the original developers of the three systems (Klein et al., 2015; 455 

Macosko et al., 2015; Zheng et al., 2017). As summarized in Table S5, 10X 456 

demonstrates higher sensitivity, detecting roughly twice as many of UMIs as 457 

inDrop and Drop-seq do from various kinds of cell. The results from the inDrop 458 

developers are better than ours. We attribute this discrepancy to batch-to-batch 459 

variation in bead quality. As we showed above, inDrop cell barcode error rate is 460 

much higher than those of Drop-seq and 10X (Figure 2B). Being labeled with 461 

defective barcodes would deem the transcripts undetectable since the very 462 

beginning. More than half of inDrop sequencing data were wasted due to a failure 463 

of matching with the cell barcodes in our data. Feedback from other inDrop users 464 

showed that the equivalent proportions from different batches of beads range from 465 

25% to 65% (unpublished results). We also tested the impact of mRNA content on 466 

system performance. When using half of HEK293 cDNA for downstream library 467 

preparation, we detected roughly half UMI as in normal HEK293 (Table S5). All 468 

these abovementioned results suggest that our findings based on the 469 

lymphoblastoid cell line can be generalized to other cell types.  470 

 471 

For all three systems, the beads are specifically provided by the particular 472 

manufacturer and would probably be difficult to produce in small laboratories. 473 

Thus, the quality of the beads, such as their size dispersity, is particularly 474 

important to define the robustness and uniformity of reverse transcription and 475 

further reactions. Moreover, the fidelity and purity of the barcode sequences on 476 

each bead are also key factors affecting the bioinformatics pipeline, for which 477 

artifacts and errors should be minimized.  478 

 479 

Our comparison shows that 10X generally has higher molecular sensitivity and 480 

precision, and less technical noise. As a more maturely commercialized system, 481 

the 10X protocol should have been extensively optimized, which is partially 482 

reflected in the barcode design and quality control of bead manufacture. However, 483 

high-performance optimization also comes with a high price tag. Specifically, the 484 
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instrument costs more than $50,000, and the per cell cost is around $0.50 even 485 

without considering the sequencing cost or instrument depreciation (Table S6).  486 

 487 

With small compromises in sensitivity and precision, Drop-seq exhibits a 488 

significant advantage in experimental cost compared with 10X, which is typically 489 

the major concern when a large number of single cells are needed. As an open-490 

source system (except for the beads), Drop-seq has gained popularity since its 491 

introduction in 2015. As of the time of writing, the Drop-seq protocol has been 492 

downloaded nearly 60,000 times. Building up the whole system costs less than 493 

$30,000. The experimental cost of Drop-seq is about $0.10 per cell (Table S6). 494 

Drop-seq is thus a reasonable choice for individual labs given its balanced 495 

performance and economical nature. 496 

 497 

To a certain extent, inDrop can be considered an open-source version of 10X. 498 

Both of them use hydrogel beads for super-Poissonian loading. Their on-bead 499 

primers are both releasable to facilitate the capture of transcripts. The instrument 500 

cost is comparable to that of 10X, and the per cell cost is about half that of 10X 501 

(Table S6).  We attribute the lower performance of inDrop to its excessive cDNA 502 

amplification (Hashimshony et al., 2016), as well as the fact that the protocol has 503 

yet to be completely optimized. As an open-source system, inDrop can adopt 504 

other chemistries, and be easily modified for different types of RNA-seq protocols. 505 

In a preliminary experiment, we tested the implementation of Smart-seq2, the 506 

most widely used scRNA-seq protocol, on the inDrop system. The cDNA profile 507 

closely resembled conventional Smart-seq2 products (Figure 7A). We further 508 

tested different conditions for reverse transcription and cDNA amplification. 509 

Similar to the results generated by the official protocol, a significant proportion 510 

(~40%) of reads in the new data could not be assigned to genuine cell barcodes. 511 

Our briefly optimized protocol generated results for UMI and gene detection 512 

comparable to those with the official protocol (Figure 7B–D, Table S4). Although 513 

the sensitivity of transcription detection was still lower than in the other two 514 

systems, our preliminary results demonstrated the flexibility of inDrop, and that the 515 

system could be desirable for nonstandard approaches or technical development.  516 

