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Abstract

The T cell receptor (TCR) repertoire encodes immune exposure his-
tory through the dynamic formation of immunological memory. Statistical
analysis of repertoire sequencing data has the potential to decode disease
associations from large cohorts with measured phenotypes. However, the
repertoire perturbation induced by a given immunological challenge is
conditioned on genetic background via major histocompatibility complex
(MHC) polymorphism. We explore associations between MHC alleles,
immune exposures, and shared TCRs in a large human cohort. Using a
previously published repertoire sequencing dataset augmented with high-
resolution MHC genotyping, our analysis reveals rich structure: striking
imprints of common pathogens, clusters of co-occurring TCRs that may rep-
resent markers of shared immune exposures, and substantial variations in
TCR-MHC association strength across MHC loci. Guided by atomic contacts
in solved TCR:peptide-MHC structures, we identify sequence covariation
between TCR and MHC. These insights and our analysis framework lay the
groundwork for further explorations into TCR diversity.

1 Introduction

T cells are the effectors of cell-mediated adaptive immunity in jawed vertebrates.
To control a broad array of pathogens, massive genetic diversity in loci encoding
the T cell receptor (TCR) is generated somatically throughout an individual’s life
via a process called V(D)J recombination. All nucleated cells regularly process
and present internal peptide antigens on cell surface molecules called major
histocompatibility complex (MHC). Through the interface of TCR and MHC,
a rare T cell with a TCR having affinity for a peptide antigen complexed with
MHC (pMHC) is stimulated to initiate an immune response to an infected (or
cancerous) cell. The responding T cell proliferates clonally, and its progeny
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inherit the same antigen-specific TCR, constituting long-term immunological
memory of the antigen. The diverse population of TCR clones in an individual
(the TCR repertoire) thus dynamically encodes a history of immunological
challenges.

Advances in high-throughput TCR sequencing have shown the potential of
the TCR repertoire as a personalized diagnostic of pathogen exposure history,
cancer, and autoimmunity (Kirsch et al., 2015; Friedensohn et al., 2017). Public
TCRs—defined as TCR sequences seen in multiple individuals and perhaps
associated with a shared disease phenotype—have been found in a range of
infectious and autoimmune diseases and cancers including influenza, Epstein-
Barr virus, and cytomegalovirus infections, type I diabetes, rheumatoid arthritis,
and melanoma (Venturi et al., 2008; Li et al., 2012; Madi et al., 2017; Pogorelyy
et al., 2017; Dash et al., 2017; Glanville et al., 2017; Chu et al., 2018; Pogorelyy
et al., 2018). By correlating occurrence patterns of public TCRβ chains with
cytomegalovirus (CMV) serostatus across a large cohort of healthy individuals,
Emerson et al. identified a set of CMV-associated TCR chains whose aggregate
occurrence was highly predictive of CMV seropositivity (Emerson et al., 2017).
Staining with multimerized pMHC followed by flow cytometry has been used to
isolate and characterize large populations of T cells that bind to defined pMHC
epitopes (Dash et al., 2017; Glanville et al., 2017), providing valuable data on
the mapping between TCR sequence and epitope specificity. We and others
have leveraged these data to develop learning-based models of TCR:pMHC
interactions, using TCR distance measures (Dash et al., 2017), CDR3 sequence
motifs (Glanville et al., 2017) and k-mer frequencies (Cinelli et al., 2017), and
other techniques.

MHC proteins in humans are encoded by the human leukocyte antigen
(HLA) loci, among the most polymorphic in the human genome (Robinson et al.,
2014). Within an individual, six major antigen-presenting proteins are each
encoded by polymorphic alleles. The set of these alleles comprise the individ-
ual’s HLA type, which is unlikely to be shared with an unrelated individual
and which determines the subset of peptide epitopes presented to T cells for
immune surveillance. Specificity of a given TCR for a given antigen is bio-
physically modulated by MHC structure: MHC binding specificity determines
the specific antigenic peptide that is presented, and the TCR binds to a hybrid
molecular surface composed of peptide- and MHC-derived residues. Thus,
population-level studies of TCR-disease association are severely complicated by
a dependence on individual HLA type.

Here we report an analysis of the occurrence patterns of public TCRs in
a cohort of 666 healthy volunteer donors, in which information on only TCR
sequence and HLA association guide us to inferences concerning disease history.
To complement deep TCRβ repertoire sequencing available from a previous
study (Emerson et al., 2017), we have assembled high-resolution HLA typing
data at the major class I and class II HLA loci on the same cohort, as well as
information on age, sex, ethnicity, and CMV serostatus. We focus on statistical
association of TCR occurrence with HLA type, and show that many of the
most highly HLA-associated TCRs are likely responsive to common pathogens:
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for example, eight of the ten TCRβ chains most highly associated with the
HLA-A*02:01 allele are likely responsive to one of two viral epitopes (influenza
M158 and Epstein-Barr virus BMLF1280). We introduce new approaches to
cluster TCRs by primary sequence and by the pattern of occurrences among
individuals in the cohort, and we identify highly significant TCR clusters that
may indicate markers of immunological memory. Four of the top five most
significant clusters appear linked with common pathogens (parvovirus B19,
influenza virus, CMV, and Epstein-Barr virus), again highlighting the impact
of viral pathogens on the public repertoire. We also find HLA-unrestricted
TCR clusters, some likely to be mucosal-associated invariant T (MAIT) cells,
which recognize bacterial metabolites presented by non-polymorphic MR1
proteins, rather than pMHC (Kjer-Nielsen et al., 2012). Our global, unbiased
analysis of TCR-HLA association identifies striking variation in association
strength across HLA loci and highlights trends in V(D)J generation probability
and degree of clonal expansion that illuminate selection processes in cellular
immunity. Guided by structural analysis, we used our large dataset of HLA-
associated TCRβ chains to identify statistically significant sequence covaration
between the TCR CDR3 loop and the DRB1 allele sequence that preserves charge
complementarity at the TCR:pMHC interface. These analyses help elucidate
the complex dependence of TCR sharing on HLA type and immune exposure,
and will inform the growing number of studies seeking to identify TCR-based
disease diagnostics.

2 Results

2.1 The matrix of public TCRs

Of the around 80 million unique TCRβ chains (defined by V-gene family and
CDR3 sequence) in the 666 cohort repertoires, about 11 million chains are found
in at least two individuals and referred to here as public chains (for a more
nuanced examination of TCR chain sharing see Elhanati et al., 2018). The oc-
currence patterns of these public TCRβs—the subset of subjects in which each
distinct chain occurs—can be thought of as forming a very large binary matrix
M with about 11 million rows and 666 columns. Entry Mi,j contains a one or
a zero indicating presence or absence, respectively, of TCR i in the repertoire
of subject j (ignoring for the moment the abundance of TCR i in repertoire
j). Emerson et al. (2017) demonstrated that this binary occurrence matrix M
encodes information on subject genotype and immune history: they were able
to successfully predict HLA-A and HLA-B allele type and CMV serostatus by
learning sets of public TCRβ chains with occurrence patterns that were predic-
tive of these features. Specifically, each feature—such as the presence of a given
HLA allele (e.g. HLA-A*02) or CMV seropositivity—defines a subset of the
cohort members positive for that feature, and can be encoded as a vector of 666
binary digits. This phenotype occurrence pattern of zeros and ones can be com-
pared to the occurrence patterns of all the public TCRβ chains to identify similar
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patterns, as quantified by a p-value for significance of co-occurrence across the
666 subjects; thresholding on this p-value produces a subset of significantly
associated TCRβ chains whose collective occurrence in a repertoire was found
by Emerson et al. to be predictive of the feature of interest (in cross-validation
and, for CMV, on an independent cohort). Generalizing from these results, it is
reasonable to expect that other common immune exposures may be encoded
in the occurrence matrix M , and that these encodings could be discovered if
we had additional phenotypic data to correlate with TCR occurrence patterns.
In this study, we set out to discover these encoded exposures de novo, without
additional phenotypic correlates, by learning directly from the structure of the
occurrence matrix M and using as well the sequences of the TCRβ chains (both
their similarities to one another and to TCR sequences characterized in the
literature). To support this effort we assembled additional HLA typing data
for the subjects, now at 4-digit resolution and including MHC class II alleles,
and we compiled a dataset of annotated TCRβ chains by combining online TCR
sequence databases, structurally characterized TCRs, and published studies (see
Methods; Shugay et al., 2017; Tickotsky et al., 2017; Berman et al., 2000; Dash
et al., 2017; Glanville et al., 2017; Song et al., 2017; Kasprowicz et al., 2006). Here
we describe the outcome of this discovery process, and we report a number
of intriguing general observations about the role of HLA in shaping the T cell
repertoire.

2.2 Globally co-occurring TCR pairs form clusters defined by
shared associations

We hypothesized that we could identify unknown immune exposures encoded
in the public repertoire by comparing the occurrence patterns of individual
TCRβ chains to one another. A subset of TCRβ chains that strongly co-occur
among the 666 subjects might correspond to an unmeasured immune exposure
that is common to a subset of subjects. Since shared HLA restriction could
represent an alternative explanation for significant TCR co-occurrence, we also
compared the TCR occurrence patterns to the occurrence patterns for class I
and class II HLA alleles. We began by analyzing TCR occurrence patterns over
the full set of cohort members. For each pair of public TCRβ chains t1 and t2
we computed a co-occurrence p-value PCO(t1, t2) that reflects the probability
of seeing an equal or greater overlap of shared subjects (i.e., subjects in whose
repertoires both t1 and t2 are found) if the occurrence patterns of the two TCRs
had been chosen randomly (for details, see Methods). In a similar manner we
computed, for each HLA allele a and TCR t, an association p-value PHLA(a, t)
that measures the degree to which TCR t tends to occur in subjects positive for
allele a. Finally, for each pair of strongly co-occurring (PCO < 1× 10−8) TCRβ
chains t1 and t2, we looked for a mutual HLA association that might explain
their co-occurrence, by finding the allele having the strongest association with
both t1 and t2, and noting its association p-value:

PHLA(t1, t2) = min
a∈A

max
t∈{t1,t2}

PHLA(a, t),
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Figure 1. Strongly co-occurring TCR pairs form two broad classes distinguished by
HLA-association strength. The co-occurrence p-value PCO for each pair of public TCRs
is plotted (x-axis) against the HLA-association p-value PHLA for the HLA allele with the
strongest mutual association with that TCR pair (y-axis).
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where A denotes the set of all HLA alleles. In words, we take the p-value of the
strongest HLA allele association with the TCR pair, where the association of an
HLA allele with a TCR pair is defined by the weakest association of the allele
among the individual TCRs.

Based on this analysis, we identified two broad classes of strongly co-
occurring TCR pairs (Figure 1): those with a highly significant shared HLA
association, where the co-occurrence of the two TCRs can be explained by a
shared HLA allele association (i.e. a common HLA restriction), and those with
only modest shared HLA-association p-value, for which another explanation of
co-occurrence must be sought. Points above the dashed y = x line correspond
to pairs of TCRs for which there exists an HLA allele whose co-occurrence with
each of the TCRs is stronger than their mutual co-occurrence, while for points
below the line no such HLA allele was present in the dataset.

We used a neighbor-based clustering algorithm, DBSCAN (Ester et al., 1996),
to link strongly co-occurring TCR pairs together to form larger correlated clus-
ters (see Methods), and then investigated phenotype associations with these
clusters. At an approximate family-wise error rate of 0.05 (see Methods), we
identified 28 clusters of co-occurring TCRs, with sizes ranging from 7 to 386
TCRs (Figure 2). Given one of these clusters of co-occurring TCRs, we can count
the number of cluster member TCRs found in each subject’s repertoire. The
aggregate occurrence pattern of the cluster can be visualized as a rank plot of
this cluster TCR count over the subjects (the black curves in Figure 2B-C). This
ranking can also be compared with other phenotypic or genotypic features of
the same subjects. In particular, by comparing this aggregate occurrence pattern
to a control pattern generated by repeatedly choosing equal numbers of subjects
independently at random (dotted green lines in Figure 2B-C), we can identify
a subset of the cohort with an apparent enrichment of cluster member TCRs
and look for overlap between this subset and other defined cohort features.
Performing this comparison against the occurrence patterns of class I and class
II HLA alleles revealed that the majority of the TCR clusters were strongly
associated with at least one HLA allele (as depicted for a DRB1*15:01-associated
cluster in Figure 2B and summarized in Figure 2A).

