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abstract
Multiple homeostatic plasticity mechanisms are thought to be critical for the
prevention of excessively high or aberrantly low neural activity in the adult
cortex. In L2/3 of adult mouse visual cortex the interplay between disinhi-
bition and local functional interactions may support homeostatic recovery
following visual deprivation. Despite blanket disinhibition only a subset of
L2/3 excitatory neurons are observed to exhibit homeostatic recovery. Re-
covering neurons tend to be correlated with each other, forming functional
networks prior to deprivation. How homeostatic recovery occurs in this way
is therefore unclear, particularly in conditions of global disinhibition.

Here, we employ a computational modelling approach to investigate the
origin of diverse homeostatic responses in the cortex. This model finds net-
work size to be a critical determinant of the diverse homeostatic activity
profiles observed following visual deprivation, as neurons which belong to
larger networks exhibit a stronger homeostatic response. Our simulations
provide mechanistic insights into the emergence of diverse homeostatic re-
sponses, and predict that neurons with a high proportion of enduring func-
tional associations will exhibit the strongest homeostatic recovery. We test
and confirm these predictions experimentally.
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2 introduction 2

introduction
Homeostatic plasticity is widely thought to regulate neural activity. Visual
deprivation paradigms are used to uncover mechanisms which mediate
homeostatic plasticity in visual cortex. Numerous mechanisms have been
implicated in the recovery of activity following visual deprivation, predomi-
nantly the reduction of inhibition and excitatory synaptic scaling [Rose et al.,
2016, Li et al., 2014, Hengen et al., 2013, Keck et al., 2013, Kuhlman et al.,
2013, Ma et al., 2013, Turrigiano et al., 1998]. Recent experiments established
that homeostatic recovery from visual deprivation in layer 2/3 of adult mice
is associated with a period of disinhibition, but did not observe any evidence
of synaptic scaling [Barnes et al., 2015]. Surprisingly, these experiments ob-
served that only a subset neurons recover their activity in vivo, even though
all neurons undergo a blanket reduction in inhibition [Barnes et al., 2015]. It
is not clear how to reconcile such global disinhibition with the observed se-
lective homeostatic recovery within functional neural circuits. Although the
impact of homeostatic plasticity on neural circuit dynamics has been widely
explored in theoretical models, most require some form of synaptic scaling,
and none have investigated how these diverse homeostatic responses to vi-
sual deprivation can emerge despite blanket disinhibition [Sammons et al.,
2018, Barnes et al., 2017, Clopath et al., 2016, Zenke et al., 2015, Toyoizumi
et al., 2014, Srinivasa and Jiang, 2013, Luz and Shamir, 2012, Vogels et al.,
2011].

We use computational modelling, validated by experimental data, to sug-
gest a mechanism underlying the diverse activity profiles of neurons follow-
ing deprivation. We construct a recurrent network in which neurons form
two types of networks: those driven by common visual inputs, and those
driven by correlated spontaneous activity. Visual deprivation triggers in-
hibitory synaptic plasticity - but not synaptic scaling - within the recurrent
network, consistent with observations by [Barnes et al., 2015]. Homeostatic
recovery from visual deprivation in the network model is driven by the dis-
inhibitory effect of inhibitory synaptic plasticity, which unmasks recurrent
excitation in the subnetworks formed by correlated spontaneous activity. Us-
ing this network model we explore the conditions under which disinhibition
successfully unmasks recurrent excitation to recover neural activity.

Crucially, for each neuron the magnitude of the homeostatic response de-
pends on the size of the spontaneous subnetwork to which it belongs. Neu-
rons belonging to small spontaneous subnetworks share a relatively low
amount of recurrent excitation, whereas neurons belonging to large sponta-
neous subnetworks have stronger recurrent excitation. This increased excita-
tion allows a much larger homeostatic response when disinhibition occurs,
due to the effect of recurrent amplification previously described in compu-
tational models and in vivo [MacLean et al., 2005, Douglas et al., 1995]. Our
simulation provides a mechanistic explanation for the diverse homeostatic
responses to visual deprivation observed in vivo during blanket disinhibi-
tion. Our model demonstrates that disinhibition can drive homeostatic re-
covery in the absence of synaptic scaling, but only given sufficient recurrent
excitation. Moreover, when we compare our model of homeostatic recov-
ery to a simple model of recovery mediated by synaptic scaling, we find
that scaling-mediated homeostatic responses are not subnetwork-specific,
and occur uniformly across all neurons in the network. Finally, our network
model predicted that neurons with a high proportion of enduring functional
associations will exhibit the strongest homeostatic recovery. By imaging neu-
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3 materials and methods 3

rons in L2/3 of visual cortex in vivo after enucleation, we confirmed these
predictions experimentally.

materials and methods

Neuron model

We use a simple firing rate neuron model, given by the transfer function
g(x) defined below, and as used previously by [Rajan et al., 2010, Hennequin
et al., 2014].

g(x) = 0 if x < 0

= (rmax − r0)tanh(x/(rmax − r0)) if x > 0.
(1)

This leads to firing rates with a baseline of r0 and a maximum of rmax. Fol-
lowing [Rajan et al., 2010], the firing rates yi of neuron i driven by external
input Hi in a network are described below.

dyi
dt

= −yi +

N∑
j=i

Wjig(yj) +Hi , (2)

where Wji is the weight of the synaptic connection from neuron j to neuron
i.