 517 
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With all of the system-specific features mentioned above, we proposed guidance 518 

to facilitate the choice of a suitable droplet-based scRNA-seq system for ultra-519 

high-throughput single-cell studies. While most projects work with relatively large 520 

cell numbers, precious samples such as human embryos require efficient cell 521 

capture. A super-Poissonian distribution of cell capture could be essential for such 522 

samples. The requirements regarding the experimental cost and efficiency of 523 

transcript detection depend on the specific scenario. Generally, all three systems 524 

offer satisfactory transcript detection efficiency, and higher efficiency is associated 525 

with higher experimental cost. By rule of thumb, 10X is currently a safe choice for 526 

most applications. When the sample is abundant, Drop-seq could be more cost-527 

efficient. In contrast, when the detection of low-abundance transcripts is optional, 528 

or a custom protocol is desired, inDrop becomes a better choice. 529 

 530 

Acknowledgments 531 

We thank Fan Wu for testing the data process pipeline. This work was supported 532 

by the National Natural Science Foundation of China (21327808, 21525521 to 533 

Yanyi Huang and 21675098 to Jianbin Wang), Ministry of Science and 534 

Technology of China (2016YFC0900100 to Jianbin Wang), and Beijing Advance 535 

Innovation Center for Genomics.  536 

 537 

Author Contributions 538 

Y.H. and J.W. conceived the project. T.L., F.L., and J.Y. performed experiments. X.Z., Z.L., 539 

Y.C., and J.Y. analyzed data. All authors participated in manuscript preparation. 540 

 541 

Declaration of Interests 542 

The authors declare no competing interests. 543 

 544 

Data availability  545 

The data can be accessed in GEO using accession code GSE111912. 546 

547 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 15, 2018. ; https://doi.org/10.1101/313130doi: bioRxiv preprint 

https://doi.org/10.1101/313130


 18 

References 548 

Abate, A.R., Chen, C.H., Agresti, J.J., and Weitz, D.A. (2009). Beating Poisson 549 
encapsulation statistics using close-packed ordering. Lab Chip 9, 2628-2631. 550 
Agresti, J.J., Antipov, E., Abate, A.R., Ahn, K., Rowat, A.C., Baret, J.C., Marquez, M., 551 
Klibanov, A.M., Griffiths, A.D., and Weitz, D.A. (2010). Ultrahigh-throughput screening in 552 
drop-based microfluidics for directed evolution. Proc Natl Acad Sci U S A 107, 4004-4009. 553 
Baran-Gale, J., Chandra, T., and Kirschner, K. (2017). Experimental design for single-cell 554 
RNA sequencing. Brief Funct Genomics. 555 
Brennecke, P., Anders, S., Kim, J.K., Kolodziejczyk, A.A., Zhang, X., Proserpio, V., Baying, 556 
B., Benes, V., Teichmann, S.A., Marioni, J.C., et al. (2013). Accounting for technical noise 557 
in single-cell RNA-seq experiments. Nat Methods 10, 1093-1095. 558 
Briggs, J.A., Weinreb, C., Wagner, D.E., Megason, S., Peshkin, L., Kirschner, M.W., and 559 
Klein, A.M. (2018). The dynamics of gene expression in vertebrate embryogenesis at 560 
single-cell resolution. Science. 561 
Buettner, F., Natarajan, K.N., Casale, F.P., Proserpio, V., Scialdone, A., Theis, F.J., 562 
Teichmann, S.A., Marioni, J.C., and Stegle, O. (2015). Computational analysis of cell-to-cell 563 
heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. 564 
Nat Biotechnol 33, 155-160. 565 
Deng, Q., Ramskold, D., Reinius, B., and Sandberg, R. (2014). Single-cell RNA-seq reveals 566 
dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193-196. 567 
Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C.P., Jerby-Arnon, L., Marjanovic, N.D., 568 
Dionne, D., Burks, T., Raychowdhury, R., et al. (2016). Perturb-Seq: Dissecting Molecular 569 
Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell 167, 1853-570 
1866 e1817. 571 
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., 572 
Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. 573 
Bioinformatics 29, 15-21. 574 
Duncombe, T.A., Tentori, A.M., and Herr, A.E. (2015). Microfluidics: reframing biological 575 
enquiry. Nat Rev Mol Cell Biol 16, 554-567. 576 
Fan, H.C., Fu, G.K., and Fodor, S.P. (2015). Expression profiling. Combinatorial labeling of 577 
single cells for gene expression cytometry. Science 347, 1258367. 578 
Farrell, J.A., Wang, Y., Riesenfeld, S.J., Shekhar, K., Regev, A., and Schier, A.F. (2018). 579 
Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. 580 
Science. 581 
Grun, D., and van Oudenaarden, A. (2015). Design and Analysis of Single-Cell Sequencing 582 
Experiments. Cell 163, 799-810. 583 
Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., Saadatpour, A., Zhou, Z., Chen, H., 584 
Ye, F., et al. (2018). Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 172, 1091-1107 585 
e1017. 586 
Hashimshony, T., Senderovich, N., Avital, G., Klochendler, A., de Leeuw, Y., Anavy, L., 587 
Gennert, D., Li, S., Livak, K.J., Rozenblatt-Rosen, O., et al. (2016). CEL-Seq2: sensitive 588 
highly-multiplexed single-cell RNA-Seq. Genome Biol 17, 77. 589 
Hashimshony, T., Wagner, F., Sher, N., and Yanai, I. (2012). CEL-Seq: single-cell RNA-590 
Seq by multiplexed linear amplification. Cell Rep 2, 666-673. 591 
Heimberg, G., Bhatnagar, R., El-Samad, H., and Thomson, M. (2016). Low Dimensionality 592 
in Gene Expression Data Enables the Accurate Extraction of Transcriptional Programs from 593 
Shallow Sequencing. Cell Syst 2, 239-250. 594 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 15, 2018. ; https://doi.org/10.1101/313130doi: bioRxiv preprint 