In addition, there were two large clusters of TCRs which were not strongly
associated with any of the typed HLA alleles. Visual inspection of the CDR3
regions of TCRs in one of these clusters revealed a distinctive ’YV’ C-terminal
motif that is characteristic of the TRBJ2-7*02 allele (Figure 2–Figure Supple-
ment 1), and indeed the 41 subjects whose repertoires indicated the presence
of this genetic variant were exactly the 41 subjects enriched for members of
this TCR cluster (Figure 2C). This demonstrated that population diversity in
germline allele sets manifests as occurrence pattern clustering. The other large,
non-HLA associated TCR cluster had a number of distinctive features as well:
strong preference for the TRBV06 family, followed by TRBV20 and TRBV04
(Figure 2–Figure Supplement 2); low numbers of inserted ‘N’ nucleotides; and a
skewed age distribution biased toward younger subjects (Figure 2–Figure Sup-
plement 3). These features, together with the lack of apparent HLA restriction,
suggested that this cluster represented an invariant T cell subset, specifically
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Figure 2. Clustering public TCRβ chains by co-occurrence over the full cohort identifies
associations with HLA and TRBJ alleles as well as an invariant T cell subset. (A) Cluster
size (x-axis) versus the p-value of the most significant HLA allele association (y-axis),
with markers colored according to the locus of the associated allele. Dashed line
indicates random expectation based on the total number of alleles, assuming
independence. (B) Count of cluster member TCRs found in each subject for the cluster
labeled ‘1’ in (A). The dotted line represents an averaged curve based on randomly and
independently selecting subject sets for each member TCR. Red and blue dots indicate
the occurrence of the DRB1*15:01 allele in the cohort. (C) Count of cluster member TCRs
found in each subject for the cluster labeled ‘2’ in (A). The dotted line again represents a
control pattern, and the red and blue dots indicate the occurrence of the TRBJ2-7*02
allele.
Figure 2–Figure supplement 1. TCRdist tree of the members of the TRBJ2-7*02-
associated cluster.
Figure 2–Figure supplement 2. TCRdist tree of the members of the putative MAIT cell
cluster.
Figure 2–Figure supplement 3. More details on the MAIT cell cluster: subject age and
N-nucleotide insertion distributions; TCRα chains paired with cluster member TCRβ
chains in the pairSEQ dataset of Howie et al. (2015).
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Table 1. The top 50 most significant HLA-associated public TCRβ chains and the top 10 for A*02:01 (indicated in bold).

Association TCR HLA Total HLA Epitope
p-value Overlapa subjectsb subjectsc subjectsd V-family CDR3 allelee annotation

3.7× 10−90 231 267 268 629 TRBV19 CASSIRSSYEQYF A*02:01 Influenza virus
2.4× 10−72 179 191 268 629 TRBV29 CSVGTGGTNEKLFF A*02:01 Epstein-Barr virus
3.8× 10−66 107 124 134 522 TRBV20 CSARNRDYGYTF DRB1*03:01-DQ
1.9× 10−65 92 95 151 630 TRBV05 CASSLVVSPYEQYF DRB1*07:01
6.7× 10−64 91 94 134 522 TRBV30 CAWSRDSGSGNTIYF DRB1*15:01-DQ
7.5× 10−59 51 53 66 630 TRBV15 CATSREEGDGYTF B*35:01
3.6× 10−57 89 96 134 522 TRBV11 CASSPGQGPGNTIYF DRB1*15:01-DQ
7.4× 10−56 57 57 95 630 TRBV02 CASSENQGSQPQHF DRB1*04:01
1.5× 10−52 86 87 184 629 TRBV06 CASSYDSGTGELFF C*07:01
3.3× 10−52 136 143 268 629 TRBV19 CASSIRSAYEQYF A*02:01 Influenza virus
1.2× 10−51 71 96 94 630 TRBV27 CASSLGGQNYGYTF B*44:02
1.8× 10−50 52 52 94 630 TRBV28 CASSSSPLNYGYTF DRB1*01:01
3.8× 10−49 69 71 142 630 TRBV04 CASSPGQGEGYEQYF B*08:01 Epstein-Barr virus
6.3× 10−49 92 98 189 629 TRBV11 CASSFGQMNTEAFF A*01:01
1.3× 10−48 73 75 156 630 TRBV18 CASSPPTESYGYTF B*07:02
3.2× 10−48 79 87 151 630 TRBV14 CASSQAGMNTEAFF DRB1*07:01
8.7× 10−47 49 49 95 630 TRBV11 CASSLDQGGSSSYNEQFF DRB1*04:01
3.2× 10−46 50 51 95 630 TRBV20 CSAQREYNEQFF DRB1*04:01
3.3× 10−46 68 69 134 522 TRBV05 CASSFWGRDTQYF DRB1*03:01-DQ
3.3× 10−46 54 59 94 630 TRBV05 CASSWTGGGGANVLTF DRB1*01:01
3.1× 10−45 54 60 94 630 TRBV02 CASSEARGAGQPQHF DRB1*01:01
1.4× 10−44 41 42 69 630 TRBV14 CASSPLGPGNTIYF DRB1*11:01
2.4× 10−43 92 121 134 522 TRBV07 CASSPTGLQETQYF DRB1*03:01-DQ
4.1× 10−43 43 52 61 630 TRBV19 CASSPTGGIYEQYF B*44:03 Multiple sclerosis
4.5× 10−43 39 40 66 629 TRBV10 CASSESPGNSNQPQHF C*12:03
6.7× 10−43 76 86 134 522 TRBV28 CASRGRPEAFF DRB1*15:01-DQ
7.5× 10−43 50 54 94 630 TRBV19 CASSPTQNTEAFF DRB1*01:01
1.7× 10−42 84 110 142 630 TRBV07 CASSSGPNYEQYF B*08:01
1.7× 10−42 61 81 95 630 TRBV05 CASSFPGEDTQYF DRB1*04:01
1.3× 10−41 47 49 95 630 TRBV18 CASSPPAGAAYEQYF DRB1*04:01
1.5× 10−41 75 87 151 630 TRBV28 CASSLTSGGQETQYF DRB1*07:01
2.3× 10−41 64 67 151 630 TRBV07 CASSLGQGFYNSPLHF DRB1*07:01
8.2× 10−40 77 92 134 522 TRBV19 CASSISVYGYTF DRB1*15:01-DQ
2.4× 10−39 43 54 66 630 TRBV10 CAISTGDSNQPQHF B*35:01 Epstein-Barr virus
3.4× 10−39 115 193 156 630 TRBV09 CASSGNEQFF B*07:02
9.5× 10−39 151 260 189 629 TRBV19 CASSIRDSNQPQHF A*01:01
1.2× 10−38 100 103 268 629 TRBV20 CSARDGTGNGYTF A*02:01 Epstein-Barr virus
1.3× 10−38 56 60 130 629 TRBV25 CASSEYSLTDTQYF C*04:01
2.1× 10−38 109 116 268 629 TRBV20 CSARDRTGNGYTF A*02:01 Epstein-Barr virus
2.3× 10−38 102 106 268 629 TRBV19 CASSVRSSYEQYF A*02:01 Influenza virus
6.4× 10−38 54 54 151 630 TRBV10 CAISESQDLNTEAFF DRB1*07:01
1.1× 10−37 43 45 94 630 TRBV07 CASSLAGPPNSPLHF DRB1*01:01
1.2× 10−37 44 60 66 630 TRBV09 CASSARTGELFF B*35:01 Epstein-Barr virus
3.3× 10−37 79 88 189 629 TRBV19 CASSIDGEETQYF A*01:01
5.4× 10−37 64 70 134 522 TRBV05 CASSLESPNYGYTF DRB1*03:01-DQ
2.0× 10−36 38 43 69 630 TRBV06 CASGAGHTDTQYF DRB1*11:01
2.9× 10−36 54 55 151 630 TRBV05 CASSLVVQPYEQYF DRB1*07:01
3.3× 10−36 57 81 95 630 TRBV11 CASSPGQDYGYTF DRB1*04:01
2.4× 10−35 50 53 109 522 TRBV27 CASNRQGPNTEAFF DQB1*03:01-DQA1*05:05
5.7× 10−35 75 95 134 522 TRBV18 CASSGQANTEAFF DRB1*03:01-DQ

2.2× 10−33 86 88 268 629 TRBV14 CASSQSPGGTQYF A*02:01 Epstein-Barr virus
1.8× 10−32 84 86 268 629 TRBV10 CASSEDGMNTEAFF A*02:01
4.3× 10−32 86 89 268 629 TRBV05 CASSLEGQASSYEQYF A*02:01 Melanoma
4.3× 10−32 86 89 268 629 TRBV29 CSVGSGGTNEKLFF A*02:01 Epstein-Barr virus

a Number of subjects positive for both the TCRβ chain and the indicated HLA allele.
b Number of subjects positive for the TCRβ chain with available HLA typing at the corresponding locus.
c Number of subjects positive for the indicated HLA allele.
d Total number of subjects with available HLA typing at the corresponding locus.
e The following DR-DQ haplotype abbreviations are used: DRB1*03:01-DQ (DRB1*03:01-DQA1*05:01-DQB1*02:01) and DRB1*15:01-DQ

(DRB1*15:01-DQA1*01:02-DQB1*06:02).
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MAIT (mucosal-associated invariant T) cells (Kjer-Nielsen et al., 2012; Venturi
et al., 2013; Pogorelyy et al., 2017). Since MAIT cells are defined primarily by
their alpha chain sequences, we searched in a recently published paired dataset
(Howie et al., 2015) for partner chains of the clustered TCRβ chain sequences,
and found a striking number that matched the MAIT consensus (TRAV1-2
paired with TRAJ20/TRAJ33 and a 12 residue CDR3, Figure 2–Figure Supple-
ment 3D). We also looked for these clustered TCRs in a recently published MAIT
cell sequence dataset (Howson et al., 2018) and found that 93 of the 138 cluster
member TCRs occurred among the 31,654 unique TCRs from this dataset; of
these 93 TCRβ chains, 27 were found among the 78 most commonly occur-
ring TCRs in the dataset (the TCRs occurring in at least 7 of the 24 sequenced
repertoires), a highly significant overlap (P < 2× 10−52 in a one-sided hyperge-
ometric test). These concordances indicate that our untargeted approach has
detected a well-studied T cell subset de novo through analysis of occurrence
patterns.

2.3 HLA-associated TCRs

These analyses suggested to us that TCR co-occurrence patterns across the
full cohort of subjects are strongly influenced by the distribution of the HLA
alleles, in accordance with the expectation that the majority of αβ TCRs are
HLA-restricted. Covariation between TCRs responding to the same HLA-
restricted epitopes would only be expected in subjects positive for the restricting
alleles, with TCR presence and absence outside these subjects likely introducing
noise into the co-occurrence analysis. Thus we next analyzed patterns of TCR
co-occurrence within subsets of the cohort positive for specific HLA alleles,
and we restricted our co-occurrence analysis to TCRs having a statistically
significant association with the specific allele defining the cohort subset. At a
false discovery rate of 0.05 (estimated from shuffling experiments; see Methods),
we were able to assign 16,951 TCRβ sequences to an HLA allele (or alleles: DQ
and DP alleles were analyzed as αβ pairs, and there were 5 DR/DQ haplotypes
whose component alleles were so highly correlated across our cohort that we
could not assign TCR associations to individual DR or DQ components; see
Methods). Table 1 lists the top 50 HLA-associated TCR sequences by association
p-value and top 10 associated TCRs for the well-studied A*02:01 allele.

We find that 8 of the top 10 A*02:01-associated TCRs have been previously
reported and annotated as being responsive to viral epitopes, specifically in-
fluenza M158 and Epstein-Barr virus (EBV) BMLF1280 (Shugay et al., 2017; Tick-
otsky et al., 2017). Moreover, each of these 8 TCRβ chains is present in a recent
experimental dataset (Dash et al., 2017) that included tetramer-sorted TCRs
positive for these two epitopes; each TCR has a clear similarity to one of the
consensus epitope-specific repertoire clusters identified in that work, with the
EBV TRBV20, TRBV29, and TRBV14 TCRs, respectively, matching the three
largest branches of the BMLF1280 TCR tree, and the three influenza M158 TCRs
all matching the dominant TRBV19 ’RS’ motif consensus (Figure 10). TCRs
with annotation matches are sparser in the top 50 across all alleles, which is
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likely due in part to a paucity of experimentally characterized non-A*02 TCRs,
however we again see EBV-epitope responsive TCRs (with B*08:01 and B*35:01
restriction).

A global comparison of TCR feature distributions for HLA-associated versus
non-HLA-associated TCRs provides further evidence of functional selection.
As shown in Figure 3A, HLA-associated TCRs are on average more clonally
expanded than a set of background, non-HLA associated TCRs with match-
ing frequencies in the cohort. They also have lower generation probabilities—
are harder to make under a simple random model of the VDJ rearrangement
process—which suggests that their observed cohort frequencies may be elevated
by selection (Figure 3B, see Methods for further details on the calculation of
clonal expansion indices and generation probabilities; also see Pogorelyy et al.,
2018). Examination of two-dimensional feature distributions suggests that these
shifts are correlated, with HLA-associated TCRs showing an excess of lower-
probability, clonally expanded TCRs (Figure 3C); this trend appears stronger
for class-I associated TCRs than for class II-associated TCRs (Figure 3–Figure
Supplement 1).

To give a global picture of TCR-HLA association, we counted the number
of significant TCR associations found for each HLA allele in the dataset, and
plotted this number against the number of subjects in the cohort with that allele
(Figure 4). As expected, the more common HLA alleles have on average greater
numbers of associated TCRs (since greater numbers of subjects permit the
identification of more public TCRs, and the statistical significance assigned to an
observed association of fixed strength grows as the number of subjects increases).
What was somewhat more surprising is that the slope of the correlation between
cohort frequency and number of associated TCRs varied dramatically among
the HLA loci, with HLA-DRB1 alleles having the largest number of associated
TCRs for a given allele frequency and HLA-C alleles having the smallest. The
best-fit slope for the five DR/DQ haplotypes (12.2) was roughly the sum of the
DR (7.99) and DQ (3.39) slopes, suggesting as expected that these haplotypes
were capturing TCRs associated with both the DR and DQ component alleles.