Recurrent network model

Our network consists of NE excitatory neurons and NI inhibitory neurons.
The dynamics of both inhibitory (I) and excitatory (E) neurons are described
by Equation 1 and Equation 2. There is dense all-to-all synaptic connectivity
in the E-E, E-I and I-E populations, and no I-I connectivity. Self-connections,
or autapses, are not permitted in this network. As such, Wij in Equation 2

takes the form of a square matrix with size (NE +NI)
2, where NE and

NI represent the number of excitatory and inhibitory neurons respectively.
The strength of the inhibitory synapses are set so that inhibitory currents
roughly balances excitatory currents in the network. There are 400 excita-
tory and 100 inhibitory neurons in the network.

Modelling synaptic plasticity

We use the BCM learning rule to model excitatory synaptic plasticity of
recurrent excitatory to excitatory (E-E) and excitatory to inhibitory (E-I)
synapses [Bienenstock et al., 1982, Blais and Cooper, 2008],

dWij

dt
= αyiyj(yj − θj) (3)

dθi
dt

= τθ
(y2i
y0

− θi
)

, (4)

where α is the learning rate. θi refers to the sliding threshold which de-
termines whether potentiation or depression occurs for synapses onto each
neuron i, and which depends on the neuron’s recent postsynaptic activity,
yi. τθ is the time constant at which θi is modified in order to maintain the
postsynaptic firing rate at its homeostatic target, y0.
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3 materials and methods 4

The BCM learning rule has both a Hebbian component and a homeostatic
component. This form of plasticity is competitive and leads to the devel-
opment of stimulus selectivity, as discussed in [Bienenstock et al., 1982].
In addition to the BCM learning rule, we implement synaptic pruning of
weak excitatory synapses, which occurs continuously throughout develop-
ment. This is implemented by deleting synapses which fall below a thresh-
old weight set at 25% of the maximum weight.

We use a homeostatic rule to model inhibitory synaptic plasticity of recur-
rent inhibitory to excitatory (I-E) weights [Vogels et al., 2011],

dWIE
ij

dt
= ηyi(yj − y0) , (5)

where y0 is the homeostatic target firing rate, η is the learning rate, and
WIEji is the weight of the synaptic connection from inhibitory neuron i to
excitatory neuron j.

Excitatory weights are bounded so that their values lie between 0 and
wmax, and inhibitory weights are bounded so that they lie between −wmax-inh
and 0. Note that the competitive nature of the BCM learning rule usually
causes a single synapse to ‘win’, while all remaining synapses onto a neu-
ron are pushed down to their minimum weight after a winning synapse
emerges. This effect can be counteracted by setting a sufficiently low maxi-
mum weight, so that multiple synapses with large weights are required in
order to achieve the target firing rate y0. The maximum synaptic weight
wmax is set such that the target rate of a neuron will be achieved when a
subset of synapses saturate at their maximum value, and another subset
reach an intermediate synaptic weight. In this way multiple stable synaptic
weights corresponding to multiple levels of co-activity can be achieved with
the BCM learning rule.

The homeostatic target, y0, is the same for both inhibitory plasticity and
the homeostatic component of BCM plasticity. Note that the speed of both
learning rates α and η are artificially increased in order to reduce the compu-
tational resources required to simulate our network model. The timescales
of synaptic plasticity in our network models are in the order of hundreds
of seconds, while synaptic plasticity responses to visual deprivation occur
over the course of days in vivo. This increased learning rate does not qual-
itatively affect our results, as there is a sufficient separation of timescales
between synaptic plasticity and network dynamics.

Seeding spontaneous subnetworks

We randomly seed spontaneous subnetworks within the initial synaptic
weight matrix of the recurrent network model. This is achieved by randomly
assigning each excitatory neuron to a spontaneous subnetwork, and then set-
ting all weights between neurons in the same subnetwork to wmax. The rest
of the weights in the network are set to wmax

2 . Note that this spontaneous
subnetwork structure could also be achieved through Hebbian plasticity in
combination with correlated spontaneous activity.

For uniform spontaneous subnetwork sizes, there are 20 neurons in each
subnetwork. For diverse subnetwork sizes, the large subnetworks have 140

neurons and the remaining small subnetworks have 20 neurons.
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Simulating development and visual deprivation

Visual stimulus preference is assigned to excitatory neurons, ordered by
neuron indices. This ensures that each neuron is independently a member
of a visual and spontaneous subnetwork. There are 10 visual stimuli in
the network, with 40 neurons per stimulus (neurons 1-40 prefer the first
stimulus, neurons 41-80 prefer the second stimulus, etc.).