https://doi.org/10.1101/313130


 19 

Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., 595 
Cohen, N., Jung, S., Tanay, A., et al. (2014). Massively parallel single-cell RNA-seq for 596 
marker-free decomposition of tissues into cell types. Science 343, 776-779. 597 
Kivioja, T., Vaharautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S., and Taipale, 598 
J. (2011). Counting absolute numbers of molecules using unique molecular identifiers. Nat 599 
Methods 9, 72-74. 600 
Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, 601 
D.A., and Kirschner, M.W. (2015). Droplet barcoding for single-cell transcriptomics applied 602 
to embryonic stem cells. Cell 161, 1187-1201. 603 
Lake, B.B., Ai, R., Kaeser, G.E., Salathia, N.S., Yung, Y.C., Liu, R., Wildberg, A., Gao, D., 604 
Fung, H.L., Chen, S., et al. (2016). Neuronal subtypes and diversity revealed by single-605 
nucleus RNA sequencing of the human brain. Science 352, 1586-1590. 606 
Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., 607 
Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015). Highly Parallel Genome-wide 608 
Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202-1214. 609 
Olsson, A., Venkatasubramanian, M., Chaudhri, V.K., Aronow, B.J., Salomonis, N., Singh, 610 
H., and Grimes, H.L. (2016). Single-cell analysis of mixed-lineage states leading to a binary 611 
cell fate choice. Nature 537, 698-702. 612 
Papalexi, E., and Satija, R. (2018). Single-cell RNA sequencing to explore immune cell 613 
heterogeneity. Nat Rev Immunol 18, 35-45. 614 
Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., Cahill, 615 
D.P., Nahed, B.V., Curry, W.T., Martuza, R.L., et al. (2014). Single-cell RNA-seq highlights 616 
intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401. 617 
Picelli, S., Faridani, O.R., Bjorklund, A.K., Winberg, G., Sagasser, S., and Sandberg, R. 618 
(2014). Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9, 171-181. 619 
Pollen, A.A., Nowakowski, T.J., Shuga, J., Wang, X., Leyrat, A.A., Lui, J.H., Li, N., 620 
Szpankowski, L., Fowler, B., Chen, P., et al. (2014). Low-coverage single-cell mRNA 621 
sequencing reveals cellular heterogeneity and activated signaling pathways in developing 622 
cerebral cortex. Nat Biotechnol 32, 1053-1058. 623 
Prakadan, S.M., Shalek, A.K., and Weitz, D.A. (2017). Scaling by shrinking: empowering 624 
single-cell 'omics' with microfluidic devices. Nat Rev Genet 18. 625 
Ramskold, D., Luo, S., Wang, Y.C., Li, R., Deng, Q., Faridani, O.R., Daniels, G.A., 626 
Khrebtukova, I., Loring, J.F., Laurent, L.C., et al. (2012). Full-length mRNA-Seq from single-627 
cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30, 777-782. 628 
Sanchez, A., and Golding, I. (2013). Genetic determinants and cellular constraints in noisy 629 
gene expression. Science 342, 1188-1193. 630 
Semrau, S., Goldmann, J.E., Soumillon, M., Mikkelsen, T.S., Jaenisch, R., and van 631 
Oudenaarden, A. (2017). Dynamics of lineage commitment revealed by single-cell 632 
transcriptomics of differentiating embryonic stem cells. Nat Commun 8, 1096. 633 
Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., Chen, P., Gertner, 634 
R.S., Gaublomme, J.T., Yosef, N., et al. (2014). Single-cell RNA-seq reveals dynamic 635 
paracrine control of cellular variation. Nature 510, 363-369. 636 
Streets, A.M., and Huang, Y. (2014). How deep is enough in single-cell RNA-seq? Nat 637 
Biotechnol 32, 1005-1006. 638 
Streets, A.M., Zhang, X., Cao, C., Pang, Y., Wu, X., Xiong, L., Yang, L., Fu, Y., Zhao, L., 639 
Tang, F., et al. (2014). Microfluidic single-cell whole-transcriptome sequencing. Proc Natl 640 
Acad Sci U S A 111, 7048-7053. 641 
Svensson, V., Natarajan, K.N., Ly, L.H., Miragaia, R.J., Labalette, C., Macaulay, I.C., 642 
Cvejic, A., and Teichmann, S.A. (2017). Power analysis of single-cell RNA-sequencing 643 
experiments. Nat Methods 14, 381-387. 644 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 15, 2018. ; https://doi.org/10.1101/313130doi: bioRxiv preprint 