2.4 HLA-restricted TCR clusters

We next sought to identify TCR clusters that might represent HLA-restricted
responses to shared immune exposures. We performed this analysis for each
HLA allele individually, restricting our clustering to the set of TCR chains
significantly-associated with that allele and comparing occurrence patterns only
over the subset of subjects positive for that allele. The smaller size of many
of these allele-positive cohort subsets reduces our statistical power to detect
significant clusters using co-occurrence information. To counter this effect, we
used TCRdist (Dash et al., 2017) to leverage the TCR sequence similarity which
is often present within epitope-specific responses (Dash et al., 2017; Glanville
et al., 2017) (e.g., A*02:01 TCRs in Table 1 and Figure 10). We augmented
the probabilistic similarity measure used to define neighbors for DBSCAN
clustering to incorporate information about TCR sequence similarity, in addition
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Figure 3. HLA-associated TCRs are more clonally expanded and have lower generation
probabilities than equally common, non-HLA associated TCRs. (A) Comparison of
clonal expansion index distributions for the set of HLA-associated TCRs (blue) and a
cohort-frequency matched set of non HLA-associated TCRs (green). (B) Comparison of
VDJ-rearrangement TCR generation probability (Pgen) distributions for the set of
HLA-associated TCRs (blue) and a cohort-frequency matched set of non HLA-associated
TCRs (green). (C) Two-dimensional distribution (Pgen versus clonal expansion index) for
HLA-associated TCRs. (D) Two-dimensional distribution (Pgen versus clonal expansion
index) for frequency-matched background TCRs.
Figure 3–Figure supplement 1. Two-dimensional feature distributions for HLA-
associated TCR subsets defined by HLA locus.
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Figure 4. Rates of TCR association vary substantially across HLA loci. The number of
HLA-associated TCRs (y-axis) is plotted as a function of allele frequency in the cohort
(x-axis). Best fit lines are shown for each locus and also for the set of five DR/DQ
haplotypes (‘DRDQ’) which could not be separated into component alleles in this cohort.
The following DR-DQ haplotype abbreviations are used: DRB1*03:01-DQ
(DRB1*03:01-DQA1*05:01-DQB1*02:01), DRB1*15:01-DQ
(DRB1*15:01-DQA1*01:02-DQB1*06:02), and DRB1*13:01-DQ
(DRB1*13:01-DQA1*01:03-DQB1*06:03).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/313106doi: bioRxiv preprint 

https://doi.org/10.1101/313106


1

23
4

5

Figure 5. Many HLA-restricted TCR clusters contain TCRβ chains annotated as
pathogen-responsive. Each point represents one of the 78 significant HLA-restricted
TCR clusters, plotted based on a normalized cluster size score (Ssize, x-axis) and an
aggregate TCR co-occurrence score for the member TCRs (ZCO, y-axis). Markers are
colored by the locus of the restricting HLA allele and sized based on the strength of the
association between cluster member TCRs and the HLA allele. The database annotations
associated to TCRs in each cluster are summarized with text labels using the following
abbreviations: B19=parvovirus B19, INF=influenza, EBV=Epstein-Barr Virus,
RA=rheumatoid arthritis, MS=multiple sclerosis, MELA=melanoma, T1D=type 1
diabetes, CMV=cytomegalovirus. Clusters labeled ‘coCMV’ are significantly associated
(P < 1× 10−5) with CMV seropositivity (see main text discussion of cluster #3).
Clusters labeled 1–5 are discussed in the text and examined in greater detail in Figure 6.
Figure 5–Figure supplement 1. Distributions of cluster co-occurrence scores on the two
validation cohorts.
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to cohort co-occurrence (see Methods). We independently clustered each allele’s
associated TCRs and merged the clustering results from all alleles; using the
Holm multiple testing criterion (Holm, 1979) to limit the approximate family-
wise error rate to 0.05, we found a total of 78 significant TCR clusters.

We analyzed the sequences and occurrence patterns of the TCRs belonging
to these 78 clusters in order to assess their potential biological significance and
prioritize them for further study (Table 3). Each cluster was assigned two scores
(Figure 5): a size score (Ssize, x-axis), reflecting the significance of seeing a cluster
of that size given the total number of TCRs clustered for its associated allele,
and a co-occurrence score (ZCO, y-axis), reflecting the degree to which the TCRs
in that cluster co-occur within its allele-positive cohort subset (see Methods).
In computing the co-occurrence score, we defined a subset of individuals with
an apparent enrichment for the member TCRs in each cluster; the size of this
enriched subset of subjects is given in the ‘Subjects’ column in Table 3. We rank
ordered the 78 clusters based on the sum of their size and co-occurrence scores
(weighted to equalize dynamic range); the top 5 clusters are presented in greater
detail in Figure 6. HLA associations, member TCR and enriched subject counts,
cluster center TCR sequences, scores, and annotations for all 78 clusters are
given in Table 3.

We found that a surprising number of the most significant HLA-restricted
clusters had links to common viral pathogens. For example, the top cluster by
both size and co-occurrence (Figure 6, upper panels) is an A*24:02-associated
group of highly similar TCRβ chains, five of which can be found in a set of 12
TCRβ sequences reported to respond to the parvovirus B19 epitope FYTPLADQF
as part of a highly focused CD8+ response to acute B19 infection (Kasprow-
icz et al., 2006). The subject TCR-counts curve for this cluster (Figure 6, top
right panel) shows a strong enrichment of member TCRs in roughly 30% of
the A*24:02 repertoires, which is on the low end of prevalence estimates for
this pathogen (Heegaard and Brown, 2002) and may suggest that, if cluster
enrichment does correlate with B19 exposure, there are likely to be other ge-
netic or epidemiologic factors that determine which B19-exposed individuals
show enrichment. The second most significant cluster by both measures is an
A*02:01-associated group of TRBV19 TCRs with a high frequency of matches to
the influenza M158 response (41/43 TCRs, labeled ‘INF-pGIL’ for the first three
letters of the GILGFVFTL epitope). Notably, the cluster member sequences
recapitulate many of the core features of the tree of experimentally identified
M158 TCRs (Figure 10): a dominant group of length 13 CDR3 sequences with an
‘RS’ sequence motif together with a smaller group of length 12 CDR3s with the
consensus CASSIG.YGYTF.

Rounding out the top five, the third and fifth most significant clusters also
appear to be pathogen-associated. Cluster #3 brings together a diverse set
of DRB1*07:01-associated TCRβ chains (Figure 6, second page, middle den-
drogram), none of which matched our annotation database. However, it was
strongly associated with CMV serostatus: As is evident in the subject TCR-
counts panel for this cluster (Figure 6, second page, middle right), there is a
highly significant (P < 3×10−19) association between CMV seropositivity (blue
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dots at the bottom of the panel) and cluster enrichment (here defined as a subject
TCR count ≥ 3). Finally, the B*08:01-associated cluster #5 (bottom panels in sec-
ond page Figure 6) appears to be EBV-associated: four of the TCRβ chains in this
cluster match TCRs annotated as binding to EBV epitopes (two matches for the
B*08:01-restricted FLRGRAYGL epitope and two for the B*08:01-restricted RAK-
FKQLL epitope). The fact that this cluster brings together sequence-dissimilar
TCRs that recognize different epitopes from the same pathogen supports the
hypothesis that at least some of the observed co-occurrence may be driven by a
shared exposure.

As a preliminary validation of the clusters identified here, we examined
the occurrence patterns of cluster member TCRs in two independent cohorts:
a set of 120 individuals (“Keck120”) that formed the validation cohort for the
original Emerson et al. study, and a set of 86 individuals (“Brit86”) taken from
the aging study of Britanova et al. (2016). Whereas the Keck120 repertoires
were generated using the same platform as our 666-member discovery cohort,
the Brit86 repertoires were sequenced from cDNA libraries using 5’-template
switching and unique molecular identifiers. In the absence of HLA typing
information for these subjects, we simply evaluated the degree to which each
cluster’s member TCRs co-occurred over the entirety of each of these validation
cohorts, using the co-occurrence score described above (ZKeck120

CO and ZBrit86
CO

columns in Table 3). Although rare alleles and cluster-associated exposures
may not occur with sufficient frequency in these smaller cohorts to generate co-
occurrence signal, co-occurrence scores support the validity of the clusterings
identified on the discovery cohort: 94% of the Keck120 scores and 92% of
the Brit86 scores are greater than 0, indicating a tendency of the clustered
TCRs to co-occur (smoothed score distributions are shown in Figure 5–Figure
Supplement 1).

2.5 Covariation between CDR3 sequence and HLA allele

Given our large dataset of HLA-associated TCRβ sequences, we set out to look
for correlations between CDR3 sequence and HLA allele sequence. Previous
studies have identified correlations between TCR V-gene usage and HLA alleles
(Sharon et al., 2016; Blevins et al., 2016). In our previous work on epitope-specific
TCRs (Dash et al., 2017), we identified a significant negative correlation between
CDR3 charge and peptide charge, suggesting a tendency toward preserving
charge complementarity across the TCR:pMHC interface. Although the CDR3
loop primarily contacts the MHC-bound peptide, computational analysis of
solved TCR:peptide:MHC structures in the Protein Data Bank (Berman et al.,
2000) (see Methods) identified a number of HLA sequence positions that are
frequently contacted by CDR3 amino acids (Table 2). For each frequently-
contacted HLA position with charge variability among alleles we computed
the covariation between HLA allele charge at that position and average CDR3
charge for allele-associated TCRs. Since portions of the CDR3 sequence are
contributed by the V- and J-gene germline sequences, and covariations are
known to exist between HLA and V-gene usage, we also performed a covariation
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Figure 6. Top five HLA-restricted clusters (continued on following page). Details on the TCR sequences, occurrence
patterns, and annotations for the five most significant clusters (labeled 1–5 in Figure 5) based on size and TCR
co-occurrence scores. Each panel consists of a TCRdist dendrogram (left side, labeled with annotation, CDR3 sequence,
and occurrence counts for the member TCRs) and a per-subject TCR count profile (right side) showing the aggregate
occurrence pattern of the member TCRs (blue curve) and a control pattern (green curve) produced by averaging
occurrence counts from multiple independent randomizations of the subject set for each TCR. The numbers in the two
’Counts’ columns represent the number of HLA+ (left) and HLA- (right) subjects whose repertoire contained the
corresponding TCR, where HLA+/- means positive/negative for the restricting allele (for example, A*24:02 in the case of
cluster 1). Annotations use the following abbreviations: B19 (parvovirus B19), INF (influenza virus), YFV (yellow fever
virus), MELA (melanoma), T1D (type 1 diabetes), EBV (Epstein-Barr virus), RA (rheumatoid arthritis). In cases where the
peptide epitope for the annotation match is known, the first three peptide amino acids are given after ‘-p’. Non-germline
CDR3 amino acids with 2 or 3 non-templated nucleotides in their codon are shown in uppercase, while amino acids with
only a single non-templated coding nucleotide are shown in lowercase.
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Figure 7. Negative correlation between HLA allele charge at DRB1 position 70 and CDR3 charge of HLA-associated
TCRs. (A-B) Allele charge (x-axis) versus average CDR3 charge of allele-associated TCRβ chains (y-axis) for 30
HLA-DRB1 alleles. Charge of the CDR3 loop was calculated over the full CDR3 sequence (A) or over the subset of CDR3
amino acids with at least one non-germline coding nucleotide (B). (C-D) CDR3 charge distributions for TCRs associated
with alleles having defined charge at position 70 (x-axis) using the full (C) or non-germline (D) CDR3 sequence (mean
values shown as white pluses). (E) Superposition of five TCR:peptide:HLA-DR crystal structures (PDB IDs 1j8h, 2iam,
2wbj, 3o6f, and 4e41; Hennecke and Wiley, 2002; Deng et al., 2007; Harkiolaki et al., 2009; Yin et al., 2011; Deng et al., 2012)
showing the DRα chain in green, the DRβ chain in cyan, the peptide in magenta, the TCRβ chain in blue with the CDR3
loop colored reddish brown. The TCRα chain is omitted for clarity, and position 70 is highlighted in yellow.
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Table 2. Covariation between HLA allele charge and average CDR3 charge of HLA-associated TCRs for HLA positions
frequently contacted by CDR3 amino acids in solved TCR:pMHC crystal structures.