Every 500 ms, a randomly chosen visual stimulus is presented to the net-
work. Neurons which prefer this visual stimulus receive a large external in-
put with a firing rate of 12 Hz, while the remaining neurons in the network
receive external input with a lower baseline firing rate of 4 Hz. These firing
rates are kept constant for the next 500 ms. Throughout the entire simula-
tion each neuron also receives independent external noisy inputs, modelled
as an Ornstein-Uhlenbeck process with zero mean, standard deviation of
5 Hz, and time constant of 50 ms [Ricciardi and Sacerdote, 1979].

To simulate visual deprivation, we stop presenting visual stimuli to the
network. External visual input to the neurons remains absent throughout
deprivation, since monocular enucleation is a non-reversible visual depri-
vation paradigm. The inhibition-excitation (I/E) ratio was measured by
calculating the ratio of incoming inhibitory synaptic currents to excitatory
synaptic currents for each neuron.

Measuring persistent correlations in the network model

We measure correlations by calculating the Pearson correlation coefficient
of firing rate time series for each pair of excitatory neurons in the network.
These measurements are performed on the last 500s of simulated activity af-
ter both development and visual deprivation. Two neurons are defined to be
persistently correlated if their Pearson correlation coefficient is statistically
significant and positive both after development and after the homeostatic
response to visual deprivation. Neurons have a low proportion persistent
correlations if they are persistently correlated with < 15% of other neurons,
whereas neurons have a high proportion of persistent correlations if they
are correlated with > 15% of other neurons. The normalised recovery given

by rnorm =
(rrecov−rdepriv)

5.0 , where rrecov is the firing rate after recovery, rdepriv
is the firing rate immediately after visual deprivation, and 5.0 is the homeo-
static target firing rate.

Measuring persistent correlations in vivo

Data from experiments conducted by [Barnes et al., 2015] were analysed
using a measure of persistent correlations. Briefly, we perform chronic
imaging of calcium signals in layer 2/3 cells in monocular visual cortex
of adult mice. Genetically encoded calcium indicator GCaMP5 signals were
recorded with cellular resolution in behaving mice on a spherical treadmill
[Akerboom et al., 2012, Keck et al., 2013]. Visual deprivation was performed
via monocular enucleation, and cells were imaged for the 24 hours before
and 72 hours after visual deprivation. Cells were classified into putative
excitatory and putative inhibitory neurons using their calcium transients ki-
netics and immunohistochemistry (see [Barnes et al., 2015]). Only cells with
significant responses to visual stimuli prior to visual deprivation and which
exhibited some degree of recovery from visual deprivation were included
in the analysis. The Pearson correlation coefficient of calcium traces were
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3 materials and methods 6

measured for each pair of putative excitatory neurons, while the mouse
was stationary and in a dark room. This state is used as a proxy for spon-
taneous activity. Cells with a positive and statistically significant Pearson
correlation coefficient are assumed to be correlated (p < 0.05). 252 corre-
lated pairs of cells were observed prior to visual deprivation amongst 35

neurons, pooled across 4 animals. Persistent correlations are those which
are present between cells both before visual deprivation, and 72 hours after
visual deprivation. As with analysis of the network model, cells have a low
proportion persistent correlations if they are persistently correlated with <
35% of other cells (N=15), whereas cells have a high proportion of persistent
correlations if they are correlated with > 35% of other cells (N=20). This cut-
off is higher than that used in the network model, as the average amount
of persistent correlations is higher in vivo compared with the model. The
normalised recovery is the ratio of the mean calcium trace at the end of the
simulation compared with the mean calcium trace immediately prior to vi-
sual deprivation, for each cell. See [Keck et al., 2013, Barnes et al., 2015] for
further details of experimental procedures.

Simulating synaptic scaling

We simulate the effect of synaptic scaling using a simplification of multi-
plicative synaptic scaling. The dynamics of synaptic scaling are well char-
acterised in previous theoretical studies; as such as we only simulate the
overall weight changes after a prolonged period of synaptic scaling [Tetzlaff
et al., 2011, van Rossum et al., 2000]. To this end we simply multiply all
recurrent excitatory synaptic weights weights by a scaling factor β,

WEE
after = βWEE

before . (6)

Visual deprivation is simulated as before, and weights are changed after
visual deprivation. Weights are kept unbounded, so a synaptic weight that
was wmax before scaling is βwmax after scaling. We chose β = 1.5, since it
drives a homeostatic recovery to pre-deprivation firing rates. Decreasing β
leads to a weaker recovery, and increasing β leads to firing rates above the
pre-deprivation level.