https://doi.org/10.1101/313130


 20 

Svensson, V., Vento-Tormo, R., and Teichmann, S.A. (2018). Exponential scaling of single-645 
cell RNA-seq in the past decade. Nat Protoc 13, 599-604. 646 
Tanay, A., and Regev, A. (2017). Scaling single-cell genomics from phenomenology to 647 
mechanism. Nature 541, 331-338. 648 
Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., 649 
Tuch, B.B., Siddiqui, A., et al. (2009). mRNA-Seq whole-transcriptome analysis of a single 650 
cell. Nat Methods 6, 377-382. 651 
Tirosh, I., Venteicher, A.S., Hebert, C., Escalante, L.E., Patel, A.P., Yizhak, K., Fisher, J.M., 652 
Rodman, C., Mount, C., Filbin, M.G., et al. (2016). Single-cell RNA-seq supports a 653 
developmental hierarchy in human oligodendroglioma. Nature 539, 309-313. 654 
Treutlein, B., Brownfield, D.G., Wu, A.R., Neff, N.F., Mantalas, G.L., Espinoza, F.H., Desai, 655 
T.J., Krasnow, M.A., and Quake, S.R. (2014). Reconstructing lineage hierarchies of the 656 
distal lung epithelium using single-cell RNA-seq. Nature 509, 371-375. 657 
Venteicher, A.S., Tirosh, I., Hebert, C., Yizhak, K., Neftel, C., Filbin, M.G., Hovestadt, V., 658 
Escalante, L.E., Shaw, M.L., Rodman, C., et al. (2017). Decoupling genetics, lineages, and 659 
microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355. 660 
Villani, A.C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J., Griesbeck, 661 
M., Butler, A., Zheng, S., Lazo, S., et al. (2017). Single-cell RNA-seq reveals new types of 662 
human blood dendritic cells, monocytes, and progenitors. Science 356. 663 
Wagner, D.E., Weinreb, C., Collins, Z.M., Briggs, J.A., Megason, S.G., and Klein, A.M. 664 
(2018). Single-cell mapping of gene expression landscapes and lineage in the zebrafish 665 
embryo. Science. 666 
Wu, A.R., Neff, N.F., Kalisky, T., Dalerba, P., Treutlein, B., Rothenberg, M.E., Mburu, F.M., 667 
Mantalas, G.L., Sim, S., Clarke, M.F., et al. (2014). Quantitative assessment of single-cell 668 
RNA-sequencing methods. Nat Methods 11, 41-46. 669 
Wu, A.R., Wang, J., Streets, A.M., and Huang, Y. (2017). Single-Cell Transcriptional 670 
Analysis. Annu Rev Anal Chem (Palo Alto Calif) 10, 439-462. 671 
Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., et 672 
al. (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic 673 
stem cells. Nat Struct Mol Biol 20, 1131-1139. 674 
Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., 675 
Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017). Massively parallel digital 676 
transcriptional profiling of single cells. Nat Commun 8, 14049. 677 
Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-Adkins, A., Smets, M., 678 
Leonhardt, H., Heyn, H., Hellmann, I., and Enard, W. (2017). Comparative Analysis of 679 
Single-Cell RNA Sequencing Methods. Mol Cell 65, 631-643 e634. 680 
Zilionis, R., Nainys, J., Veres, A., Savova, V., Zemmour, D., Klein, A.M., and Mazutis, L. 681 
(2017). Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12, 44-682 
73. 683 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 15, 2018. ; https://doi.org/10.1101/313130doi: bioRxiv preprint 

https://doi.org/10.1101/313130


 21 

 684 

 685 

Figure 1: Overview of the three platforms, experimental design, and data analysis pipeline. 686 