MHC Contact Full CDR3 Non-germline CDR3c

class Positiona frequencyb R-value p-value R-value p-value AAsd

II-β 70 1.48 −0.47 3.3× 10−4 −0.52 6.1× 10−5 DEGQR
II-α 64 1.09 −0.15 0.33 −0.07 0.64 ART

I 152 0.47 0.00 0.99 −0.04 0.72 AERTVW
I 151 0.46 0.08 0.50 0.06 0.59 HR
I 69 0.26 −0.13 0.28 −0.14 0.24 ART
I 76 0.21 −0.08 0.49 −0.14 0.25 AEV
I 70 0.12 0.02 0.86 0.08 0.50 HKNQS

a Only positions whose charge varies across alleles are included.
b Total number of CDR3 residues contacted (using a sidechain heavyatom distance threshold of 4.5Å) divided by

number of structures analyzed.
c CDR3 charge is calculated over amino acids with at least non-germline coding nucleotide.
d Amino acids present at this HLA position.

analysis restricting to ‘non-germline’ CDR3 sequence positions whose coding
sequence is determined by at least one non-templated insertion base (based
on the most parsimonious VDJ reconstruction; see Methods). We found a
significant negative correlation (R = −0.47, P < 4 × 10−4 for the full CDR3
sequence; R = −0.52, P < 7 × 10−5 for the non-germline CDR3 sequence)
between CDR3 charge and the charge at position 70 of the class II beta chain.
We did not see a significant correlation for the frequently contacted position
on the class II alpha chain, perhaps due to the lack of sequence variation at the
DRα locus and/or the more limited number of DQα and DPα alleles. None of
the five class I positions showed significant correlations, which could be due to
their lower contact frequencies, a smaller average number of associated TCRs
(51 for class I versus 309 for class II), bias toward A*02 in the structural database,
or noise introduced from multiple contacted positions varying simultaneously.
Further analysis of the class II correlation suggested that it was driven largely
by HLA-DRB1 alleles: position 70 correlations were −0.56 versus −0.10 for
DR and DQ, respectively, over the full CDR3 and −0.64 vs −0.38 for the non-
germline CDR3. Figure 7 provides further detail on this DRB1-TCR charge
anti-correlation, including a structural superposition showing the proximity of
position 70 to the TCRβ CDR3 loop.

2.6 CMV-associated TCRβ chains are largely HLA-restricted

We analyzed the HLA associations of strongly CMV-associated TCRβ chains
to gain insight into their predictive power across genetically diverse individ-
uals. Here we change perspective somewhat from earlier sections, in that we
select TCRs based on their CMV association and then evaluate HLA associ-
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ation, rather than the other way around. In their original study, Emerson et
al. identified a set of TCRβ chains that were enriched in CMV seropositive
individuals and showed that by counting these CMV-associated TCRβ chains in
a query repertoire they could successfully predict CMV serostatus both in cross-
validation and on an independent test cohort. The success of this prediction
strategy across a diverse cohort of individuals raises the intriguing question
of whether these TCRβs are primarily HLA-restricted in their occurrence and
in their association with CMV, or whether they span multiple HLA types. To
shed light on this question we focused on a set of 68 CMV-associated TCRβ
chains whose co-occurrence with CMV seropositivity was significant at a p-
value threshold of 1.5× 10−5 (corresponding to an FDR of 0.05; see Methods).
For each CMV-associated TCRβ chain, we identified its most strongly associ-
ated HLA allele and compared the p-value of this association to the p-value
of its association with CMV (Figure 8A). From this plot we can see that the
majority of the CMV-associated chains do appear to be HLA-associated, having
p-values that exceed the FDR 0.05 threshold for HLA association. The excess of
highly significant HLA-association p-values for these CMV-associated TCRβs
can be seen in Figure 8B, which compares the observed p-value distribution to
a background distribution of HLA association p-values for randomly selected
frequency-matched public TCRβs.

As a next step we looked to see whether these HLA associations fully
explained the CMV association, in the sense that the CMV association was
only present in subjects positive for the associated allele. For each of the 68
CMV-associated TCRs, we divided the cohort into subjects positive for its most
strongly associated HLA allele and subjects negative for that allele. Here we
considered both 2- and 4-digit resolution alleles when defining the most strongly
associated allele, to allow for TCRs whose association extends beyond a single
4-digit allele. We computed association p-values between TCR occurrence and
CMV seropositivity over these two cohort subsets independently and compared
them (Figure 8C). We see that the majority of the points lie below the y = x
line—indicating a stronger CMV-association on the subset of the cohort positive
for the associated allele—and also below the line corresponding to the expected
minimum of 68 uniform random variables (i.e. the expected upper significance
limit in the absence of CMV association on the allele-negative cohort subsets).
There are however a few TCRβs which do not appear strongly HLA-associated
and for which the CMV-association remains strong in the absence of their associ-
ated allele (the points above the line y = x in Figure 8C). For example, the public
TCRβ chain defined by TRBV07 and the CDR3 sequence CASSSDSGGTDTQYF (which
corresponds to the highest point in Figure 8C) is strongly CMV-associated (22/23
subjects with this chain are CMV positive; P < 3 × 10−7) but does not show
evidence of HLA association in our dataset. TCRs with HLA promiscuity may
be especially interesting from a diagnostic perspective, since their phenotype
associations may be more robust to differences in genetic background.

Finally, we looked to see whether CMV assocation completely explained
the observed HLA associations, in the sense that a response to one or more
CMV epitopes was likely the only driver of HLA association, or whether there
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Figure 8. CMV-associated TCRβ chains are largely HLA-restricted. (A) Comparison of
CMV-association (x-axis) and HLA-association (y-axis) p-values for 68 CMV-associated
TCRβ chains shows that the majority are also HLA associated. (B) Smoothed densities
comparing HLA-association p-value distributions for the 68 CMV-associated chains
(blue) and a cohort-frequency matched set of 6800 randomly selected public TCRβ
chains. CMV-associated TCRs are much more strongly HLA-associated than would be
expected based solely on their cohort frequency. (C) CMV-association p-values
computed over subsets of the cohort positive (x-axis) or negative (y-axis) for the HLA
allele most strongly associated with each TCR. For most of the TCR chains, CMV
association is restricted to the subset of the cohort positive for their associated HLA
allele. (D) HLA-association p-values computed over CMV-positive (x-axis) or
CMV-negative (y-axis) subsets of the cohort suggest that for these 68 CMV-associated
TCRβ chains, HLA-association is driven solely by response to CMV (rather than generic
affinity for their associated allele, for example, or additional self or viral epitopes). In
panels (A), (C), and (D), points are colored by CMV-association p-value; in all panels we
use a modified logarithmic scale based on the square root of the exponent when plotting
p-values in order to avoid compression due to a few highly significant associations.
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might be evidence for other epitope-specific responses by these TCRβ chains
or a more general affinity for the associated allele, perhaps driven by common
self antigens. Put another way, do we see evidence for pre-existing enrichment
of any of these TCRβ chains when their associated allele is present, even in the
absence of CMV, which might suggest that the CMV response recruits from a
pre-selected pool enriched for TCRs with intrinsic affinity for the restricting
allele? To approach this question we split the cohort into CMV seropositive and
seronegative subjects and computed, for each of the 68 CMV-associated TCRs,
the strength of its association with its preferred allele over these two subsets
separately. Figure 8D compares these HLA-association p-values computed over
the subsets of the cohort positive (289 individuals, x-axis) and negative (352
individuals, y-axis) for CMV. We can see in this case that all of the associations
on the CMV-positive subset are stronger than those on the CMV-negative sub-
set, and indeed the CMV-negative p-values do not appear to exceed random
expectation given the number of comparisons performed. Thus, the apparent
lack of any significant HLA-association on the CMV-negative cohort subset
suggests that the HLA associations of these CMV-predictive chains are largely
driven by CMV exposure. A limitation of this analysis is that, although the
CMV-negative subset of the cohort is larger than the CMV-positive subset, the
number of TCR occurrences in the CMV-negative subset is likely lower than in
the CMV-positive subset for these CMV-associated chains, which will limit the
strength of the HLA associations that can be detected.

3 Discussion

Each individual’s repertoire of circulating immune receptors encodes informa-
tion on their past and present exposures to infectious and autoimmune diseases,
to antigenic stimuli in the environment, and to tumor-derived epitopes. De-
coding this exposure information requires an ability to map from amino acid
sequences of rearranged receptors to their eliciting antigens, either individually
or collectively. One approach to developing such an antigen-mapping capabil-
ity would involve collecting deep repertoire datasets and detailed phenotypic
information on immune exposures for large cohorts of genetically diverse indi-
viduals. Correlation between immune exposure and receptor occurrence across
such datasets could then be used to train statistical predictors of exposure, as
demonstrated by Emerson et al. for CMV serostatus. The main difficulty with
such an approach, beyond the cost of repertoire sequencing, is likely to be the
challenge of assembling accurate and complete immune exposure information.

For this reason, we set out to discover potential signatures of immune
exposures de novo, in the absence of phenotypic information, using only the
structure of the public repertoire—its receptor sequences and their occurrence
patterns. By analyzing co-occurrence between pairs of public TCRβ chains and
between individual TCRβ chains and HLA alleles, we were able to identify
statistically significant clusters of co-occurring TCRs across a large cohort of
individuals and in a variety of HLA backgrounds. Indirect evidence from
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sequence matches to experimentally-characterized receptors suggests that some
of these TCR clusters may reflect hidden immune exposures shared among
subsets of the cohort members; indeed, several of the most significant clusters
appear linked to common viral pathogens (parvovirus B19, influenza, CMV,
and EBV).

The results of this paper demonstrate the potential for a productive dialog
between statistical analysis of TCR repertoires and immune exposure analysis.
Specifically, sequences from the statistically-inferred clusters defined here could
be tested for antigen reactivity or combined with immune exposure data to
infer the driver of TCR expansion, as was done here for the handful of CMV-
associated clusters based on CMV serostatus information. In either case our
clustering approach will reduce the amount of independent data required, since
the immune phenotype data is used for annotation of a modest number of
defined TCR groupings rather than direct discovery of predictive TCRs from
the entire public repertoire. We can also look for the presence of specific TCRs
and TCR clusters identified here in other repertoire datasets, for example from
studies of specific autoimmune diseases or pathogens, as a means of assigning
putative functions. However the answer may not be entirely straightforward:
it remains possible that enrichment for other cluster TCRs, rather than being
associated with an exposure per se, is instead associated with some subject-
specific genetic or epigenetic factor that determines whether a specific TCR
response will be elicited by a given exposure.

The finding by Emerson et al.—now replicated and extended in this work—
that there are large numbers of TCRβ chains whose occurrence patterns (in-
dependent of potential TCRα partners) are strongly associated with specific
HLA alleles, raises the question of what selective forces drive these biased
occurrence patterns. Our observations point to a potential role for responses
to common pathogens in selecting some of these chains in an HLA-restricted
manner. Self-antigens (presented in the thymus and/or the periphery) may also
play a role in enriching for specific chains, as suggested by Madi et al. (2017)
in their work on TCR similarity networks formed by the most frequent CDR3
sequences. Our conclusions diverge somewhat from this previous work, which
may be explained by the following factors: our use of HLA-association rather
than intra-individual frequency as a filter for selecting TCRs, our inclusion of
information on the V-gene family in addition to the CDR3 sequence when defin-
ing TCR sharing and computing TCR similarity, and our use of TCR occurrence
patterns, rather than CDR3 edit distance, to discover TCR clusters. We also
find it interesting that class II loci appear on average to have greater numbers
of associated TCRβ chains than class I loci (Figure 4): presumably this reflects
differences in selection and/or abundance between the CD4+ and CD8+ T cell
compartments, but the underlying explanation for this trend is unclear. It is also
worth pointing out that our primary focus on presence/absence of TCRβ chains
(rather than abundance) assumes relatively uniform sampling depths across
the cohort; in the limit of very deep repertoire sequencing, pathogen-associated
chains may be found (presumably in the naive pool) even in the absence of the
associated immune challenge, while shallow sampling reliably picks out only
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the most expanded T cell clones. Here the use of clusters of responsive TCRs
rather than individual chains lessens stochastic fluctuations in TCR occurrence
patterns, providing some measure of robustness.

We look forward to the accumulation of new data sets, which will enable
future researchers to move beyond the limitations of the study presented here.
An ideal study would perform discovery on repertoire data from multiple large
cohorts, rather than the single large cohort generated with a single sequencing
platform. Although we do validate TCR clusters on two independent datasets,
with one from a different immune profiling technology, performing discovery
on multiple large cohorts would presumably give more robust results. Future
analyses of independent, HLA-typed cohorts will provide additional validation
of trends seen here. We also hope that future studies will have rich immune
exposure data beyond CMV serostatus: although the cohort members were all
nominally healthy at the time of sampling, it is likely that there are a variety of
immune exposures, some presaging future pathologies, that can be observed
in a diverse collection of 650+ individuals. As an example, two of our EBV-
annotated clusters contain TCRβ chains also seen in the context of rheumatoid
arthritis: cross-reactivity between pathogen and autoimmune epitopes may
mean that TCR clusters discovered on the basis of common infections also
provide information relevant in the context of autoimmunity.

4 Materials and Methods

4.1 Datasets

TCRβ repertoire sequence data for the 666 members of the discovery cohort
was downloaded from the Adaptive biotechnologies website using the link
provided in the original Emerson et al. (2017) publication (https://clients.
adaptivebiotech.com/pub/Emerson-2017-NatGen). The repertoire sequence data
for the 120 individuals in the “Keck120” validation set was included in the same
download. Repertoire sequence data for the 86 individuals in the “Brit86” vali-
dation set was downloaded from the NCBI SRA archive using the Bioproject
accession PRJNA316572 (Britanova et al., 2016) and processed using scripts and
data supplied by the authors (https://github.com/mikessh/aging-study) in
order to demultiplex the samples and remove technical replicates. Repertoire
sequence data for TCRβ chains from MAIT cells was downloaded from the
NCBI SRA archive using the Bioproject accession PRJNA412739 (Howson et al.,
2018).