Model implementation and parameters

Parameters used to implement the simulations are shown in Table 1. Param-
eters for the neurons model are similar to those in previous studies [Rajan
et al., 2010, Hennequin et al., 2014]. The choice of wmax = 0.015 is primarily
determined by the constraint of exhibiting reasonable firing rates both be-
fore and in response to visual deprivation, and by the size of the network
being simulated. wmax must be high enough such that neurons receive exci-
tation primarily through recurrent inputs (as observed in cortical networks),
but also low enough such that changes in feedforward inputs elicit dynamic
network responses. The plasticity rates, α, η and τθ were chosen to be slow
enough that there was a separation of timescales between firing rate dy-
namics and synaptic weight dynamics, thus avoiding oscillatory behaviour
[Harnack et al., 2015].

Numerical integration of Equation 2 through to Equation 5 was performed
using the Euler method with a timestep of dt = 0.05 ms. Network rate dy-
namics were allowed to stabilise for 5000 ms with static synaptic weights
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4 results 7

before simulating development and visual deprivation. Network simula-
tions and data analysis was performed with the numpy Python package
and plotting with the matplotlib package and IPython notebook. [Hunter,
2007, van der Walt et al., 2011, Perez and Granger, 2007]. Code will be made
publicly available on github and modeldb, and can be made available to
reviewers [Hines et al., 2007].

Table 1: Simulation Parameters.
NE 400 NI 100 r0 1.0 Hz rmax 20.0 Hz
dt 0.05 ms α 2.0x10−6 Hz τθ 5x104 ms η 5.0x10−6 Hz
wmax 0.015 wmax-inh 0.16 y0 5 Hz

results

Neurons in large spontaneous subnetworks recover from visual deprivation

Our network is composed of excitatory and inhibitory rate-based neurons
with all-to-all recurrent synaptic connectivity (Figure 1A,B). The initial synap-
tic weight matrix is determined by seeded spontaneous subnetworks of
different sizes (Figure 1C,D). Each excitatory neuron receives input corre-
sponding to a given visual stimulus. As such, neurons are driven strongly
both by visual inputs, and by neurons which are part of the same sponta-
neous subnetwork. Local connectivity is developed by presenting random
sequences of visual stimuli to the network. Synaptic weights undergo plas-
ticity as neurons which are assigned the same visual stimulus preference
become coactive (Figure 1F). Synaptic weights below a defined threshold
are removed (Figure 1F).

Subnetworks of strongly interconnected neurons which share the same
visual stimulus preference clearly emerge, due to neurons within networks
receiving correlated external input (Figure 1H). This is in agreement with
previous experimental and theoretical observations [Clopath et al., 2010, Ko
et al., 2013, Ko et al., 2014]. The spontaneous subnetworks remain strongly
interconnected (Figure 1G,H), with synaptic weights larger than the average
synaptic weight in the network. Synapses are gradually pruned between
neurons which do not form either a visual or spontaneous subnetwork to-
gether (Figure 1F,H).

We next simulate visual deprivation by turning off external inputs corre-
sponding to visual stimuli, similar to previous models of visual deprivation
[Intrator and Cooper, 1992, Toyoizumi et al., 2014]. The activity of neurons
within different subnetworks clearly drops when visual input is removed
(Figure 2A). Activity does not recover following deprivation, even though
inhibitory drive is also reduced (Figure 2A). The final synaptic weight ma-
trix illustrates this reduction in inhibition which occurs after visual depriva-
tion (Figure 2B, compared with Figure 1H). These results suggest that there
is not enough spontaneous recurrent excitation within small spontaneous
subnetworks to drive a sufficient recovery from visual deprivation in the
absence of synaptic scaling, despite reduced inhibition.

We now test whether introducing diversity in the spontaneous subnet-
work size influences the recovery of these subnetworks from visual depriva-
tion. Since the stronger recurrent excitatory drive within larger subnetworks
will recruit more inhibition to these subnetworks during the developmental

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312926doi: bioRxiv preprint 

https://doi.org/10.1101/312926
http://creativecommons.org/licenses/by/4.0/


4 results 8

presynaptic neuron

po
st

sy
na

pt
ic

 n
eu

ro
n

C
Weights (sorted by neuron index)

presynaptic neuron

po
st

sy
na

pt
ic

 n
eu

ro
n

D
Weights (sorted by seeded subnetwork)

0

wmax

0

wmax

Figure 1: Simulating development in a network with uniform spontaneous sub-
networks (A) Architecture of the recurrent network model. (B) Neurons
receive input from recurrent and external sources. (C) Initial excitatory
synaptic weight matrix of an example network. (D) Same as C, sorted by
grouping neurons into their seeded subnetworks. An orange colourmap
is used throughout this paper to indicate sorting by seeded subnetworks,
whereas a red colourmap is used to indicate sorting by visual subnetworks.
(E) Evolution of individual (grey) and mean (black) firing rates of excita-
tory neurons during development. (F) Evolution of individual (grey) and
mean (black) synaptic weights over time. Vertical grey lines indicate indi-
vidual synapses being pruned. (G) Synaptic weight matrix before devel-
opment. (H) Synaptic weight matrix after development. E and I refer to
excitatory and inhibitory neurons, respectively.
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phase of our simulation, the disinhibitory response to visual deprivation
will have a larger range, and may be sufficient to unmask the spontaneous
recurrent excitation within these larger spontaneous subnetworks. We there-
fore hypothesise that large spontaneous subnetworks will exhibit a larger
homeostatic response to visual deprivation than small spontaneous subnet-
works.