(A) Schematic and comparison of experimental features of the three systems. They differ in 687 

terms of barcode design, library size, emulsion, and downstream reactions. (B) 688 

Experimental scheme summary. Two or three replicates were performed for each platform 689 

and the same data processing pipeline was used for downstream analysis. The numbers of 690 

input and recovered cells are labeled. (C) Overview of the data processing pipeline 691 

workflow. The sequencing reads that result from barcoding and tagging in reverse 692 

transcription are first demultiplexed by their cell barcodes and then the UMIs mapped to 693 

each gene are aggregated and counted. 694 
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 695 

 696 

Figure 2. On-bead primer library size and quality assessment. (A) Estimation of effective 697 

cell barcode library size for each system. The likelihood of different effective barcode 698 

proportion is shown. The likelihood analysis is based on the observed barcode collisions 699 

between different samples from the same system (see Methods). (B) Distribution of cell 700 

barcode error rate. The error rate was measured as the proportion of corrected reads (1-bp 701 

mismatch) relative to the total reads. (C) The motif of the top 50 frequently used UMIs for 702 

each system. (D) The primary estimation of the valid cell barcode numbers according to the 703 

read counts. Cell barcodes in the same sample are ordered by their read counts. The top N 704 

cell barcodes are selected according to input cells and experimental capture efficiency.  705 

 706 

  707 
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 708 

Figure 3. Data processing steps and results. (A) Read composition after mapping to the 709 

genome. Percentages of reads mapped to different genomic regions and unmapped reads 710 

are shown. (B) The number of genes detected with cell barcode ranked by read counts. (C) 711 

Normalized read distribution across the gene body from the 5’ to the 3’ end. (D) The 712 

number of UMIs with cell barcode ranked by read counts. (E) The distribution of cells’ 713 

nearest correlation (see Methods); a threshold of 0.6 is applied for quality control. (F) The 714 

number of valid cell barcodes after each step of quality control filtering. (G) The proportion 715 

of effective reads after each step of quality control process (see Methods).  716 
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717 

Figure 4. Demonstration of the sensitivity and technical noise of each platform. (A) 718 

Summary of cell barcode numbers, read counts, and molecular detection 719 

performance. The data are down-sampled to obtain a uniform level of raw reads 720 

across all samples (see Methods). (B) The distribution of raw reads, UMIs, and 721 

genes detected. (C) Technical noise measured by the nearest correlation between 722 

one cell barcode and every other cell barcode within the same sample. Gene 723 

quantifications through UMI counts (solid line) and read counts (dashed line) are 724 

both adopted. (D) The CV-mean (CV squared) plot of each system. The technical 725 

noise is measured at the gene level. 726 
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 727 

Figure 5. Transcriptome analysis sensitivity and noise level at different 728 

sequencing depths by subsampling analysis. Median numbers of UMIs (A) and 729 

genes (B) detected for each sample with increasing effective read counts. (C) 730 

Transcriptome analysis noise level saturates quickly with sequencing depth. The 731 

noise was measured as the nearest correlation (see Methods). 732 
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 734 

Figure 6. Transcriptome analysis bias in the three systems. (A, B) Visualization of 735 

cell barcodes of all three systems clustered by PCA and tSNE. (B–D) 736 

Demonstration of transcriptome analysis bias in gene expression level (B), gene 737 

length (C), and GC content (D). The top 100 marker genes from each system 738 

were used for demonstration. 739 
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 741 

Figure 7. Adopting the Smart-seq2 protocol in the inDrop platform. (A) Comparison of cDNA 742 

fragment size between Smart-seq2 performed in tube and inDrop platform. (B, C) Four 743 

kinds of reaction with different reaction temperatures and PCR amplification strategies were 744 

performed (see Methods). Their median detected UMI (B) and gene (C) counts at various 745 

sequencing depths are shown. (D) The UMI distributions for four conditions at uniform 746 

sequencing depth (100K reads). The L1 condition has better sensitivity. 747 
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