V and J genes were assigned by comparing the TCR nucleotide sequences to
the IMGT/GENE-DB (Giudicelli et al., 2005) nucleotide sequences of the human
TR genes (sequence data downloaded on 9/6/2017 from http://www.imgt.org/
genedb/). CDR3 nucleotide and amino acid sequences and most-parsimonious
VDJ recombination scenarios were assigned by the TCRdist pipeline (Dash et al.,
2017) (the most parsimonious recombination scenario, used for identifying non-
germline CDR3 amino acids, is the one requiring the fewest non-templated
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Figure 9. Analysis of TCR sharing at the nucleotide level and VDJ recombination
probabilities helps to identify potential contamination. Each point represents a TCRβ
nucleotide sequence that occurs in more than one repertoire, plotted according to its
generation probability (Pgen, x-axis) and the number of repertoires in which it was seen
(Nrepertoires, y-axis). Very low probability nucleotide sequences that are shared across
many repertoires represent potential cross-contamination, as confirmed for one large
cluster of artifactual sequences (see the main text). We excluded all TCRβ nucleotide
sequences lying above the boundary indicated by the black line.

nucleotide insertions). To define the occurrence matrix of public TCRs and
assess TCR-TCR, TCR-HLA and TCR-CMV association, a TCRβ chain was
identified by its CDR3 amino acid sequence and its V-gene family (e.g., TRBV6-
4*01 was reduced to TRBV06). TCR sequence reads for which a unique V-gene
family could not be determined (due to equally well-matched V genes from
different families, a rare occurrence in this dataset) were excluded from the
analysis.

4.2 Eliminating potential cross-contamination

A preliminary analysis of TCR sharing at the nucleotide level was conducted
to identify potential cross-contamination in the discovery cohort repertoires.
Each TCRβ nucleotide sequence that was found in multiple repertoires was as-
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signed a generation probability (Pgen, see below) in order to identify nucleotide
sequences with suspiciously high sharing rates among repertoires. Visual com-
parison of the sharing rate (the number of repertoires in which each TCRβ
nucleotide sequence was found) to the generation probability (Figure 9) showed
that the majority of highly-shared TCRs had correspondingly high generation
probabilities; it also revealed a cluster of TCR chains with unexpectedly high
sharing rates. Examination of the sequences of these highly-shared TCRs re-
vealed them to be variants of the consensus sequence CFFKQKTAYEQYF (coding
sequence: tgttttttcaagcagaagacggcatacgagcagtacttc). Consultation with sci-
entists at Adaptive Biotechnologies confirmed that these sequences were likely
to represent a technical artifact. We elected to remove all TCRβ nucleotide se-
quences whose sharing rates put them outside the decision boundary indicated
by the black line in Figure 9, which eliminated the vast majority of the artifactual
variants as well as a handful of other highly shared, low-probability sequences.

4.3 Measuring clonal expansion

Each public TCRβ chain was assigned a clonal expansion index (Iexp) deter-
mined by its frequencies in the repertoires in which it was found. First, the
unique TCRβ chains present in each repertoire were ordered based on their
inferred nucleic acid template count (Carlson et al., 2013), and assigned a rank
ranging from 0 (lowest template count) to S− 1 (highest template count), where
S is the total number of chains present in the repertoire. TCRs with the same
template count were assigned the same tied rank equal to the midpoint of the
tied group. In order to compare across repertoires, the ranks for each repertoire
were then normalized by dividing by the number of unique sequences in the
repertoire. The clonal expansion index for a given public TCR t was taken to be
its average normalized rank for the repertoires in which it occurred:

Iexp(t) =
1

m

m∑
i=1

ri
Si − 1

,

where the sum is taken over the m repertoires in which t is found, ri is the
template-count rank of TCR t in repertoire i, and Si is the total size of repertoire
i.

4.4 HLA typing

HLA genotyping was performed and confirmed by molecular means (either
Sanger sequencing or next-generation sequencing) and independently by impu-
tation of HLA alleles using data generated by high density single-nucleotide
polymorphism arrays. HLA typing data availability varied across loci as follows:
HLA-A (629 subjects), HLA-B (630 subjects), HLA-C (629 subjects), HLA-DRB1
(630 subjects), HLA-DQA1 (522 subjects), HLA-DQB1 (630 subjects), HLA-DPA1
(606 subjects), and HLA-DPB1 (472 subjects). When calculating the association
p-values between TCRβ chains and HLA alleles reported in Table 1, the cohort
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was restricted to the subset of subjects with available HLA typing at the relevant
locus. For comparing TCR association rates across loci in Figure 4, associations
were calculated over the cohort subset (522 subjects) with typing data at all
compared loci (A, B, C, DRB1, DQA1, and DQB1) in order to avoid spurious dif-
ferences in association strengths arising from differential data availability among
the loci. Due to their very strong linkage on our cohort, five DR-DQ haplotypes
were treated as single allele units for association calculations and clustering:
DRB1*03:01-DQA1*05:01-DQB1*02:01, DRB1*15:01-DQA1*01:02-DQB1*06:02,
DRB1*13:01-DQA1*01:03-DQB1*06:03, DRB1*10:01-DQA1*01:05-DQB1*05:01,
and DRB1*09:01-DQA1*03:02-DQB1*03:03.

4.5 TCR generation probability

We implemented a version of the probabilistic model proposed by Walczak and
co-workers (Murugan et al., 2012) in order to assign to each public TCRβ chain
(defined by a V-gene family and a CDR3 amino acid sequence) a generation
probability, Pgen, which captures the probability of seeing that TCRβ in the
preselection repertoire. Pgen is calculated by summing the probabilities of the
possible VDJ rearrangements that could have produced the observed TCR:

Pgen(Vfamily,CDR3aa) =
∑
s∈S

P (s)

where S represents the set of possible VDJ recombination scenarios capable of
producing the observed TCR V family and CDR3 amino acid sequence. To com-
pute the probability of a given recombination scenario s, we use the factorization
proposed by Marcou et al. (2018), which captures observed dependencies of V-,
D-, and J-gene trimming on the identity of the trimmed gene and of inserted
nucleotide identity on the identity of the preceding nucleotide:

P (s) =P (Vs)P (Ds|Js)P (Js)
× P (delsV |Vs)P (delsD5′,delsD3′|Ds)P (delsJ |Js)

× P (InssV D)

InssV D∏
i

P (ni|ni−1)

× P (InssDJ)
InssDJ∏

i

P (mi|mi−1)

Here the recombination scenario s consists of a choice of V gene (Vs), D gene
(Ds), J gene (Js), number of nucleotides trimmed back from the end of the V
gene (delsV ) or J gene (delsJ) or D gene (delsD5′ and delsD3′), number of nu-
cleotides inserted between the V and D genes (InssV D) and between the D and
J genes (InssDJ) and the identities of the inserted nucleotides ({ni} and {mi}
respectively). At the start of the calculation, the CDR3 amino acid sequence is
converted to a list of potential degenerate coding nucleotide sequences. Since

27

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/313106doi: bioRxiv preprint 

https://doi.org/10.1101/313106


each amino acid other than Leucine, Serine, and Arginine has a single degen-
erate codon (and these three amino acids have two such codons), this list of
nucleotide sequences is generally not too long. The generation probability is
then taken to be the sum of the probabilities of these degenerate nucleotide
sequences. Since the total number of possible recombination scenarios is in
principle quite large, we make a number of approximations to speed the cal-
culation: we limit excess trimming of genes to at most three nucleotides, where
excess trimming is defined to be trimming back a nucleotide which matches the
target CDR3 nucleotide (therefore requiring non-templated reinsertion of the
same nucleotide); at most 2 palindromic nucleotides are allowed; sub-optimal D
gene alignments are only considered up to a score gap of 2 matched nucleotides
relative to the best match. The parameters of the probability model are fit by a
simple iterative procedure in which we generate rearrangements using an initial
model, compare the statistics of those rearrangements to statistics derived from
observed out-of-frame rearrangements in the dataset, and adjust the probability
model parameters to iteratively improve agreement.

4.6 Co-occurrence calculations

We used the hypergeometric distribution to assess the significance of an ob-
served overlap between two subsets of the cohort, taking our significance
p-value to be the probability of seeing an equal or greater overlap if the two
subsets had been chosen at random:

Poverlap(k,N1, N2, N) =
∑
j≥k

(
N1

j

)(
N−N1

N2−j
)(

N
N2

)
where k is the size of the overlap, N1 and N2 are the sizes of the two subsets,
and N is the total cohort size. A complication arises when assessing TCR-
TCR co-occurrence in the presence of variable-sized repertoires: TCRs are
more likely to come from the larger repertoires than the smaller ones, which
violates the assumptions of the hypergeometric distribution and leads to inflated
significance scores. In particular, when we use the hypergeometric distribution
to model the overlap between the sets of subjects in which two TCR chains are
found, we implicitly assume that all subjects are equally likely to belong to a
TCR chain’s subject set. If the subject repertoires vary in size, this assumption
will not hold. For example, in the limit of a subject with an empty repertoire,
no TCR subject sets will contain that subject, which will inflate all the overlap
p-values since we are effectively overstating the size N of the cohort by 1. On
the other hand, if one of the subject repertoires contains all the public TCR
chains, then each TCR-TCR overlap will automatically contain that subject,
again inflating the p-values since we are artificially adding 1 to each of k, N1,
N2, and N . We developed a simple heuristic to correct for this effect using a
per-subject bias factor by defining

bi =
SiN∑N
j=1 Sj

,
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where Si is the size of repertoire i and N is the cohort size. To score an overlap
O of size k involving subjects s1, ..., sk, we adjust the overlap p-value by the
product of the bias factors of the subjects in the overlap:

PCO(O, N1, N2, N) =
( k∏

j=1

bsj

)
Poverlap(k,N1, N2, N).

This has the effect of decreasing the significance assigned to overlaps involving
larger repertoires, yet remains fast to evaluate, an important consideration given
that the all-vs-all TCR co-occurrence calculation involves about 1014 pairwise
comparisons (and this calculation is repeated multiple times with shuffled
occurrence patterns to estimate false-discovery rates). When clustering by co-
occurrence, we augmented this heuristic p-value correction by also eliminating
repertoires with very low (fewer than 30,000) or very high (more than 120,000)
numbers of public TCRβ chains (nonzero entries in the occurrence matrix M ),
as well as five additional repertoires which showed anomolously high levels of
TCR nucleotide sharing with another repertoire—all with the goal of reducing
potential sources of spurious TCR-TCR co-occurrence signal.

4.7 Estimating false-discovery rates

We used the approach of Storey and Tibshirani (2003) to estimate false-discovery
rates for detecting associations between TCRs and HLA alleles and between
TCRs and CMV seropositivity. Briefly, for a fixed significance threshold P we
estimate the false-discovery rate (FDR) by randomly permuting the HLA allele
or CMV seropositivity assignments 20 times and computing the average num-
ber of significant associations discovered at the threshold P in these shuffled
datasets. The estimated FDR is then the ratio of this average shuffled associ-
ation number to the number of significant associations discovered in the true
dataset at the same threshold. In order to estimate a false-discovery rate for
TCR-TCR co-occurrence over the full cohort, we performed 20 co-occurrence
calculations on shuffled occurrence matrices, preserving the per-subject bias
factors during shuffling by resampling each TCR’s occurrence pattern with the
bias distribution {bi} determined by the subject repertoire sizes.

4.8 TCR clustering

We used the DBSCAN (Ester et al., 1996) algorithm to cluster public TCRβ
chains by their occurrence patterns. DBSCAN is a simple and robust clustering
procedure that requires two input parameters: a similarity/distance threshold
(Tsim) at which two points in the dataset are considered to be neighbors, and
a minimum number of neighbors (Ncore) for a point to be considered a core,
as opposed to a border, point. DBSCAN clusters consist of the connected com-
ponents of the neighbor-graph over the core points, together with any border
point neighbors the core cluster members have. To prevent the discovery of
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fictitious clusters, Tsim and Ncore can be selected so that core points (points with
at least Ncore neighbors) are unlikely to occur by chance. There is a trade-off
between the two parameter settings: as Tsim is relaxed, points will tend to have
more neighbors on average and thus Ncore should be increased, which biases
toward discovery of larger clusters; conversely, more stringent settings of Tsim
are compatible with smaller values for Ncore which permits the discovery of
smaller, more tightly linked clusters.

For clustering TCRs by co-occurrence over the full cohort, we used a thresh-
old of Tsim= 10−8 and chose a value for Ncore (6) such that no core points were
found in any of the 20 shuffled datasets. In other words, two TCRs t1 and t2
were considered to be neighbors for DBSCAN clustering if PCO(t1, t2) < 10−8; a
TCR was considered a core point if it had at least 6 neighbors. Choosing param-
eters for HLA-restricted TCR clustering was slightly more involved due to the
variable number of clustered TCRs for different alleles, and the more complex
nature of the similarity metric, whose dependence on TCR sequence makes
shuffling-based approaches more challenging. To begin, we transformed the
TCRdist sequence-similarity measure into a significance score PTCRdist which
captures the probability of seeing an observed or smaller TCRdist score for
two randomly selected TCRβ chains. Since public TCRβ chains are on average
shorter and closer to germline than private TCRs, we derived the PTCRdist CDF
by performing TCRdist calculations on randomly selected public TCRs seen in
at least 5 repertoires. We identified neighbors for DBSCAN clustering using a
similarity score Psim that combines co-occurrence and TCR sequence similarity:

Psim(t1, t2) = f
(
PTCRdist(t1, t2) · PCO(t1, t2)

)
where the transformation by f(x) = x − x log(x) corrects for taking the prod-
uct of two p-values because f(x) is the cumulative distribution function of
the product of two uniform random variables. Thus, if PTCRdist and PCO are
independent and uniformly distributed, the same will be true of Psim.