In order to test this hypothesis we first simulate the development of
visual stimulus selectivity within networks with diverse sizes of seeded
spontaneous subnetworks (Figure 3A). We designate two large subnetworks
(coloured grey), while the remaining subnetworks are small (coloured black,
see Methods). As visual stimuli to the network have not changed, the struc-
ture of the strongly interconnected subnetworks corresponding to these
visual stimuli also remains unchanged (Figure 3B,E, compared with Fig-
ure 1H). There is however a difference in the amount of inhibition within
the network after development and pruning. Since there is more recurrent
excitation due to the large spontaneous subnetwork, there is also stronger in-
hibition before deprivation at the large spontaneous subnetwork (Figure 3E
compared with Figure 1H).

As before (Figure 2), neurons in small spontaneous subnetworks do not
recover from visual deprivation. In contrast, neurons embedded in large
subnetworks exhibit a recovery from visual deprivation, returning to their
pre-deprivation activity (Figure 3C, black lines). These results suggest that
a subset of neurons will recover partially from visual deprivation and that
a key factor in this recovery is the size of the network to which the neuron
belongs. In agreement with experimental findings, the diverse homeostatic
responses emerge despite blanket disinhibition occurring across the entire
network [Barnes et al., 2015]. Since both recovering and non-recovering re-
sponses to visual deprivation were observed amongst neurons in different
subnetworks in vivo, the dependence of recovery on a neuron’s subnetwork
size provides a parsimonious explanation for this observation [Barnes et al.,
2015]. As strong recurrent excitatory drive within large subnetworks re-
cruits more inhibition to neurons in these subnetworks during development,
the disinhibitory response of these neurons to visual deprivation will have
a larger range. Disinhibition can therefore unmask sufficient spontaneous
recurrent excitation within large spontaneous subnetworks to drive home-
ostatic recovery of activity, but not within small spontaneous subnetworks.
As a consequence, neurons with identical membrane properties and firing
rate statistics prior to deprivation can exhibit distinct homeostatic responses
to visual deprivation by belonging to different spontaneous subnetworks.

Visual deprivation reduces inhibition-excitation ratio across the network

[Barnes et al., 2015] crucially found a persistent reduction in the inhibition-
excitation ratio following visual deprivation. We can test whether our model
reproduces this observation by measuring the inhibition-excitation ratio be-
fore and after simulating visual deprivation (Figure 4A). As observed ex-
perimentally, there is a significant decrease in the inhibition-excitation (I/E)
ratio after visual deprivation (grey bar) compared with the ratio immedi-
ately before visual deprivation (black bar, see Methods). The low I/E ratio
is a consequence of the reduction in inhibitory synaptic weights which occur
during the homeostatic recovery of a subset of neurons within the network.
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Figure 2: No recovery from visual deprivation in a network with uniform spon-
taneous subnetworks (A) Network activity in response to deprivation,
grouped into the different spontaneous subnetworks, each composed of 20

neurons (each grey line corresponds to a single subnetwork). (B) Synap-
tic weight matrix after visual deprivation. E and I refer to excitatory and
inhibitory neurons, respectively.

The size of enduring functional networks predicts homeostatic recovery

Our network model predicts that neurons belonging to large functional net-
works that endure throughout deprivation will exhibit the strongest home-
ostatic recovery (Figure 4B, see Methods). In order to test this prediction
empirically, we used data from calcium imaging experiments of L2/3 exci-
tatory neurons in adult mouse V1 (see methods). L2/3 excitatory neurons
were chronically measured both before and after (+72 hours) monocular
enucleation.

To estimate the size of functional networks in vivo we measured corre-
lations between calcium signals from the imaged L2/3 neurons. Neuronal
calcium correlations have been shown to represent either reciprocal connec-
tions or common inputs in numerous cortical imaging experiments [Miller
et al., 2014, Ko et al., 2014, Barnes et al., 2015].

At each neuron we compared the size of persistent functional networks
which endured throughout deprivation to the degree of homeostatic recov-
ery measured at 72 hours after enucleation. As predicted by our model,
neurons with a high proportion of persistent correlations exhibit a strong
homeostatic recovery from visual deprivation, suggesting that this recov-
ery is enabled by spontaneous subnetworks which endure following visual
deprivation (Figure 4B, see Methods). Neurons with a low proportion of
persistent correlations exhibit very weak recovery. We propose that neu-
rons with high persistent correlations receive a high proportion of recurrent
excitation which is spontaneously driven as opposed to visually evoked,
therefore driving a stronger homeostatic recovery from visual deprivation.