For HLA-restricted clustering using this combined similarity measure we
set a fixed value of Tsim= 10−4 and adjusted the Ncore parameter as a function
of the total number of TCRs clustered for each allele. As in global clustering,
our goal was to choose Ncore such that core points were unlikely to occur
by chance (more precisely, had a per-allele probability less than 0.05). We
estimated the probability of seeing core points by modeling neighbor number
using the binomial distribution, assuming that the observed neighbor number
of a given TCR during clustering is determined byM−1 independent Bernoulli-
distributed neighborness tests with rate r, where M is the number of clustered
TCRs. Rather than assuming a fixed neighbor-rate r across TCRs, we captured
the observed variability in neighbor-rate (due, for example, to unequal V-gene
frequencies and variable CDR3 lengths) by using a mixture of 20 rates estimated
from similarity comparisons on randomly chosen public TCRs.

We also used this neighbor-number model to assign a p-value (Psize) to each
cluster reflecting the likelihood of seeing the observed degree of clustering by
chance. Since DBSCAN clusters are effectively single-linkage-style partitionings
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of the core points (together with any neighboring border points), they can have a
variety of shapes, ranging from densely interconnected graphs, to extended clus-
ters held together by local neighbor relationships (Ester et al., 1996). Modeling
the total size of these arbitrary groupings is challenging, so we took the simpler
and more conservative approach of assigning p-values based on the size of the
largest TCR neighborhood (set of neighbors for a single TCR) contained within
each cluster. We identified the member TCR with the greatest number of neigh-
bors in each cluster (the cluster center) and computed the likelihood of seeing an
equal or greater neighbor-number under the mixture model described above.
This significance estimate is conservative in that it neglects clustering contri-
butions from TCRs outside the neighborhood of the cluster center, however in
practice we observed that the majority of TCR clusters were dominated by a
single dense region of repertoire space and therefore reasonably well-captured
by a single neighborhood. To control false discovery when combining DBSCAN
clusters from independent clustering runs for different HLA alleles, we used
the Holm method (Holm, 1979) applied to the sorted list of cluster Psize values,
with a target family-wise error rate (FWER) of 0.05 (i.e., we attempted to limit
the overall probability of seeing a false cluster to 0.05). In the Holm FWER
calculation we set the total number of hypotheses equal to the total number of
TCRs clustered across all alleles minus the cumulative neighbor-count of the
cluster centers (we exclude cluster center neighbors since their neighbor counts
are not independent of the neighbor count of the cluster center).

4.9 Analyzing TCR clusters

For each (global or HLA-restricted) TCR cluster, we analyzed the occurrence
patterns of the member TCRs in order to identify a subset of the (full or allele-
positive) cohort enriched for those TCRs. We counted the number of cluster
member TCRs found in each subject’s repertoire and sorted the subjects by
this TCR count (rank plots in Figure 2B-C and in the right panels of Figure 6).
For comparison, we generated control TCR count plots by independently re-
sampling the subjects for each member TCR, preserving the frequency of each
TCR and biasing by subject repertoire size. Each complete resampling of the
cluster member TCR occurrence patterns produced a subject TCR rank plot;
we repeated this resampling process 1000 times and averaged the rank plots to
yield the green (‘randomized’) curves in Figure 2B-C and Figure 6. To compare
the observed and randomized curves, we took a signed difference

DCO = max
1≤i≤N

(∑
j≤i

(Cj −Rj) +
∑
j>i

(Rj − Cj)
)

between the observed counts Cj and the randomized counts Rj , where the
value of the subject index i = imax that maximizes the right-hand side in the
equation above represents a switchpoint below which the observed counts
generally exceed the randomized counts and above which the reverse is true
(both sets of counts are sorted in decreasing order). We take this switchpoint
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imax as an estimate of the number of enriched subjects for the given cluster (this
is the value given in the ‘Subjects’ column in Table 3).

Since the raw DCO values are not comparable between clusters of different
sizes and for different alleles, we transformed these values to a Z-score (ZCO)
by generating, for each cluster, 1000 additional random TCR count curves and
computing the mean (µD) and standard deviation (σD) of their Drand

CO score
distribution:

ZCO =
DCO − µD

σD

We used this co-occurrence score ZCO together with a log-transformed version
of the cluster size p-value,

Ssize =
√
− log10(Psize)

for visualizing clustering results in Figure 5 (Ssize on the x-axis and ZCO on the
y-axis) and prioritizing individual clusters for detailed follow-up.

4.10 TCR annotations

We annotated public TCRs in our dataset by matching their sequences against
two publicly available datasets: VDJdb (Shugay et al., 2017), a curated database
of TCR sequences with known antigen specificities (downloaded on 3/29/18;
about 17, 000 human TCRβ entries) and McPAS-TCR (Tickotsky et al., 2017),
a curated database of pathogen-associated TCR sequences (downloaded on
3/29/18; about 9, 000 human TCRβ entries). VDJdb entries are associated
with a specific MHC-presented epitope, whereas McPAS-TCR also includes
sequences of TCRs isolated from diseased tissues whose epitope specificity is
not defined. We added to this merged annotation database the sequences of
structurally characterized TCRs of known specificity (see below), as well as
literature-derived TCRs from a handful of primary studies (Dash et al., 2017;
Glanville et al., 2017; Song et al., 2017; Kasprowicz et al., 2006). For matches
between HLA-associated TCRs and database TCRs of known specificity, we
filtered for agreement (at 2-digit resolution) between the associated HLA allele
in our dataset and the presenting allele from the database. In other words, TCRs
belonging to B*08:01-restricted clusters were not annotated with matches to
database TCRs that bind to A*02:01-presented peptides.

4.11 Structural analysis

We analyzed a set of experimentally determined TCR:peptide-MHC structures
to find MHC positions frequently contacted by the CDR3β loop. Crystal struc-
tures of complexes involving human TCRs and human class I or class II HLA
alleles were identified using BLAST (Altschul et al., 1997) searches against the
RCSB PDB (Berman et al., 2000) sequence database (ftp://ftp.wwpdb.org/pub/
pdb/derived data/pdb seqres.txt). Structural coverage of HLA loci and alle-
les is sparse and highly biased toward well studied alleles such as HLA-A*02.
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Given the high degree of structural similarity among class I and among class II
MHC structures solved to date, we elected to share contact information across
loci using trans-locus sequence alignments. For class I we used the merged
alignment (ClassI prot.txt) available from the IPD-IMGT/HLA (Robinson
et al., 2014) database. Starting with multiple sequence alignments for individual
class II loci from the IPD-IMGT/HLA database, we inserted gaps as needed in
order to created merged alignments for the class II α and β chains. These align-
ments provided a common reference frame in which to combine residue-residue
contacts from the TCR:peptide-MHC structures. We considered two amino acid
residues to be in contact if they had a side chain heavyatom contact distance less
than or equal to 4.5Å. The CDR3β contact frequency for an alignment position
(class I, class II-α, or class II-β) was defined to be the total number of contacted
CDR3β amino acids observed for that position, divided by the total number of
structures analyzed. Redundancy in the structural database was assessed at the
level of TCR and HLA sequence, ignoring the sequence of the peptide. Contacts
from a set of n structures all containing the same TCR and HLA were given a
weight of 1/n when computing the residue contact frequencies.
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Figure 10. TCRdist trees of experimentally determined pathogen-responsive TCRβ
chains for two immunodominant epitopes, EBV BMLF1280 and influenza M158. TCR
beta chain sequences were taken from the dataset of Dash et al. (2017). On the
right-hand side are average-linkage dendrograms of TCRdist receptor clusters colored
by generation probability (Pgen). TCR logos for selected receptor subsets (the branches
of the tree enclosed in dashed boxes labelled with size of the TCR clusters) are shown on
the left. Each logo depicts the V- (left side) and J- (right side) gene frequencies, CDR3
amino acid sequences (middle), and inferred rearrangement structure (bottom bars
coloured by source region, light grey for the V-region, dark grey for J, black for D, and
red for N-insertions) of the grouped receptors.
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Table 3. HLA-restricted TCR clusters with size (Ssize) and co-occurrence (ZCO) scores, annotations (abbreviated as in
Figure 5), and validation scores.

Rank HLA allele Allele frequency TCRs Subjects Cluster center Ssize ZCO Annotations ZKeck120
CO ZBrit86

CO

1 A*24:02 102 32 29 TRBV05,CASSGSGGYNEQFF 8.95 17.64 B19 10.38 6.74
2 A*02:01 218 43 66 TRBV19,CASSGRSTDTQYF 6.47 13.01 INF, T1D 12.28 4.28
3 DRB1*07:01 119 17 36 TRBV09,CASSGQGAYEQYF 4.08 12.91 coCMV 9.46 6.40
4 DRB1*15:01-DQ 112 16 27 TRBV19,CASSPDRSSYNEQFF 4.25 12.13 1.65 1.72
5 B*08:01 115 30 34 TRBV07,CASSQGPAYEQYF 5.97 8.12 EBV, RA 3.83 1.83
6 C*04:01 104 7 24 TRBV19,CASSPGGDYNEQFF 3.94 11.58 4.48 2.01
7 C*04:01 104 11 20 TRBV04,CASSHSGTGETYEQYF 4.91 9.03 7.52 1.66
8 B*15:01 55 23 27 TRBV19,CASSTTSGSYNEQFF 5.43 7.51 10.31 4.01
9 DRB1*03:01-DQ 108 26 39 TRBV29,CSVAPGWGMNTEAFF 4.49 8.61 10.96 7.09
10 A*01:01 154 8 44 TRBV24,CATSDGDTQYF 3.47 10.21 CMV, coCMV 3.80 2.42
11 B*35:01 56 18 24 TRBV10,CATGTGDSNQPQHF 4.98 6.13 EBV, RA 4.50 5.42
12 DRB1*03:01-DQ 108 11 35 TRBV07,CASSLSLAGSYNEQFF 3.09 8.15 5.35 1.40
13 A*02:01 218 10 84 TRBV20,CSARDRTGNGYTF 3.81 6.66 EBV 7.14 3.50
14 DRB1*15:01-DQ 112 15 38 TRBV05,CASSLRGVRTDTQYF 3.05 8.08 8.73 3.31
15 A*01:01 154 6 30 TRBV10,CAISESRASGDYNEQFF 3.14 7.67 11.31 2.99
16 DRB1*13:01-DQ 43 7 7 TRBV20,CSASAGESNQPQHF 3.14 7.64 -0.55 -0.35
17 DRB1*03:01-DQ 108 16 32 TRBV20,CSARGGGRSYEQYF 3.31 6.95 2.57 3.09
18 DRB1*11:01 58 14 20 TRBV06,CASSYSVRGRYSNQPQHF 3.26 7.02 8.72 3.44
19 C*08:02 37 6 15 TRBV28,CASSLGIHYEQYF 3.53 6.37 1.82 4.37
20 DRB1*15:01-DQ 112 13 51 TRBV12,CASSLAGTEKLFF 3.27 6.64 4.61 3.01
21 DRB1*03:01-DQ 108 11 23 TRBV05,CASSSTGLRSYEQYF 3.09 6.92 4.73 5.81
22 A*02:01 218 7 64 TRBV04,CASSQGTGRYEQYF 3.51 6.07 2.79 3.23
23 C*03:04 72 5 13 TRBV09,CASSVAYRGNEQFF 3.39 6.14 6.26 3.23
24 DQB1*03:01-DQA1*05:05 84 10 39 TRBV09,CASSVGTVQETQYF 2.97 6.73 3.02 3.54
25 DRB1*04:01 78 25 35 TRBV05,CASSRQGAGETQYF 3.00 6.31 5.82 1.55
26 B*08:01 115 7 30 TRBV12,CASSFEGLHGYTF 2.67 6.67 3.77 2.95
27 C*04:01 104 6 25 TRBV06,CASRTGLAGTDTQYF 3.58 4.78 3.53 3.76
28 DRB1*07:01 119 9 42 TRBV14,CASSLAGMNTEAFF 3.15 5.54 6.99 5.58
29 DQB1*03:01-DQA1*05:05 84 7 36 TRBV02,CASSELENTEAFF 2.97 5.76 5.25 3.24
30 DPB1*03:01-DPA1*01:03 42 7 16 TRBV30,CAWSADSNQPQHF 3.56 4.16 2.42 1.73
31 B*15:01 55 18 27 TRBV29,CSVETRDYEQYF 3.54 3.94 13.81 4.29
32 A*01:01 154 4 26 TRBV09,CASSVGVDSTDTQYF 2.39 6.24 -0.31 2.17
33 C*07:02 142 4 14 TRBV25,CASSPGDEQYF 2.94 5.11 coCMV 6.37 3.69
34 B*08:01 115 6 38 TRBV29,CSVGSGDYEQYF 3.01 4.85 EBV 2.73 0.75
35 A*01:01 154 6 37 TRBV20,CSAPGQGAVEQYF 2.79 5.24 2.42 3.00
36 A*23:01 22 5 7 TRBV06,CASSDGNSGNTIYF 3.38 4.02 1.91 4.11
37 DQB1*03:01-DQA1*05:05 84 7 29 TRBV15,CATSRDPGGNQPQHF 2.97 4.82 5.00 2.67
38 DPB1*04:01-DPA1*01:03 274 5 65 TRBV19,CASSIKGDTEAFF 3.31 4.14 4.89 3.42
39 DPB1*04:01-DPA1*01:03 274 4 55 TRBV19,CASRLSGDTQYF 2.84 4.95 COLO 3.80 1.25
40 B*07:02 125 7 37 TRBV02,CASRGETQYF 2.73 4.88 3.20 2.11
41 B*44:03 41 9 20 TRBV19,CASSATGGIYEQYF 3.35 3.41 MS 6.61 8.76
42 A*24:02 102 6 31 TRBV30,CAWSPGTGDYEQYF 3.05 3.91 3.56 2.99
43 DRB1*07:01 119 13 31 TRBV18,CASSPSVRNTEAFF 2.89 4.20 5.32 0.96
44 B*57:01 27 5 14 TRBV12,CASSPPEGETQYF 3.22 3.47 6.31 1.94
45 C*06:02 74 4 14 TRBV02,CASSAGTASTDTQYF 2.81 4.27 coCMV 4.76 3.06
46 A*11:01 47 5 7 TRBV09,CASSPKGVGYEQYF 2.75 4.31 2.43 3.32
47 DRB1*01:01 82 9 21 TRBV19,CASSIPGLAYEQYF 2.58 4.63 0.96 -0.49
48 B*07:02 125 7 21 TRBV09,CASSDRRGYTF 2.73 4.34 4.57 0.45
49 B*08:01 115 6 22 TRBV07,CASSSTGAGNQPQHF 2.67 4.24 EBV 1.00 2.85
50 B*18:01 46 5 6 TRBV27,CASSPTSEDTQYF 2.57 4.26 5.79 -0.23
51 B*27:05 36 7 13 TRBV06,CASSLRLAGLYEQYF 2.64 3.81 9.25 1.08
52 B*35:01 56 4 7 TRBV07,CASSQGPGRTYEQYF 2.46 4.10 - -
53 B*35:03 16 4 7 TRBV10,CAISVGNEQFF 2.78 3.42 1.50 0.73
54 A*02:01 218 5 126 TRBV29,CSVGTGGTNEKLFF 2.82 3.32 EBV, MELA 5.65 2.37
55 DRB1*03:01-DQ 108 6 18 TRBV02,CASSAGAGTEAFF 2.36 4.17 0.98 2.79
56 B*44:02 79 4 18 TRBV02,CASSADSSYNEQFF 2.57 3.65 2.09 2.12
57 C*03:04 72 3 8 TRBV27,CASSPRPYNEQFF 2.35 4.08 1.36 3.22
58 A*24:02 102 4 12 TRBV20,CSAREDGHEQYF 2.62 3.54 0.83 2.94
59 A*01:01 154 12 65 TRBV19,CASSIRDHNQPQHF 2.79 3.17 8.44 2.33
60 B*27:05 36 4 12 TRBV07,CASSPPGGSAYNEQFF 2.64 3.23 1.13 2.12
61 C*14:02 23 4 9 TRBV02,CASSGDTSTNEKLFF 2.48 3.50 6.23 -
62 B*27:05 36 9 12 TRBV27,CASSSGTSGNNEQFF 2.64 3.16 4.32 3.24
63 C*12:03 53 6 25 TRBV15,CATSRENEKLFF 2.90 2.51 1.88 3.08
64 A*68:01 29 4 16 TRBV05,CASSLIATNEKLFF 2.71 2.88 3.67 1.23
65 B*51:01 53 6 20 TRBV04,CASSQDYPGGSYEQYF 2.76 2.73 6.43 5.18
66 B*35:01 56 4 8 TRBV27,CASSLGAATGELFF 2.46 3.32 4.52 3.01
67 B*15:01 55 4 20 TRBV06,CASSAGTGRYEQYF 2.44 3.18 2.40 2.23
68 B*44:03 41 7 14 TRBV07,CASSSGESGANVLTF 2.97 2.01 3.92 4.81
69 DRB1*04:02 14 4 6 TRBV03,CASSQASGGANEQFF 2.44 3.04 2.04 2.22
70 B*15:01 55 4 10 TRBV19,CASSHRGGNEQFF 2.44 3.03 0.92 3.58
71 B*15:01 55 5 7 TRBV05,CASSLGVSAGELFF 2.44 2.98 -0.32 -0.12
72 A*32:01 34 3 5 TRBV12,CASSYGPGNQPQHF 2.45 2.84 5.76 3.18
73 A*02:01 218 4 23 TRBV19,CASSTGTATNEKLFF 2.42 2.89 0.84 -
74 DRB1*15:01-DQ 112 7 51 TRBV28,CASSLLGGQPQHF 2.58 2.35 0.66 1.89
75 B*18:01 46 5 15 TRBV27,CASSFPGKEQYF 2.57 2.22 -0.35 5.62
76 B*49:01 16 3 8 TRBV29,CSVERGYNEQFF 2.38 2.14 1.03 0.43
77 A*23:01 22 3 6 TRBV20,CSARDREGAGYGYTF 2.35 2.14 -0.16 -0.12
78 B*55:01 13 3 10 TRBV19,CASRGGNQPQHF 2.36 2.09 0.95 -0.28
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Table 4. PDB structures analyzed.

PDB IDa HLA allele Vα Jα CDR3α Vβ Jβ CDR3β Peptide

5bs0 A*01 TRAV21*01 TRAJ28*01 CAVRPGGAGPFFVVF TRBV5-1*01 TRBJ2-7*01 CASSFNMATGQYF ESDPIVAQY
3qdj A*02 TRAV12-2*01 TRAJ23*01 CAVNFGGGKLIF TRBV6-4*01 TRBJ1-1*01 CASSLSFGTEAFF AAGIGILTV
4l3e A*02 TRAV12-2*01 TRAJ23*01 CAVNFGGGKLIF TRBV6-4*01 TRBJ1-1*01 CASSWSFGTEAFF ELAGIGILTV
5e9d A*02 TRAV12-2*01 TRAJ24*02 CAVTKYSWGKLQF TRBV6-5*01 TRBJ2-7*01 CASRPGWMAGGVELYF ELAGIGILTV
3qfj A*02 TRAV12-2*01 TRAJ24*02 CAVTTDSWGKLQF TRBV6-5*01 TRBJ2-7*01 CASRPGLAGGRPEQYF LLFGFPVYV
4ftv A*02 TRAV12-2*01 TRAJ24*02 CAVTTDSWGKLQF TRBV6-5*01 TRBJ2-7*01 CASRPGLMSAQPEQYF LLFGYPVYV
3hg1 A*02 TRAV12-2*01 TRAJ27*01 CAVNVAGKSTF TRBV30*01 TRBJ2-2*01 CAWSETGLGTGELFF ELAGIGILTV
4eup A*02 TRAV12-2*01 TRAJ45*01 CAVSGGGADGLTF TRBV28*01 TRBJ2-1*01 CASSFLGTGVEQYF ALGIGILTV
5c0c A*02 TRAV12-3*01 TRAJ12*01 CAMRGDSSYKLIF TRBV12-4*01 TRBJ2-4*01 CASSLWEKLAKNIQYF RQFGPDWIVA
5eu6 A*02 TRAV21*01 TRAJ53*01 CAVLSSGGSNYKLTF TRBV7-3*01 TRBJ2-3*01 CASSFIGGTDTQYF YLEPGPVTV
2p5e A*02 TRAV21*01 TRAJ6*01 CAVRPLLDGTYIPTF TRBV6-5*01 TRBJ2-2*01 CASSYLGNTGELFF SLLMWITQC
2bnq A*02 TRAV21*01 TRAJ6*01 CAVRPTSGGSYIPTF TRBV6-5*01 TRBJ2-2*01 CASSYVGNTGELFF SLLMWITQV
4mnq A*02 TRAV22*01 TRAJ40*01 CAVDSATALPYGYIF TRBV6-5*01 TRBJ1-1*01 CASSYQGTEAFF ILAKFLHWL
5men A*02 TRAV22*01 TRAJ40*01 CAVDSATSGTYKYIF TRBV6-5*01 TRBJ1-1*01 CASSYQGTEAFF ILAKFLHWL
5isz A*02 TRAV24*01 TRAJ27*01 CAFDTNAGKSTF TRBV19*01 TRBJ2-7*01 CASSIFGQREQYF GILGFVFTL
5d2l A*02 TRAV24*01 TRAJ49*01 CAFITGNQFYF TRBV7-2*02 TRBJ2-5*01 CASSQTQLWETQYF NLVPMVATV
3gsn A*02 TRAV24*01 TRAJ49*01 CARNTGNQFYF TRBV6-5*01 TRBJ1-2*01 CASSPVTGGIYGYTF NLVPMVATV
5d2n A*02 TRAV26-2*01 TRAJ43*01 CILDNNNDMRF TRBV7-6*01 TRBJ1-4*01 CASSLAPGTTNEKLFF NLVPMVATV
5euo A*02 TRAV27*01 TRAJ37*02 CAGAIGPSNTGKLIF TRBV19*01 TRBJ2-7*01 CASSIRSSYEQYF GILGFVFTL
5hho A*02 TRAV27*01 TRAJ42*01 CAGAGSQGNLIF TRBV19*01 TRBJ2-7*01 CASSIRSSYEQYF GILEFVFTL
2vlr A*02 TRAV27*01 TRAJ42*01 CAGAGSQGNLIF TRBV19*01 TRBJ2-7*01 CASSSRASYEQYF GILGFVFTL
1oga A*02 TRAV27*01 TRAJ42*01 CAGAGSQGNLIF TRBV19*01 TRBJ2-7*01 CASSSRSSYEQYF GILGFVFTL
1bd2 A*02 TRAV29/DV5*01 TRAJ54*01 CAAMEGAQKLVF TRBV6-5*01 TRBJ2-7*01 CASSYPGGGFYEQYF LLFGYPVYV
5e6i A*02 TRAV35*01 TRAJ37*02 CAGPGGSSNTGKLIF TRBV27*01 TRBJ2-2*01 CASSLIYPGELFF GILGFVFTL
3qeq A*02 TRAV35*01 TRAJ49*01 CAGGTGNQFYF TRBV10-3*01 TRBJ1-5*01 CAISEVGVGQPQHF AAGIGILTV
4zez A*02 TRAV38-2/DV8*01 TRAJ30*01 CAYGEDDKIIF TRBV25-1*01 TRBJ2-7*01 CASRRGPYEQYF KLVALVINAV
5jhd A*02 TRAV38-2/DV8*01 TRAJ52*01 CAWGVNAGGTSYGKLTF TRBV19*01 TRBJ1-2*01 CASSIGVYGYTF GILGFVFTL
3o4l A*02 TRAV5*01 TRAJ31*01 CAEDNNARLMF TRBV20-1*01 TRBJ1-2*01 CSARDGTGNGYTF GLCTLVAML
3vxs A*24 TRAV21*01 TRAJ12*01 CAVRMDSSYKLIF TRBV7-9*01 TRBJ2-2*01 CASSSWDTGELFF RYPLTLGWCF
3vxm A*24 TRAV8-3*01 TRAJ28*01 CAVGAPSGAGSYQLTF TRBV4-1*01 TRBJ2-7*01 CASSPTSGIYEQYF RFPLTFGWCF
3sjv B*08 TRAV12-1*01 TRAJ23*01 CVVRAGKLIF TRBV6-2*01 TRBJ2-4*01 CASGQGNFDIQYF FLRGRAYGL
3ffc B*08 TRAV14/DV4*01 TRAJ49*01 CAMREDTGNQFYF TRBV11-2*01 TRBJ2-3*01 CASSFTWTSGGATDTQYF FLRGRAYGL