In summary, the predictions of our model are validated by experimental
data, suggesting that the size of a functional network which a neuron is em-
bedded in before deprivation can influence the strength of its homeostatic
recovery.

Synaptic scaling is not consistent with subnetwork-specific recovery

While evidence of excitatory synaptic scaling in response to visual depriva-
tion has not been observed in layer 2/3 of adult mouse visual cortex [Barnes
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Figure 3: Recovery from visual deprivation in a network with diverse sponta-
neous subnetworks (A) Initial excitatory weight matrix of a network with
diverse seeded spontaneous subnetworks. Neurons are ordered by their
spontaneous subnetworks membership. (B) Excitatory weight matrix of
the network after development. Neurons are ordered by their spontaneous
subnetworks membership. (C) Network activity in response to deprivation
for small (grey) and large (black) spontaneous subnetworks. Dotted black
line indicates mean network activity. (D) Changes in inhibitory synaptic
weights in response to deprivation, for randomly chosen sample weights
which connect to either small (grey) or large (black) spontaneous subnet-
works. (E) Weight matrix before visual deprivation, sorted by visual sub-
network. (F) Weight matrix after visual deprivation, sorted by visual sub-
network. E and I refer to excitatory and inhibitory neurons, respectively.
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Figure 4: Experimental validation of the model. (A) Reduction of inhibition-
excitation ratio after visual deprivation Ratio of incoming inhibitory to
excitatory current for excitatory neurons in the network before visual de-
privation and after partial recovery from visual deprivation. (B) Model
predictions are validated experimentally. Persistence of correlations pre-
dicts the degree of recovery after visual deprivation in the network model
and in vivo. Normalised recovery from visual deprivation for neurons
with either a low or high proportion of persistent correlations, observed in
vivo (grey bars) and in our network model (black bars). Note the different
y-axis scale when comparing in vivo and network model results. ** p <
0.01, *** p < 0.001, independent 2-sample t-test. Error bars in both plots
indicate the standard error of the mean.
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Figure 5: Synaptic scaling is not consistent with experimental observations. (A)
Uniform homeostatic responses mediated by synaptic scaling in a net-
work with diverse spontaneous subnetworks. Network activity in re-
sponse to deprivation for small (grey) and large (black) spontaneous
subnetworks. Dotted black line indicates mean network activity. (B)
Inhibition-excitation ratio is not substantially reduced after visual de-
privation. Ratio of incoming inhibitory to excitatory current for excitatory
neurons in the network before visual deprivation and after recovery from
visual deprivation by synaptic scaling. (C) Persistence of correlations do
not substantially determine homeostatic responses. Normalised recovery
from visual deprivation by synaptic scaling for neurons with either a low
or high proportion of persistent correlations. *** p < 0.001, independent
2-sample t-test. Error bars in both plots indicate the standard error of the
mean.

et al., 2015], it is a ubiquitous response to sensory deprivation in young an-
imals [Desai et al., 2002], and has been observed in layer 5 of adult mouse
visual cortex [Keck et al., 2013]. We therefore tested whether subnetwork-
specific homeostatic responses can be explained by synaptic scaling alone.
We do this by assuming a simplified form of synaptic scaling, in which all
excitatory weights are multiplicatively increased in response to visual de-
privation and inhibitory weights are kept fixed (Materials and Methods).
Synaptic scaling leads to a full homeostatic recovery (Figure 5A). Crucially,
this recovery occurs uniformly across all neurons, and as a consequence is
not subnetwork-dependent. The I/E ratio of the network is only slightly
reduced after recovery by synaptic scaling (Figure 5B), in contrast with the
large reduction observed in our subnetwork-specific network model and in
vivo (Figure 4A). Since all neurons recover uniformly in the network with
synaptic scaling, we find no substantial difference in recovery strength be-
tween neurons with low or high persistent correlations (Figure 4C), again in
contrast with observations from our subnetwork-specific model and in vivo.

discussion
Using a recurrent network model, we show that a combination of biologi-
cally plausible synaptic plasticity mechanisms can capture both the experience-
dependent development of visual and non-visual spontaneous subnetworks
in V1 as well as diverse subnetwork-specific homeostatic responses to vi-
sual deprivation. We find that the strength of homeostatic recovery for each
neuron is subnetwork-specific. Neurons in large spontaneous subnetworks
recover partially from visual deprivation, whereas neurons in small sponta-
neous subnetworks do not recover. This provides a possible explanation for
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the observed emergence of diverse activity profiles following visual depriva-
tion in adult mice, despite blanket disinhibition occurring across all neurons
[Barnes et al., 2015].

The mechanisms in our network model consist of Hebbian excitatory
synaptic plasticity with activity-dependent control of the threshold for LTP
over LTD (a BCM learning rule), and a homeostatic form of inhibitory plas-
ticity which aims to maintain a target firing rate. We simulated develop-
ment within the network such that strongly interconnected subnetworks
are formed either by common visual input, or by correlated spontaneous
activity within non-visual ‘seeded’ subnetworks (Figure 1). We could then
study the effects of visual deprivation on either of these subnetwork types.

Visual deprivation leads to a reduction in activity, followed by homeo-
static recovery amongst a subset of neurons (Figure 2,Figure 3). As hy-
pothesised, this recovery is mediated by disinhibition, which unmasks the
non-visual, spontaneously-driven subnetworks. Despite a subset of neu-
rons exhibiting no homeostatic response, all neurons within the network
underwent blanket disinhibition, reproducing the phenomenon observed
by [Barnes et al., 2015]. Crucially, the strength of homeostatic recovery for
each neuron is subnetwork-specific, and is determined by the size of the
spontaneous subnetworks: neurons within small subnetworks exhibit very
little recovery after deprivation (Figure 2), whereas neurons within large
subnetworks recover almost completely (Figure 3). The inhibitory synaptic
plasticity rule ensures that neurons within large spontaneous subnetworks
recruit stronger inhibition during development in order to maintain firing
rates similar to neurons within small subnetworks (Figure 3). As such, the
homeostatic recovery observed amongst large subnetworks is not simply a
consequence of neurons within these subnetworks receiving more excita-
tory connections. If this were the case, size-dependent differences in the
spontaneous subnetwork responses to visual deprivation would be evident
immediately after deprivation, rather than after a period of disinhibition.
Our results instead demonstrate that neurons within large spontaneous sub-
networks have increased potential for excitatory recurrent activity which
can be unmasked through disinhibition.

We would not expect such a difference in the homeostatic response if we
increased the number of synapses within visual subnetworks, as they will
no longer be activated following visual deprivation. Similarly, spontaneous
subnetworks do not share common visual inputs, so recovering neurons
have independent visual stimulus preferences prior to visual deprivation -
as observed by [Barnes et al., 2015]. Although there in no synaptic scaling
in our network model, we show separately that a simple model of multi-
plicative synaptic scaling is sufficient to drive a full homeostatic recovery
(Figure 5A). However, this recovery is not subnetwork-dependent, and oc-
curs uniformly across all neurons. In our model however, we observed a
reduction in the I/E ratio following visual deprivation (Figure 4A), consis-
tent with experimental observations from [Barnes et al., 2015]. Although
the I/E ratio reduced slightly when we simulated synaptic scaling, this
was a substantially smaller reduction compared with that observed in our
subnetwork-specific model (Figure 5B). Taken together, our model demon-
strates that synaptic scaling is not required in order to trigger a homeostatic
response to visual deprivation, and that inhibitory plasticity combined with
adequate recurrent excitation is sufficient to drive a homeostatic response.
This is in agreement with experimental observations, and provides an al-
ternative to previous theoretical models of homeostatic recovery which pro-
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pose synaptic scaling as the primary homeostatic mechanism [Barnes et al.,
2015, van Rossum et al., 2000, Toyoizumi et al., 2014].

The dependence of the degree of homeostatic recovery on the size of spon-
taneous subnetworks provides a parsimonious explanation for the diverse
and subnetwork-specific homeostatic responses described by [Barnes et al.,
2015]. However, it remains unclear whether this form of homeostatic re-
sponse is functionally advantageous compared with excitatory synaptic scal-
ing, which drives a complete homeostatic recovery across all neurons (Fig-
ure 5A). An intriguing possibility is that, while synaptic scaling is arguably
more effective at maintaining overall network activity, disinhibitory unmask-
ing of recurrent excitation allows a network to conserve its underlying func-
tional structure. This is supported by the observation that subnetwork-
specific responses can reflect previously seeded subnetworks, and by the
persistence of correlations observed both in vivo and in our subnetwork-
specific network model. The conservation of subnetwork structure may be
particularly important amongst L2/3 neurons, whose recurrent connections
can develop strong functional ensembles [Ko et al., 2013].

Finally, our model predicts that neurons with high persistent correlations
were more likely to exhibit a strong homeostatic recovery. This is because
correlations within visual subnetworks are reduced by visual deprivation,
whereas correlations within spontaneous subnetworks persist after visual
deprivation, since they are unmasked by disinhibition. As such, neurons
which receive more recurrent drive from spontaneous subnetworks exhibit
both a stronger homeostatic recovery, and more persistent correlations (Fig-
ure 4B, black bars). Simulating homeostatic recovery through synaptic scal-
ing alone leads to a markedly reduced dependence of recovery strength
on persistent correlations compared with our subnetwork-specific model
- largely because homeostatic recovery is uniform in the case of synaptic
scaling (Figure 5C). We tested the prediction of our subnetwork-specific
model experimentally, by measuring persistent correlations in calcium sig-
nals across cells in monocular visual cortex of adult mice throughout monoc-
ular enucleation. While calcium imaging cannot directly probe connectivity,
cell-to-cell calcium signal correlations provide us with a reliable indicator
of the degree of functional association between cells [Miller et al., 2014, Ko
et al., 2014, Barnes et al., 2015]. We found that cells with a higher proportion
of persistent correlations exhibited a stronger recovery from visual depriva-
tion, verifying our prediction (Figure 4B, grey bars).