1mi5 B*08 TRAV26-2*01 TRAJ52*01 CILPLAGGTSYGKLTF TRBV7-8*01 TRBJ2-7*01 CASSLGQAYEQYF FLRGRAYGL
4qrp B*08 TRAV9-2*01 TRAJ43*01 CALSDPVNDMRF TRBV11-2*01 TRBJ1-5*01 CASSLRGRGDQPQHF HSKKKCDEL
4g9f B*27 TRAV14/DV4*02 TRAJ21*01 CAMRDLRDNFNKFYF TRBV6-5*01 TRBJ1-1*01 CASREGLGGTEAFF KRWIIMGLNK
4jrx B*35 TRAV19*01 TRAJ34*01 CALSGFYNTDKLIF TRBV6-1*01 TRBJ1-1*01 CASPGETEAFF LPEPLPQGQLTAY
2ak4 B*35 TRAV19*01 TRAJ34*01 CALSGFYNTDKLIF TRBV6-1*01 TRBJ2-7*01 CASPGLAGEYEQYF LPEPLPQGQLTAY
3mv7 B*35 TRAV20*01 TRAJ58*01 CAVQDLGTSGSRLTF TRBV9*01 TRBJ2-2*01 CASSARSGELFF HPVGEADYFEY
4jry B*35 TRAV39*01 TRAJ33*01 CAVGGGSNYQLIW TRBV5-6*01 TRBJ2-7*01 CASSRTGSTYEQYF LPEPLPQGQLTAY
3dxa B*44 TRAV26-1*01 TRAJ13*02 CIVWGGYQKVTF TRBV7-9*01 TRBJ2-1*01 CASRYRDDSYNEQFF EENLLDFVRF
3kpr B*44 TRAV26-2*01 TRAJ52*01 CILPLAGGTSYGKLTF TRBV7-8*01 TRBJ2-7*01 CASSLGQAYEQYF EEYLKAWTF
4mji B*51 TRAV17*01 TRAJ22*01 CATDDDSARQLTF TRBV7-3*01 TRBJ2-2*01 CASSLTGGGELFF TAFTIPSI
2ypl B*57 TRAV5*01 TRAJ13*01 CAVSGGYQKVTF TRBV19*01 TRBJ1-2*01 CASTGSYGYTF KAFSPEVIPMF
4p4k DPA1*01/DPB1*352 TRAV9-2*01 TRAJ28*01 CALSLYSGAGSYQLTF TRBV5-1*01 TRBJ2-5*01 CASSLAQGGETQYF QAFWIDLFETIG
4may DQA1*01/DQB1*05 TRAV13-1*01 TRAJ48*01 CAASSFGNEKLTF TRBV7-3*01 TRBJ2-3*01 CATSALGDTQYF QLVHFVRDFAQL
5ks9 DQA1*03/DQB1*03 TRAV20*01 TRAJ39*01 CAVALNNNAGNMLTF TRBV9*01 TRBJ2-3*01 CASSVAPGSDTQYF APSGEGSFQPSQENPQ
4gg6 DQA1*03/DQB1*03 TRAV26-2*01 TRAJ45*01 CILRDGRGGADGLTF TRBV9*01 TRBJ2-7*01 CASSVAVSAGTYEQYF QQYPSGEGSFQPSQENPQ
4z7u DQA1*03/DQB1*03 TRAV26-2*01 TRAJ49*01 CILRDRSNQFYF TRBV9*01 TRBJ2-5*01 CASSTTPGTGTETQYF APSGEGSFQPSQENPQGS
4z7v DQA1*03/DQB1*03 TRAV26-2*01 TRAJ54*01 CILRDSRAQKLVF TRBV9*01 TRBJ2-7*01 CASSAGTSGEYEQYF APSGEGSFQPSQENPQGS
4z7w DQA1*03/DQB1*03 TRAV8-3*01 TRAJ36*01 CAVGETGANNLFF TRBV6-1*01 TRBJ2-1*01 CASSEARRYNEQFF APSGEGSFQPSQENPQGS
4ozh DQA1*05/DQB1*02 TRAV26-1*01 TRAJ32*01 CIVWGGATNKLIF TRBV7-2*01 TRBJ2-3*01 CASSVRSTDTQYF APQPELPYPQPGS
4ozg DQA1*05/DQB1*02 TRAV26-1*01 TRAJ45*01 CIVLGGADGLTF TRBV7-2*01 TRBJ2-3*01 CASSFRFTDTQYF APQPELPYPQPGS
4ozf DQA1*05/DQB1*02 TRAV26-1*01 TRAJ54*01 CIAFQGAQKLVF TRBV7-2*01 TRBJ2-3*01 CASSFRALAADTQYF APQPELPYPQPGS
4ozi DQA1*05/DQB1*02 TRAV4*01 TRAJ4*01 CLVGDGGSFSGGYNKLIF TRBV20-1*01 TRBJ2-5*01 CSAGVGGQETQYF QPFPQPELPYPGS
5ksa DQA1*05/DQB1*03 TRAV20*01 TRAJ33*01 CAVQFMDSNYQLIW TRBV9*01 TRBJ2-7*01 CASSVAGTPSYEQYF QPQQSFPEQEA
5ksb DQA1*05/DQB1*03 TRAV20*01 TRAJ6*01 CAVQASGGSYIPTF TRBV9*01 TRBJ2-3*01 CASSNRGLGTDTQYF GPQQSFPEQEA
4e41 DRA*01/DRB1*01 TRAV22*01 TRAJ18*01 CAVDRGSTLGRLYF TRBV5-8*01 TRBJ2-5*01 CASSQIRETQYF GELIGILNAAKVPAD
2iam DRA*01/DRB1*01 TRAV22*01 TRAJ54*01 CAALIQGAQKLVF TRBV6-6*01 TRBJ1-3*01 CASTYHGTGYF GELIGILNAAKVPAD
1fyt DRA*01/DRB1*01 TRAV8-4*01 TRAJ48*01 CAVSESPFGNEKLTF TRBV28*01 TRBJ1-2*01 CASSSTGLPYGYTF PKYVKQNTLKLAT
3o6f DRA*01/DRB1*04 TRAV26-2*01 TRAJ32*01 CTVYGGATNKLIF TRBV20-1*01 TRBJ1-6*01 CSARGGSYNSPLHF FSWGAEGQRPGFGSGG
1j8h DRA*01/DRB1*04 TRAV8-4*01 TRAJ48*01 CAVSESPFGNEKLTF TRBV28*01 TRBJ1-2*01 CASSSTGLPYGYTF PKYVKQNTLKLAT
2wbj DRA*01/DRB1*15 TRAV17*01 TRAJ40*01 CATDTTSGTYKYIF TRBV20-1*01 TRBJ2-1*01 CSARDLTSGANNEQFF MDFARVHFISALHGSGG
4h1l DRA*01/DRB3*03 TRAV8-3*01 TRAJ37*01 CAVGASGNTGKLIF TRBV19*01 TRBJ2-2*01 CASSLRDGYTGELFF QHIRCNIPKRISA
1zgl DRA*01/DRB5*01 TRAV9-2*01 TRAJ12*01 CALSGGDSSYKLIF TRBV5-1*01 TRBJ1-1*01 CASSLADRVNTEAFF VHFFKNIVTPRTPGG

a If there are multiple structures with the same TCR and HLA allele, only the ID of the highest-resolution structure is given. During CDR3β contact analysis,
however, we combined the contacts from all redundant structures, downweighting so as to equalize the contribution from all TCR/HLA pairs.
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Figure 2–Figure supplement 1. TCRdist tree of the members of the TRBJ2-7*02-
associated cluster. Average-linkage dendrogram of TCRdist receptor clusters
colored by generation probability (Pgen), with TCR logos for selected receptor
subsets (the branches of the tree enclosed in dashed boxes labelled with size of
the TCR clusters). Each logo depicts the V- (left side) and J- (right side) gene
frequencies, CDR3 amino acid sequences (middle), and inferred rearrangement
structure (bottom bars coloured by source region, light grey for the V-region,
dark grey for J, black for D, and red for N-insertions) of the grouped receptors.
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Figure 2–Figure supplement 2. TCRdist tree of the members of the putative
MAIT cell cluster. Average-linkage dendrogram of TCRdist receptor clusters
colored by generation probability (Pgen), with TCR logos for selected receptor
subsets (the branches of the tree enclosed in dashed boxes labelled with size of
the TCR clusters). Each logo depicts the V- (left side) and J- (right side) gene
frequencies, CDR3 amino acid sequences (middle), and inferred rearrangement
structure (bottom bars coloured by source region, light grey for the V-region,
dark grey for J, black for D, and red for N-insertions) of the grouped receptors.
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V-alpha         J-alpha      CDR3-alpha           TCR-beta
TRAV1-1*01      TRAJ3*01     CAVRERRSSASKIIF      V06,CASSDSAGGPDTQYF      
TRAV1-2*01      TRAJ11*01    CAVPFYSGYSTLTF       V06,CASSERDTGELFF        
TRAV1-2*01      TRAJ12*01    CAALDSSYKLIF         V06,CASSDSGGANEQFF       
TRAV1-2*01      TRAJ16*01    CAKDGQKLLF           V06,CASSDSSTDTQYF        
TRAV1-2*01      TRAJ20*01    CAALGNDYKLSF         V06,CASSDSGGSYNEQFF      
TRAV1-2*01      TRAJ20*01    CAGLSNDYKLSF         V06,CASSDSAGGPDTQYF      
TRAV1-2*01      TRAJ20*01    CAVIRNDYKLSF         V06,CASSDSAGGPDTQYF      
TRAV1-2*01      TRAJ20*01    CAVKSGDYKLSF         V06,CASSELAGGPDTQYF      
TRAV1-2*01      TRAJ20*01    CAVNGDDYKLSF         V06,CASSDSSGGADTQYF      
TRAV1-2*01      TRAJ20*01    CAVRDGDYKLSF         V06,CASSERGGTDTQYF       
TRAV1-2*01      TRAJ33*01    CAVGESNYQLIW         V06,CASSDSGGSYNEQFF      
TRAV1-2*01      TRAJ33*01    CAVRDRNYQLIW         V06,CASSDSSTGELFF        
TRAV1-2*01      TRAJ33*01    CAVRDSNYQLIW         V06,CASSDSAGGTDTQYF      
TRAV1-2*01      TRAJ33*01    CTPLDSNYQLIW         V04,CASSQDRGGQETQYF      
TRAV1-2*01      TRAJ4*01     CAAPRSPGGYNKLIF      V06,CASSDSSTDTQYF        
TRAV10*01       TRAJ27*01    CVVSVGTNAGKSTF       V06,CASSERDTGELFF        
TRAV10*01       TRAJ6*01     CVVGQRGGSYIPTF       V04,CASSQDRGGADTQYF      
TRAV12-1*01     TRAJ5*01     CVEDTGRRALTF         V06,CASSERGGTDTQYF       
TRAV13-1*01     TRAJ5*01     CAANRTGRRALTF        V06,CASSEDSSGANVLTF      
TRAV13-1*01     TRAJ7*01     CAAVFYGNNRLAF        V06,CASSDSAGGTDTQYF      
TRAV13-2*01     TRAJ34*01    CAYNTDKLIF           V06,CASSDSTSGSNEQFF      
TRAV14/DV4*02   TRAJ3*01     CAMREGLTLGSSASKIIF   V04,CASSQDRGGQETQYF      
TRAV14/DV4*02   TRAJ6*01     CAMSKGEGGSYIPTF      V06,CASSDSGGGTDTQYF      
TRAV19*01       TRAJ8*01     CALSEALGFQKLVF       V06,CASSDSSTGELFF        
TRAV2*01        TRAJ21*01    CAVVGYNFNKFYF        V06,CASSDSTSGADTQYF      
TRAV3*01        TRAJ13*02    CAGLRGGYQKVTF        V06,CASSDSGGSYNEQFF      
TRAV4*01        TRAJ31*01    CLVGASNARLMF         V06,CASSGTSGSYNEQFF      
TRAV41*01       TRAJ54*01    CAVRRVAQKLVF         V06,CASSASGGADTQYF       
TRAV5*01        TRAJ22*01    CAERPPSGSARQLTF      V04,CASSQERGGQETQYF      
TRAV6*01        TRAJ5*01     CALDSGGGRRALTF       V06,CASSGTSGGTDTQYF      
TRAV8-1*01      TRAJ13*02    CAVILQRGYQKVTF       V06,CASSDSGGSYNEQFF      
TRAV8-2*01      TRAJ24*02    CVVSATDSWGKLQF       V06,CASSDRDTGELFF        
TRAV8-3*01      TRAJ45*01    CAVGAAMYSGGGADGLTF   V06,CASSETSGSYNEQFF      
TRAV8-4*01      TRAJ26*01    CAVSGNYGQNFVF        V06,CASSETSGGADTQYF      
TRAV9-2*01      TRAJ10*01    CALSGGGNKLTF         V06,CASSDGTGGNEQFF       
TRAV9-2*01      TRAJ8*01     CGGFQKLVF            V06,CASSYSTSGGNEQFF      

A

B

C

Figure 2–Figure supplement 3. Further details on the putative MAIT cell TCR cluster. (A) Distribution of
N-nucleotide insertions for TCRβ chains in the MAIT cluster (red), in the DRB1*15-associated cluster (green),
and in the union of the members of the top 10 clusters (excluding the members of the MAIT cluster, blue).
MAIT cell cluster members have very few N-insertions relative to the members of the other clusters. (B)
Subjects enriched for MAIT cluster TCRs (red curve) are younger than the cohort as a whole (blue curve),
a trend that is further strengthened in the top half of the enriched subjects by member-TCR count (the
‘high-count subjects’, magenta curve). (C) TCRα chains paired with MAIT cluster TCRβ chains in the pairSEQ
dataset of Howie Howie et al. (2015). Ten of the 36 paired TCRα chains match the MAIT sequence consensus
(TRAV1-2, TRAJ20 or TRAJ33, and a 12 residue CDR3, enclosed in the blue box).
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Figure 3–Figure supplement 1. Two-dimensional distributions of TCR generation probability (x-axis, Pgen)
and clonal expansion index (y-axis) for TCRs with the indicated HLA associations (panel headers), and for a
background set of non-HLA associated, cohort-frequency matched TCRs.
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Figure 5–Figure supplement 1. Smoothed distributions of cluster co-occurrence
scores on the two validation cohorts. Gaussian kernel density estimation (KDE)-
smoothed distributions of the cluster member TCR co-occurrence scores (ZCO)
for the two validation cohorts. A standard normal distribution is shown as an
approximate null expectation for these Z-scores.
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