Our measure of persistent correlations cannot untangle the contributions
to correlations mediated by common inputs from the contributions medi-
ated by recurrent connectivity [Pernice et al., 2011, Doiron et al., 2016].
However, there is growing evidence that recurrently connected neurons in
visual cortex are likely to share common inputs, indicating an interdepen-
dence in these two sources of correlations [Komiyama et al., 2010, Ko et al.,
2013, Miller et al., 2014, Ko et al., 2014]. The importance of persistent cor-
relations in predicting whether neurons recover suggests that homeostatic
recovery is determined by pre-existing excitatory connections which endure
and are functional following visual deprivation, and does not depend on
the absolute number of excitatory recruitment or reorganisation of excita-
tory connections.

Although our network model suggests that subnetwork-specific recovery
is size-dependent, the data do not rule out alternative theories of spontaneously-
driven recovery. For example, diversity in the strength of recurrent synapses
within subnetworks may have a similar effect as the diversity in subnetwork

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312926doi: bioRxiv preprint 

https://doi.org/10.1101/312926
http://creativecommons.org/licenses/by/4.0/


5 discussion 16

size implemented within our network model. This could be due to stronger
correlations within some subnetworks, which mediate increased synaptic
potentiation during development. This would lead to diverse, subnetwork-
specific homeostatic response which are independent of subnetwork size,
but dependent on recurrent synaptic strength within subnetworks. A sec-
ond possibility is that the degree of recovery for each neuron is determined
not by specific subnetwork properties, but by the strength of spontaneous
excitatory input currents which individual neurons receive prior to depriva-
tion. As there is balanced excitatory and inhibitory drive in healthy cortical
networks, increased recurrent input would not necessarily alter neural fir-
ing rates, but would ensure a larger dynamic range over which disinhibition
mediates homeostatic recovery [Moreau et al., 2010, Dorrn et al., 2010]. This
diversity of spontaneous drive in neurons has recently been experimentally
observed in visual cortex [Okun et al., 2015].

There are a number of plausible mechanisms which may lead to the for-
mation of seeded subnetworks prior to visual experience. Functional sub-
networks can be formed through enhanced electrical coupling, observed be-
tween neurons derived from the same progenitor cell [Yu et al., 2012, Li et al.,
2012]. Such a scenario has previously been explored in a computational net-
work model, in which the development of diversely sized subnetworks was
observed [Bauer et al., 2014]. Additionally, common input from non-visual
modalities may lead to the formation of functional subnetworks, much in
the same way that common visual inputs drives the formation of visual sub-
networks [Ko et al., 2013, Miller et al., 2014]. These subnetworks may not be
seeded as we described, but could form under the influence of Hebbian plas-
ticity [Litwin-Kumar and Doiron, 2014]. Diverse homeostatic recovery could
occur as observed with spontaneous subnetworks, provided that monocular
visual deprivation preserved the correlated structure of inputs from these
non-visual modalities. The multimodal response properties of V1 neurons
observed in recent experiments suggest many potential non-visual sources,
including sound-evoked inputs from auditory cortex, movement-related in-
puts, or top-down projections from higher cortical regions [Zhang et al.,
2014, Ibrahim et al., 2016, Makino and Komiyama, 2015, Keller et al., 2012].
The subnetwork size is largely unconstrained by data. Subnetworks com-
posed of as little as 10 neurons can form, as demonstrated through induced
LTP by repeated triggering of spike trains in a randomly chosen group of
L2/3 excitatory neurons [Kim et al., 2016]. Large-scale recording of neurons
reveal ensembles in which 5− 10% of imaged neurons are active during an
ensemble event [Miller et al., 2014]. However, since these ensembles are
extracted by measuring coactivity during a given time window, the sparse
nature of cortical activity likely means that the actual number of neurons
which form these ensembles is underestimated.

The network model we propose here remains agnostic to the origin of
seeded, non-visual subnetworks. Nonetheless, our model demonstrates that
the simultaneous development and maintenance of multiple subnetworks
with different modalities is possible in a recurrent network using a sim-
ple combination of synaptic plasticity mechanisms. Moreover, neurons may
flexibly participate in multiple subnetworks, as observed in primary visual
cortex [Miller et al., 2014]. Disinhibitory unmasking of these flexible subnet-
works after visual deprivation, as demonstrated in our model, may form the
basis of extensive crossmodal plasticity observed in adult visual cortex [Lee
and Whitt, 2015, Nys et al., 2014, Van Brussel et al., 2011]. Further experi-
ments may uncover the multimodal nature of these diverse subnetworks.
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